PROGRAM PROVING WITHOUT TEARS

by

Edward Ashcroft
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

&

William Wadge
Department of Computer Science
University of Warwick
Coventry, England

Research Report CS-75-03
January 1975

PROGRAM PROVING WITHOUT TEARS
by
Edward Ashcroft
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
(Tel. (519) 885-1211 Ext.3479)
and
William Wadge
Department of Computer Science

University of Warwick
Coventry, England

January 1975

E. Ashcroft and W. Wadge

ABSTRACT

We present a formal system, Lucid, in which programs can be
written and proofs of programs can be carried out. ILucid programs, though
understandable as iterative programs, using assignment statements, loops
and input/output, are actually sets of axioms from which properties of
the programs can be derived. For example, in Lucid, assignment statements
are simply equations.

The rules of inference are mainly those of 'mormal' logical
reasoning using quantifiers, and proofs are readily understandable. We
give a proof that for a program Prime, which tests its first input value

for primeness, we have output = — HKHL 2<K A K<first input A KxI=first input.

E. Ashcroft and W. Wadge

Introduction

One obstacle to proving properties of programs in a direct way is
that the language in which programs are written is usually different from
the language in which proofs are expressed. Programming languages are
mostly not "mathematical", despite superficial sememblances to mathematical
notation. We aim to overcome this obstacle with a practical programming
language, called Lucid, whose statements are true mathematical assertions
about the results and effects of the program. A program is essentially an
unordered set of axioms from which properties of the program can be derived.

Of course, we can consider that this is already the case for
purely recursive programs, for example, the recursive definition of the
factorial function can be considered both as a recipe for computing the
factorial and also as an assertion about the function computed. However,

a practical programmer often finds the step-by-step iterative approach more
natural than the recursive one, and therefore writes his programs in an
"imperative" language containing assignment statements and loops.

Lucid is an imperative language, containing assignment statements
and loops, ard yet it is a "denotational" language, whose "cammands"
are mathematical assertions. In particular, an assignment statement is
simply an equation.

Lucid avoids assignment statements that are mathematically
meaningless as equations, such as X = X+1, by explicitly distinguishing
between the initial value of a loop variable X (first X), the current value

of X and the value of X for the next iteration of the loop (next X).

E. Ashcroft and W. Wadge
-2 -

The following simple Lucid program Prime determines whether
the first integer N on the input stream is a prime number or not.

Program Prime

N = first input
first I =2
begin
first multiple = I + I
next multiple = multiple + I

IdivN = multiple eq N as_soon as multiple > N

end
Rext I=1I+1
output = — TdivN ag soon as IdiwN v I x I 2 N.

Semantically, a Lucid statement is an assertion about the entire
"histories" or "world lines" of the various variables. Lucid programs and
their proofs are clear enough for us to give in this paper an example of a
semi-formal proof of Prime before outlining the formal semantics and
the rules of inference that can be used in formal proofs. We then show

how one of the steps in the semi-formal proof can be proved formally.

E. Ashcroft and W. Wadge

-3 -

2. . A proaf. ef the.program Prime

The program contains one loop within another. The inner loop is

delimited by begin and end. Intuitively, the outer loop generates successive

values of potential divisors I of N, starting 2,3,4..., and, for each value
of I, the inner loop generates successive multiples of I. The variable

IdivN is set true or false depending on whether or not a multiple of I is

found which is equal to N. In the outer loop, output is set false or. true

depending on whether IdivN is ever true or not.

The program as it stands is not strictly speaking a set of
assertions because of the begin and end. Informally, the effect of begin
and end is to "freeze" the values of the global variables I, N and

IdivN., The begin and end can be removed by replacing all enclosed occurrences

of I, N and IdivwN by lakest I, latest N and latest Idiw. %Thus the first

line of the inner loop becomes first multiple = latest I. The resulting
transformed program Prime' is an unordered set of assertions which can be used
as axiams from which to derive further assertions. However, we also have
rules of inference which allow us to carry out proofs using the begin, end
notation and avoid latest, as follows.

We keep track of the loop associated with a program statement or
other assertion that we have derived. Informally, an assertion that does not
contain any of the special Lucid functions can be moved in and out of loops,
and within a loop we can add the assertion X = first X for any global
variable X (which states that X is quiescent). When proving things "within
a loop" we may only use statements from within the loop (which may have been

brought in or have been added as above).

E. Ashcroft and W. Wadge

-4 -

We will now derive from the statements of Prime and the assumption
integer first input the assertion

output = HL HK 2 < K A K < first input A L x K = first input

We will assume the only data objects are positive integers, true,
false and the special ebject undefined.

The first step is to prove the correctness of the inner loop. We
introduce a new variable J by setting first J = 2 and next J = J+1 so that

between the begin and end we have

Lixst T =2
pext J = J+1

first multiple = I+I
next multiple = multiple + I

IdivN = multiple eq N as soon as multiple > N.

Since J does not appear elsewhere in the program, any assertion not
involving J which is provable fram the expanded program can be proved from
the original. With J so defined we can prove
(1) multiple = I x J.

The proof uses the basic Lucid induction rule:

(R1) first P, P> next P =P
where for any assertion A and set I' of assertions, I' |= A means that the truth
of A is implied by the truth of every assertion in I'. If we let P be

"multiple = I x J" then

first P = first (multiple = I x J)

(first multiple = first I x first J)

(I+I=2xTI)

E. Ashcroft. and W. Wadge
-5 -

which is true (recall that inside the inner loop I = first I). Now assume P

at same stage, i.e. assume multiple = I x J. Then

next (multiple = I x J) = (next multiple = next I x next J)

Ix (J+ 1))

(multiple + I

i

(mltiple + T =1I x J + I)

which follows from the induction assumption. Thus P - pext P and so we have
proved multiple = I x J by induction. We also used an axiom which says that
first and next 'commute' with conventional operations like "+": for any
expression A not containing any special Lucid operators and having free

variables Xl’X2’ . ,XK we have

(al) = first A = A(X;/first X,,..., X/ first X))

2) = next A =A(X;/next X ,...,X/pext X

where A(X/Q) denotes term A with free variable X replaced by temm Q.

In Iucid, X = Y implies that X and Y are identical; therefore, all
occurrences of multiple may be replaced by I x J. Also, I and J are integer
so that "I X J eg N" and "I x J = N" are identical, the only difference
between eq and = being that eqg yields undefined if either of its arguments are
undefined. Throwing away useless statements, our transformed program

Pr Jmel 1s

N = first input

PORSRORIAD

first T = 2

AIRIININTS

begin

first J = 2

nextJ =J+ 1

IdivwN = (I x J=N) as soonas I xJ >N
end
next I=1I+1

output = —IdivN as soon as I x I = N v IdivN

and if A is an assertion not mentioning J then Primel = A iff Prime |}= A.

E. Ashcroft and W. Wadge
-6 -

We now finish the correctness proof of the inner loop. We use
the following axiom

(a3) |= P A hitherto —P° > (X gs soon as P) = X

which says that X as_soon as P is the value of X when P is true for the first
time, having been false up till then. Later we will show in detail that

(2) hitherto (I XxJ<N) »(fK2<KAK<J~+IXxK<N)

so that when I x J 2 N is true for the first time, then for any K, I x K= N

J. Thus when I x J 2 N is true for the first time, I x I =N

1l

implies K

A

and HK 2 <K AK <N AIXK-=N are equal. Abbreviating this last expression
to div(I,N) ("I is a non-trivial divisor of N") we have

(3) IxJzNAm(IxJ<N)+IdivN=div(I,N)

Note that the right-hand side of the implication (the correctness
statement we want) is quiescent, i.e. equal to its first value. Thus it will be
true if the left-hand side is ever true. #o deduesr this we establish that
IxJ< next (I xJ) and use the following Lucid 'termination' axioms and rules.

(R2) integer L, integer M, M = first M, L < next L |= eventually @ =)
4ad) |- eventually P > eventually (P A hitherto —P)

(®3) Q=first Q, P~>Q, eventually P =Q .
Thus we have

(4) 4, Idiw = div(I ,N).

Note that we had to establish integer I in the outer loop, and this

and integer N were then brought into the loop.

E. Ashcroft and W. Wadge
-7 -

Assertion (4) contains no ILucid functions and so may be taken outside
the inner loop. We now discard the inner loop yielding ‘program' Primz:

N = first input

fixst I =2

IdiN = HK 2 < K AK<NAIXK=N

next I=1I+1

output = —IdivN as soon as I x I 2 N v IdivN
and as before Prime2 = A implies Prime }= A for any assertion A. Actually
Prj_me2 is no longer a program but rather a hybrid object halfway between a
program and statement of correctness.

The rest of the proof is basically a repetition the proof in the
inner loop, a key step being to establish

(5) hitherto —IdivN » (VL L < K > —div(L,N)).

Finally, we can eliminate all the variables except output
leaving 'program' Prime3:

output =—HALJK 2 < K A K < first input A L x K = first input.

\‘D
Note that —HL UK 2 < K x K < first input A K x L = first input is
either true or false,whem . integer first input. Thus output is not

undefined, and so program Prime terminates with the correct output.

We emphasize that our proof is based on a carefully defined formal
system - Lucid - in which programs can be stated and proved correct in a
campletely formal manner. The system is not restricted to only proving
partial correctness or only proving termination or only proving equivalence -
Lucid can be used to express many types of reasoning.

The rest of the paper describes Iucid from the formal system point

of view.

E. Ashcroft and W. Wadge

-8 -

3. Formalism

Although our formal system is close to ordinary first order logic,
first order logic is not convenient for our purposes. The first problem is
that the truth value of an expression such as X > Y may be neither true
nor false, but instead be true at some stages in the computation and false
at others. Thus a modal or tense logic is more appropriate, as has been
recognised by Burstall [3].

The second problem is that programs use truth values as data and
so the distinction between terms and formulas does not exist. Our approach
is to take as our most general formal system an algebra with a quantifier
and a distinguished nullary operation T.

What follows is a brief outline of our formalism. For more
details, see [1]. An informal introduction to Lucid is found in [2].

Alphabets and Terms

A Lucid alphabet I is a set containing the symbols "U", "{" and,
for each natural number n, any number of n-ary operation symbols, including
the nullary operation symbol T. We also have at our disposal at set of
variables e.g. X,Y,Z2. The set of I~-terms is defined as follows: every
variable is a I~term; if G is an n-ary operation symbol in I and ByreesrB
are I-terms then G(Al,... ,An) is a I-term; if V is a variable and A is a
I-term then HV A is a I-term.

Structures and Interpretation

If © is an alphabet then a X-structure S is a function which assigns

to each symbol ¢ in I a 'meaning' o, in such a way that U, is a set, HS is a

S S

function from subsets of US to elements of US and, if G is an n-ary operation

E. Ashcroft and W. Wadge
-9 -

symbol, GS is an n-ary operation on US. An S-interpretation I extends S

to assign to each variable V an element VI of US. If A is a I~tem, S a

I-structure and I an S-interpretation then we define an element]AII of
Ug (the "meaning" of A) in the obvious way. We say: |=I A (I satisfies A)
iff IAII = Tg; if T' is a set of terms |=Il" iff l==IB for each B in T;

Il=g A iff |=IF implies |=IA for any S-interpretation I.

Standard Structures

An alphabet I is standard if it contains the nullary operation
symbols 1 and F, the unary operation symbol —, the binary operation symbols
v and = and the ternary operation symbol if then else, but none of the special
Lucid symbols first, next, as soon as, hitherto and latest.

A standard structure is a structure whose alphabet is standard and

such that

(a) To, Fq and 1, are true, false, and undefined respectively.

s’ "s S
(b) —ig vields true if its argument is false, false if its argument

is true, undefined otherwise.

(c) Vg yvields true if at least one arqument is true, false if both

are false, undefined otherwise.

(@) =g yields true if its arguments are identical, false otherwise.
(e) if then else, yields its second argument if its first is true,

its third if its first is false, undefined otherwise.

(£) for any subset K of U, E[S (K) is true if true ¢ K, false if
K = {false}, undefined otherwise.
(9) all operations of S, except =g, are monotonic, for the ordering

on US defined by x € y iff x = y or x = undefined.

E. Ashcroft and W. Wadge

- 10 -

A typical standard structure is N, which includes positive

integers with + and x together with the above operations. Standard

structures correspond to damains of data objects and correspond most closely

to ordinary first-order structures.

Computation Structures

The set Spec consists of the operation symbols first, next, as soon as,

hitherto and latest. For any standard I-structure S, Comp(S) is the unique

% U Spec-structure C such that:

(a)

(b)

(c)

(d)

Uc is the set of all functions from NN to US' (Ny is the set of infinite

sequences of natural numbers.) If o ¢ UC and t (= t0t1t2"') € NN we will

write o_ instead of a(f).
t
if G is an n-ary operation symbol in I and o,B,...c Up and e

then

(Gp (0tByeee))_ = Gala_,B_,ens)
R LA

ingUCarldEeNNthen

(H,(K)) = dA.({a :a € K})
Cf TS

for any o,B,t as above:

(1) (Eirst.(a))_ = og .

£ 1850
(i1) (pext,(a))_=a
C = (t0+l)tlt2...
(iii) (o as soon as.B) = a if there is a (necessarily unique)
RRARRRARS i styt,...
s such that BStltZ"‘lS true and Brtltz"'ls false for all

r < s, undefined if no such s exists.

(iv) (latest.(a)) = a
C £ tlt2t3 cee

E. Ashcroft and W. Wadge

- 11 -

(v) (hitherto,(a)) is true if a is true for all s < t,,
SRS £ stlt2. .o 0

false if o is false for some s < t,, undefined
_ styty... —— 0 ——

otherwise.

Thus UComp (S) is the set of all 'histories' of variables in programs
with nested loops. (If nesting is not used (i.e. latest is not used) then
the set of functions from N to US is adequate.) A Comp(S)-interpretation
of a program is essentially a Kripke model of the program (see [41]).

We could have added to Lucid the standard operators of modal logic, but we

found they were not necessary (but are they necessarily not necessary?)

E. Ashcroft and W. Wadge

- 12 -

4, Programs
A I-program is a set of I u Spec-equations defining a set of

variables. Each variable X can be defined only once, and in one of three

ways :
a) Directly : X =B
b) Iteratively: first X = A
next X = B
c) Indirectly : latest X = A.

The terms A and B cannot contain quantifiers or =, and the terms A must be

syntactically quiescent, that is they are built up from terms of the form

first C, latest C and C ags _soon as D by application of operation symbols in I.
Each variable in a program, except input, must be defined.

It can be shown by modifications of standard fixpoint techniques
that given a X~-structure S, and an element o of UComp (S) (for the value of
input) there is a unique minimal solution for each I-program P, i.e. a

Comp (S) —interpretation in which the values of the variables are least defined.

E. Ashcroft and W. Wadge

- 13 -

5. Rules of Inference

The rules we use are those of a simple natural deduction system,
in which each logical symbol has introduction and elimination rules (see,
for example [5]).

The following rules are valid for any standard L-structure
S, I-terms A,B,C,P,Q, any finite set I' of I-terms and variable V,

provided V does not occur free in I' or C, and is free for P and Q in A:

(AT) A,B }=S AAB (AE) A AB }=S A
AAB #s B
(VI) A AVB (VE) A+c,B+c,AvB|=Sc
B }=S AVB
(FI) A,—A %s F (FE) F f=s B
~1) if T',A |=S B then T }==S A~>B (+E) A > B,A |:=S B
(Vi) if T |=SAthenI‘ |-=S VVA VE) VVA {=SA (v/Q)
@) AV/Q g AVaA (dE) if T [=4A ~C then ' HVAl=.C
(D) V=V (=E) A(V/P),P =0 |=¢ A(V/Q).

In the above rules A A B is ~—~(-~A VaB), A>-Bis = (A=T) vB
and VV A is—HV —=A. A(V/Q) denotes the result of replacing all free

occurrences of V in A by temm Q.

Note that there are no rules for —, in particular §=SA v A is
not valid. This is to be expected since a computation may return neither true
nor false. However, we do have }=S (A = B) v —(A = B) and
%S(P >=1=P) A (=P > P).

If we replace S by Comp(S) it is easily verified that all rules
except (+I) are still valid. To see that (»I) does not carry over, note

(setting C = Comp(S)) that P =, next P but not [=c P - next P.

E. Ashcroft and W. Wadge
- 14 -

The (+I) is very useful because it allows us to make assumptions
which are later cancelled. It can be recovered using reasoning about the
'present'. For I',A and C as above, we define T |zc A to be true iff, for
any C-interpretation I and any € in N, (|T;) _ = true implies (|A[;) _ = true.
In other words, T [zc A means that at any tJ.met— if every statement intI‘ is
true (at that time) then A is true (at that time). It can be shown that
I>=C A implies Izc Aand T Izc A implies T P__C A and that all the rules except
(= E) (but including (»I)) work with |zC. Furthermore, (=E) is valid if Vv
does not occur free within the scope of any of the special Lucid functions
("weak =E).: The net result is that we can cancel assumptions in a proof
(using I)) provided that the only rules that have been used are the natural
deduction rules, with (=E) replaced by (weak =EJ:

BAs well as the natural deduction rules, we have special Iucid rules,
such as the induction and termination rules in our previous semi-formal proof.
A very important Iucid rule that we use continually is that if for standard

structure S we have =, A then we have [= In this way, we can
S

Comp(S)A'
simply use properties of N, for example,in proofs of programs modelled by

Comp (N) .

E. Ashcroft and W. Wadge

- 15-

6. Nested Proofs

The informal rules in section 2 are justified by the following

results: For any finite set of variables X

(a) X = first X, T |=; A iff I'(X/latest X) |=, A(X/latest X)
(b) if A has no occurrence of Lucid functions and X is the set of free

variables of A then T |=, A iff T |=, A(X/latest X).

Part (b) allows assertions without Lucid functions to be moved
in and out of loops. Part (a) states that anything that follows from the
statements of a loop when using latest, follows from the statements of
the loop when latest is not used but we assume the quiescence of global

variables.

E. Ashcroft and W. Wadge

~16 -

7. Example of a detailed proof

We now give a detailed proof of step (2) of the semi-formal proof in
section 2, namely, that in the inner loop

hitherto (I x J <N) ~» (YK 2<KAK<N~+IXxK<N).
We will use the following axiams about hitherto:
(A5) figst hitherto Q=T
(a6) next hitherto Q = Q A hitherto Q
We will skip over reasoning which uses no more than the standard

first-order rules of inference. We prove the property by induction.

(1) P = (hitherto (I xJ <N) »(VK2<KAK<J~>1IxK<N)
definition.
(2) first P = (first hitherto (I x J < N) » (VK 2 < K A K < first J

> first T x K < £irst N))

axiom (Al).
(3) (first hitherto (I x J < N) =T) A (first T = I) A (first N=N)

A (Eixst T = 2)

axiom (A5) and the quiescence of I and N.

(4) first P= (T+ WVK2<KAK<2>IxK<N))
(weak =E)
(5 firstP

2 <K AK<2is F (details skipped)
(6) p

assumption.
(7) hitherto (I x J <N) - (fK2<KaAaK<J=+IxKc<N)

AU

definition of P.

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(1e)

(17)

(18)

E. Ashcroft and W. Wadge

-17 -

next P= (I x J <N A hitherto (I X J <N) ~

IRANT VAN

WVK2<KAK<JHL~+TIXxK<N))

I XJ<KNA

2 <KAKK

axioms (A2) and (A6) and quiescence of
I and N,

hitherto (I x J < N)

J+1

assumption

assumption

property of integers, and (10).

IXJ<NAK<<J~»~IxXxK<N

I xK<N

property of positive integers

(rE), (AI) and (»E), using (9), (11) and

(12)

VK 2 <KAK<J+l > I XK<N

(~I) cancelling (10),and (VI)

I xJ<NAhitherto I xJ<N) » (VK2 <KAK<J+tl > I x K<N)

next P

P > pnext P

(+I) cancelling (9)

from (8)

(+I) cancelling (6)

induction, using (5) and (17)
O

E. Ashcroft and W. Wadge
- 18 -

Technically, what we have shown is

L, integer N, integer I |=, hitherto (I x J < N) ~

(VK2<KAK<KN~>IXKC<CN),
where L is the set of statements within the inner loop and C is Comp(N).
If we wish to relate this to the program Prime', we can use (a) and (b) in
section 6, to get
integer first input, Prime' |=, hitherto (latest I x J < latest N) »

(VK 2 < K A K < latest N+ latest T x K < latest N).

Note that steps (11) and (12) of the formal proof are justified by the

rule which allows properties of N to be used as axioms in our proof.

E. Ashcroft and W. Wadge

References

r1]

[2]

[3]

[4]

[5]

E.A. Ashcroft and W.W. Wadge. "Lucid - a Formal System for Writing
and Proving Programs", Technical Report CS-75-01. Computer
Science Dept., University of Waterloo.

E.A., Ashcroft and W.W. Wadge. "Demystifying Program Proving",
Technical Report CS-75-02. Camputer Science Dept.,
University of Waterloo.

R. Burstall. "Program Proving as Hand Simulation with a Little
Induction”, Proceedings IFIP Congress 1974, Stockholm.

G.E. Hughes and M.J. Cresswell. "An Introduction to Modal Logic",
Methuen (1968).

Z. Manna. "Introduction to Mathematical Theory of Computation",
McGraw Hill, New York, 1974.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

