
Rough Diamond: An Extension of

Equivalence-based Rewriting

Matt Kaufmann and J Strother Moore

Dept. of Computer Science, University of Texas, Austin, TX, USA
{kaufmann,moore}@cs.utexas.edu http://www.cs.utexas.edu

Abstract. Previous work by the authors generalized conditional rewrit-
ing from the use of equalities to the use of arbitrary equivalence relations.
Such (classic) equivalence-based rewriting automates the replacement of
one subterm by another that may not be strictly equal to it, but is
equivalent to it, where this equivalence is determined automatically to
be sufficient at that subterm occurrence. We extend that capability by
introducing patterned congruence rules in the ACL2 theorem prover, to
provide more control over the occurrences where such a replacement may
be made. This extension enables additional automation of the rewriting
process, which is important in industrial-scale applications. However, be-
cause this feature is so new (introduced January, 2014), we do not yet
have industrial applications to verify its utility, so we present a small
example that illustrates how it supports scaling to large proof efforts.

Keywords: ACL2, rewriting, congruence, equivalence relation

1 Introduction

A conditional rewrite rule, (P1 ∧ . . . ∧ Pn → L = R), directs an instance of the
term L to be rewritten to the corresponding instance of the term R, provided the
corresponding instances hold for hypotheses P1 through Pn. In previous work [1]
we showed how to generalize conditional rewrite rules to allow an arbitrary
equivalence relation, ∼, in place of =, thus: (P1 ∧ . . .∧Pn → L ∼ R). Key is the
use of proved congruence rules and refinement rules1 to associate, automatically,
an equivalence relation with each call of the rewriter, such that it is sound to
replace a subterm by one that is equivalent. The above generalized rewrite may
then be used when ∼ is a refinement of that equivalence relation. This capability
is implemented in the ACL2 theorem prover [7, 6] and has seen substantial use:
as of ACL2 Version 6.4, the community distribution of ACL2 input files [10]
contains more than 1800 instances of congruence rules.

We give a preliminary report on a generalization, patterned congruence rules,
introduced into ACL2 in Version 6.4, January, 2014. At this stage we can only
guess at uptake of this capability by the ACL2 community, although we do expect
it to be used at least by the requester of this feature at Centaur Technology [9].

1 Refinement rules work essentially the same way in this new setting as they did before.
We do not mention them further in this paper.



2 LNCS: An Extension of Equivalence-based Reasoning

Our (existing and updated) approach to equivalence-based rewriting differs
from approaches based on the use of quotient structures in higher-order logic,
for example in HOL [3], Isabelle [4], and Coq [2]. To the best of our knowledge,
our approach to first-order equivalence-based rewriting (without quotients) is
the only one that automates the tracking of which equivalences are sufficient to
preserve in a given context.

We begin in Section 2 by presenting a self-contained example to illustrate
our previous work [1]. Section 3 then builds on that example to introduce our
extension to patterned congruence rules, followed by a sketch of the relevant
algorithm and theory in Section 4. We conclude with a few reflections.

The online ACL2 User’s Manual [7] provides user-level introductions to equiv-
alence-based rewriting. See topics EQUIVALENCE, CONGRUENCE, and (for
this new work) PATTERNED-CONGRUENCE.

2 Previous work

The example below uses traditional syntax. Complete ACL2 input is online [5].
The following recursively-defined equivalence relation holds for two binary

trees when one can be transformed to the other by some sequence of “flips”:
switching left and right children.

t1 ∼ t2 , IF leaf-p(t1) ∨ leaf-p(t2) THEN t1=t2
ELSE (left(t1) ∼ left(t2) ∧ right(t1) ∼ right(t2)) ∨

(left(t1) ∼ right(t2) ∧ right(t1) ∼ left(t2))

When provided a suitable induction scheme, ACL2 automatically proves and
stores the theorem that ∼ is an equivalence relation. We now define a function
that swaps every pair of children in a binary tree (cons is the pairing operation).

mirror(tree) , IF leaf-p(tree) THEN tree
ELSE cons(mirror(right(tree)), mirror(left(tree)))

The equivalence-based rewrite rule below directs the replacement of any in-
stance of the term mirror(x) by the corresponding instance of the term x, in
contexts for which it suffices to preserve equivalence with respect to ∼. Of course,
the ordinary rewrite rule mirror(x) = x is not a theorem!

REWRITE RULE: tree-equiv-mirror
mirror(x) ∼ x

The following function returns the product of the numeric elements of the
fringe of a tree. It provides an example for sound replacement of mirror(x) by x:
ACL2 proves the congruence rule below, stating that the return values are equal
for equivalent inputs of the function tree-product. In general, a congruence
rule states that the return values of a function call are equal (or more generally,
suitably equivalent) when replacing a given argument by one that is equivalent.

tree-product(tree) ,



LNCS: An Extension of Equivalence-based Reasoning 3

IF [tree is a number] THEN tree
ELSE IF leaf-p(tree) THEN 1
ELSE tree-product(left(tree)) * tree-product(right(tree))

CONGRUENCE RULE: tree-equiv-->-equal-tree-product
x ∼ y → tree-product(x) = tree-product(y)

ACL2 can now prove the following theorem automatically by applying rewrite
rule tree-equiv-mirror to the term mirror(x). The congruence rule immedi-
ately above justifies this rewrite. When that rule is instead a rewrite rule, ACL2
is not able to use either it or tree-equiv-mirror to prove the theorem below.

THEOREM: tree-product-mirror
tree-product(mirror(y)) = tree-product(y)

This particular theorem is easy for ACL2 to prove automatically even with-
out congruence rules or the rewrite rule tree-equiv-mirror (though induction
would then be required). But to see the scalability of this approach, imagine that
there are k1 functions like mirror and k2 like tree-product. If we then prove k1

rewrite rules like tree-equiv-mirror and k2 congruence rules like tree-equiv-
-implies-equal-tree-product, then these k1 + k2 rules set us up to perform
automatically all k1 ∗ k2 rewrites like tree-product-mirror.

3 Patterned congruence rules

A congruence rule, as discussed above, specifies when a given argument of a
function call may be replaced by one that is suitably equivalent. A patterned

congruence rule generalizes this idea by allowing a specified subterm of that
call, which is not necessarily a top-level argument, to be replaced by one that is
suitably equivalent. The following example is discussed further below.

PATTERNED CONGRUENCE RULE: tree-equiv-->-equal-first-tree-data
x ∼ y → first(tree-data(x)) = first(tree-data(y))

Notice that unlike a “classic” congruence rule, where the replacement of an
equivalent subterm is specified at a specific argument of a function call, here
x is to be replaced by y at a deeper position: a subterm of a subterm of the
call. Indeed, the conclusion of the rule can be an equivalence between complex
patterns, for example: x ∼1 y → f(3, h(u, x), g(u)) ∼2 f(3, h(u, y), g(u)). That
rule justifies replacement of a term x by a term y ∼1 x, within any term of the
form f(3, h(u, x), g(u)) that occurs where it suffices to preserve ∼2.

A patterned congruence rule is thus a formula of the form x ∼inner y →

L ∼outer R, subject to the following requirements. Function symbols ∼inner and
∼outer have been proved to be equivalence relations. L and R are function calls
such that x occurs in L, y occurs in R, and these are the only occurrences of x
and y in the rule. Finally, R is the result of substituting y for x in L.

This rule enables the automatic rewrite of a subterm of L at the position
of x to a term that is ∼inner-equivalent to x, in any context where it suffices



4 LNCS: An Extension of Equivalence-based Reasoning

to preserve ∼outer. We illustrate this process by continuing the example of the
preceding section, this time defining a function that sweeps a tree to collect a list

of results, whose first element is the product of the numeric leaves (as before).
We omit some details; function combine-tree-data(t1,t2) returns a list whose
first element is the product of the first elements from the recursive calls.

tree-data(tr) ,
IF [tr is a number] THEN [tr, . . .]
ELSE IF leaf-p(tr) THEN [1, . . .]
ELSE combine-tree-data(tree-data(left(tr)), tree-data(right(tr)))

ACL2 can now automatically prove the patterned congruence rule displayed
at the start of this section, tree-equiv-->-equal-first-tree-data. ACL2
then proves the theorem below as follows, much as it proves Theorem tree-

-product-mirror in the preceding section. First, the patterned congruence rule
informs the rewriter that it suffices to preserve ∼ when rewriting mirror(y).
Hence, the rewrite rule tree-equiv-mirror (from the preceding section) is used
to replace mirror(y) by y. Also as before, this small example suggests the
importance of (patterned) congruences for scalability, where k1 + k2 rules set us
up to perform automatically k1 ∗ k2 different rewrites.

THEOREM: first-tree-data-mirror
first(tree-data(mirror(y))) = first(tree-data(y))

4 Algorithm correctness and patterned equivalence

relations

In this section we outline briefly the algorithm implemented in ACL2 for using
pattern-based congruence rules, and we touch on why it is correct. More details,
including discussion of efficiency tricks and addressing of subtle issues (e.g., an
example showing that arguments cannot be rewritten in parallel), are provided
in a long comment in the ACL2 source code [8]. Of special concern is that
ACL2 procedures that manipulate terms must quickly determine the available
equivalences on-the-fly and tend to sweep the terms left-to-right, innermost first.

ACL2 implements classic equivalence-based rewriting by maintaining a gen-

erated equivalence relation, or geneqv : a finite list of function symbols that have
each been proved to be an equivalence relation, representing the smallest equiva-
lence relation containing them all. Rewriting is inside out, so to rewrite a function
call, the rewriter first rewrites each argument of that call. Congruence rules are
employed to compute the geneqv for rewriting each argument.

We have incorporated patterned congruence rules into that algorithm without
changing its basic structure or efficiency (based on timing the ACL2 regression
suite [10]). The key idea is to pass around a list representing so-called patterned

equivalences, or pequivs for short, as defined below. We show how this list is up-
dated as the rewriter dives into subterms, ultimately giving rise to equivalences
to add to the current geneqv.



LNCS: An Extension of Equivalence-based Reasoning 5

A pequiv is an equivalence relation corresponding to a term L that is a func-
tion call, a variable x that occurs uniquely in L, an equivalence relation ∼, and
a substitution s. The pequiv based on L, x, ∼, and s is the smallest equivalence
relation containing the following relation: a ≈ b if and only if there exist substi-
tutions s1 and s2 extending s that agree on all variables except perhaps x such
that a = L/s1, b = L/s2, and s1(x) ∼ s2(x).

For a natural number k and function call C = f(t1, . . . , tk, . . . , tn), the follow-
ing notation is useful: pre(C) is the list (t1, . . . , tk−1), @(C) is tk, and post(C)
is the list (tk+1, . . . , tn). Now consider the pequiv based on L, x, ∼, and s, and
let u be a term f(u1, . . . , uk, . . . , un), where f is the function symbol of L and
x occurs in the kth argument of L. We define the next equiv as follows when for
some substitution s′ extending s, pre(u) is pre(L)/s′ and post(u) is post(L)/s′.2

Let s′ be the minimal such substitution. There are two cases. If x is an argument
of L then the next equiv is the equivalence relation, ∼. Otherwise the next equiv
is the pequiv based on @(L), x, ∼, and s′.

The ACL2 rewriter maintains a list of pequivs and a geneqv (list of equiva-
lence relations). Here we outline how those lists change when the rewriter, which
is inside-out, calls itself recursively on a subterm. As before [1], classic congru-
ence rules are applied to create a geneqv for the subterm; here we focus on how
the list of pequivs contributes to the pequivs and geneqv for the subterm. Con-
sider a pequiv p based on L, x, ∼, and s, among the list of pequivs maintained
as we are rewriting the term f(u1, . . . , uk, . . . , un), and consider the rewrite of
uk. There are three cases. If the next equiv for p (for position k) is ∼, then ∼ is
added to the geneqv for rewriting uk. If the next equiv for p is a pequiv p′, then
p′ is added to the list of pequivs for rewriting uk. Otherwise the next equiv for
p does not exist, and p is ignored when rewriting uk.

The following two theorems (relative to an implicit first-order theory) justify
this algorithm. The first explains why a congruence rule justifies the sufficiency
of maintaining the corresponding pequiv. The second explains why it suffices to
maintain the next pequiv when rewriting a subterm.

Theorem 1. For a provable patterned congruence rule x ∼inner y → L ∼outer

R, let ∼ be the pequiv based on L, x, ∼inner, and the empty substitution. Then

∼ refines ∼outer, i.e., the following is a theorem: x ∼ y → x ∼outer y.

Theorem 2. Let ∼1 be a pequiv, let u be a term, and assume that the next

equiv, ∼2, exists for ∼1 and k. Let arg be the kth argument of u, let arg′ be a

term, and let u′ be the result of replacing the kth argument of u by arg′. Then

the following is a theorem: arg ∼2 arg′ → u ∼1 u′.

5 Reflections

ACL2 development began in 1989. Recent years have seen an increase in indus-
trial application, with regular use at Advanced Micro Devices, Centaur Tech-

2 We are simplifying the actual condition here, because the rewriter applies to both a
term and a substitution, and this substitution must be applied to post(u).



6 LNCS: An Extension of Equivalence-based Reasoning

nology, Intel, Oracle, and Rockwell Collins, as well as academia and the U.S.
Government. In order to support these users, we have been continuously improv-
ing ACL2; in particular, after the December 2012 release of Version 6.0 through
the January 2014 release of Version 6.4, 129 distinct improvements have been
reported in RELEASE-NOTES topics of the online ACL2 User’s Manual [7].

While some of these improvements may present topics of interest to the ITP
community, most are technical and specific to ACL2, as the focus has largely been
on direct support for the user community, in particular industrial users. While
few of these topics are likely candidates for traditional academic publication,
patterned congruence rules seem to us an exception: any modern ITP system
might benefit from them, if it is important to perform rewriting efficiently at the
scale of industrial projects.

Acknowledgments

We thank the reviewers for helpful remarks. This research was supported by
DARPA under Contract No. N66001-10-2-4087 and by ForrestHunt, Inc.

References

1. Brock, B., Kaufmann, M., Moore, J: Rewriting with equivalence relations in ACL2.
Journal of Automated Reasoning 40(4), 293–306 (2008), http://dx.doi.org/10.
1007/s10817-007-9095-9

2. Cohen, C.: Pragmatic quotient types in Coq. In: Blazy, S., Paulin-Mohring,
C., Pichardie, D. (eds.) Interactive Theorem Proving, Lecture Notes in Com-
puter Science, vol. 7998, pp. 213–228. Springer Berlin Heidelberg (2013), http:

//dx.doi.org/10.1007/978-3-642-39634-2_17

3. Homeier, P.: A design structure for higher order quotients. In: Hurd, J., Melham,
T. (eds.) Theorem Proving in Higher Order Logics, Lecture Notes in Computer
Science, vol. 3603, pp. 130–146. Springer Berlin Heidelberg (2005), http://dx.

doi.org/10.1007/11541868_9

4. Huffman, B., Kunar, O.: Lifting and transfer: A modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) Certified Programs and Proofs,
Lecture Notes in Computer Science, vol. 8307, pp. 131–146. Springer International
Publishing (2013), http://dx.doi.org/10.1007/978-3-319-03545-1_9

5. Kaufmann, M.: ACL2 demo of (patterned) congruences, see URL https://

acl2-books.googlecode.com/svn/trunk/demos/patterned-congruences.lisp

6. Kaufmann, M., Manolios, P., Moore, J S.: Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers, Boston, MA (Jun 2000)

7. Kaufmann, M., Moore, J S.: ACL2 home page, see URL http://www.cs.utexas.

edu/users/moore/acl2

8. Kaufmann, M., Moore, J S.: Essay on Patterned Congruences and Equivalences, in
ACL2 source file rewrite.lisp; see URL https://acl2-devel.googlecode.com/

svn/trunk/rewrite.lisp

9. Swords, S.: Personal communication
10. ACL2 Community Books, see URL http://acl2-books.googlecode.com/


