
A core calculus for a comparative analysis of

bio-inspired calculi

Cristian Versari

Università di Bologna,

Mura A. Zamboni 7, I-40127 Bologna, Italy.

E-mail: versari (at) cs.unibo.it

Abstract

The application of process calculi theory to the modeling and the anal-
ysis of biological phenomena has recently attracted the interests of the
scientific community. To this aim several specialized, bio-inspired process
calculi have been proposed, but a formal comparison of their expressivity
is still lacking. In this paper we present π@, an extension of the π-Calculus
with priorities and polyadic synchronisation that turns out to be suitable
to act as a core platform for the comparison of other calculi. Here we show
π@ at work by providing “reasonable” encodings of the two most popu-
lar calculi for modeling membrane interactions, namely, BioAmbients and
Brane Calculi.

1 Introduction

After the first use of π-Calculus for the modeling of biological processes [22],
the applications of process calculi to Systems Biology attracted increasing re-
search efforts. The direct employment of π-Calculus allowed the formalisation
of several biological mechanism, its variants and extension [20, 23, 8] permitted
the representation or analysis in silico of cellular processes [13, 7]. To obtain
higher abstraction level and biological faithfulness, more complex calculi have
been proposed [4, 24, 21, 10, 11, 12] which are based on or get inspiration from
π-Calculus. Even if they present many common features, each calculus focuses
its attention on particular biological entities or mechanisms. Their similarity
induces the interest for a parallel analysis, but their specialisation does not allow
a direct comparison.

The π@ language was designed to this aim: its simple but powerful exten-
sions to π-Calculus – polyadic synchronisation and prioritised communication –
allow to express the ideas shared by all these formalisms and flexibly adapt to
represent the peculiarities of each one. Moreover, its simple syntax and seman-
tics, very close to π-Calculus, allow a natural extension of many properties and

1

results already stated for standard π-Calculus, thus facilitating π@ theoretical
analysis.

In this paper we show π@ at work by encoding two of these formalisms:
Brane Calculi and BioAmbients. Their straightforward embedding in the same
language allows to understand clearly their structural/semantical common points
and differences and provides their ready-to-run implementation on top of a com-
mon platform.

The paper is structured as follows. Next section presents π@ language,
first by introducing its extensions to π-Calculus, then by giving its syntax and
semantics. Section 3 is devoted to the explanation of the central ideas behind the
encodings, followed by their formalisation and analysis. For a detailed treatment
of BioAmbients and Brane Calculi see [24, 4].

2 The π@ language

The π@ calculus – pronounced like the french “paillette” – consists in π-Calculus
with the addition of two features: polyadic synchronisation and prioritised com-
munication. The first one is used to model localisation of communication typical
of the majority of bio-inspired calculi, which usually formalise it by the explicit
introduction of compartments (i.e. ambients and membranes in the case of the
two languages considered here). Priority is exploited as a powerful mechanism
for achieving atomicity, that is the completion, without overlapping, of complex
atomic operations by the execution of several simple steps.

Before presenting π@, we shortly recall π-Calculus syntax and semantics, on
which π@ is strongly based.

2.1 The π-Calculus

Here we recall the syntax and the reduction semantics of π-Calculus, chosen as
the basis for π@ because of the simplicity and closeness to the semantics used
for the majority of bio-inspired calculi. For a full threatment of π-Calculus we
refer to [14, 15].

Definition 1 Let

N be a set of names on a finite alphabet, x, y, z, . . . ∈ N ;

N = {x | x ∈ N}

The syntax of π-Calculus is defined as

P ::= 0
˛̨̨ X

i∈I

πi.Pi

˛̨̨
P

˛̨
Q

˛̨̨
! P

˛̨̨
(νx)P

π ::= τ
˛̨̨

x(y)
˛̨̨

x〈y〉

2

Definition 2 The congruence relation ≡ is defined as the least congruence sat-
isfying alpha conversion, the commutative monoidal laws with respect to both
(

∣∣ ,0) and (+,0) and the following axioms:

(νx)P
˛̨

Q ≡ (νx)(P
˛̨

Q) if x /∈ fn(Q)

(νx)P ≡ P if x /∈ fn(P)

! P ≡ ! P
˛̨

P

where the function fn is defined as

fn(τ)
def
= ∅ fn(x(y))

def
= {x}

fn(x〈y〉) def
= {x, y} fn(0)

def
= ∅

fn(π.P)
def
= fn(π) ∪ fn(P) fn(

P
i∈I πi.Pi)

def
=

S
i fn(πi.Pi)

fn(P
˛̨

Q)
def
= fn(P) ∪ fn(Q) fn(! P)

def
= fn(P)

fn((νx)P)
def
= fn(P) \ {x}

Definition 3 π-Calculus semantics is given in terms of the reduction system
described by the following rules:

τ.P → P (µ(y).P + M)
˛̨

(µ〈z〉.Q + N) → P{z/y}
˛̨

Q

P → P ′

P
˛̨

Q → P ′
˛̨

Q

P → P ′

(ν x)P → (ν x)P ′
P ≡ Q P → P ′ P ′ ≡ Q′

Q → Q′

2.2 Polyadic Synchronisation

In π-Calculus channels and names are usually synonyms. Polyadic synchroni-
sation (introduced in [3]) consists in giving structure to channels: each channel
is composed of one or more names and identified by all of them in the ex-
act sequence they occur. For example, an email address is usually written in
the form username@domain, where username and domain are two strings –
two names – both necessary to identify the given email address. Moreover,
their order is crucial since domain@username specifies another, likely unex-
isting, address. Following this analogy, π@ channels are written in the form
name1@name2@ . . .@namen without limit in the number of names, even if just
two suffice for most of the applications. In other words, a channel is indicated
by a vector of names (name1, name2, . . . , namen), n ≥ 1, and communication
between two processes may happen only if they are pursuing a synchronisa-
tion along channels composed of the same number of names, with the same
multiplicity and appearing order.

Apart from this, communication in π@ happens in the same way as in π-
Calculus. For example, the transition

comm〈d〉.P
∣∣ comm(x).Q → P

∣∣ Q{d/x}

3

is still valid in π@. Output actions are overlined as usual, even in case of
polyadic synchronisations:

polyadic@comm〈d〉.P
∣∣ polyadic@comm(x).Q → P

∣∣ Q{d/x}

Communication produces the same renaming effect, but with one difference: in
π-Calculus the transmission of a name always stands for the transmission of
a channel, while in π@ the transmitted name may represent a channel or just
one of its components, or both. For example, in the following expression the
transmitted name d represents a channel in the first output action d〈y〉, while
in d@comm〈y〉 it is just the first part of the channel d@comm.

polyadic@comm〈d〉.P
∣∣ polyadic@comm(x).

(
x〈y〉

∣∣ x@comm〈y〉
)

→
P

∣∣ d〈y〉
∣∣ d@comm〈y〉

For concision and readability, polyadic synchronisation is often used also in
conjunction with polyadic communication:

polyadic@comm〈a, b, c〉.P
∣∣ polyadic@comm(x, y, z).Q →

P
∣∣ Q{a/x, b/y, c/z}

Finally, the following transitions are not allowed:

x@y〈〉.P
∣∣ y@x().Q 9 (x 6= y)

x〈〉.P
∣∣ x@x().Q 9

In the first expression, the output and input channels are composed of the same
names, but with different appearing order. In the second one, channels are
represented by the same name but with different multiplicity. In both cases the
vectors of names do not match.

2.3 Priority

Priority behaves as expected: a high-priority process holds the central processing
unit and executes its job before any low priority process. In π@ high priority
synchronisations or communications are executed before any other low priority
action. Usually a high priority action is indicated by underlining the name of
the channel one or more times. For example, the expression

stand〈x〉.P
∣∣ walk〈y〉.Q

∣∣ run〈z〉

contains three processes with different, increasing priority. To express more
than three levels of priority another notation is used, where the priority of the
process is represented by a number following the channel names. The above
expression may be rewritten as

stand : 2〈x〉.P
∣∣ walk : 1〈y〉.Q

∣∣ run : 0〈z〉

4

where a lower priority action is labelled with a higher number (the highest
priority is denoted by 0).

Interaction between processes may occur only if channels have the same
priority. In this example

x〈y〉.P
∣∣ x(z).Q 9

x〈y〉.P
∣∣ x(z).Q → P

∣∣ Q{y/z}

only the second interaction is allowed, because the expressions x and x denote
actually two different channels. Finally, as expected, low priority actions occur
only if no higher priority action may occur:

l〈w〉
∣∣ l(x).P

∣∣ h〈y〉
∣∣ h(z).Q 9 0

∣∣ P{w/x}
∣∣ h〈y〉

∣∣ h(z).Q

l〈w〉
∣∣ l(x).P

∣∣ h〈y〉
∣∣ h(z).Q → l〈w〉

∣∣ l(x).P
∣∣ 0

∣∣ Q{y/z} →
0

∣∣ P{w/x}
∣∣ 0

∣∣ Q{y/z}

The first of the two transitions is not allowed because interactions on low-priority
channel l may happen only after the high-priority communication on channel h.
For a detailed survey of priority in process algebras, see [9].

2.4 The π@ syntax and semantics

The π@ language is very close to π-Calculus: from a syntactical point of view
the only difference is the structure of channels, composed of multiple names
followed by the priority of the action. We use µ to denote a vector of names
x1, . . . , xn and µ : k to denote a channel, that is a vector of names µ followed by
a colon and a natural number k specifying the priority. As usual, µ : k represents
an output operation along channel µ : k, while α : k stands for a generic input,
output or silent action τ of priority k.

Definition 4 Let

N be a set of names on finite alphabet, x, y, z, . . . ∈ N ;

N+ =
⋃

i>0 N i , µ ∈ N+ ;

N+
= {µ | µ ∈ N+} ;

α ∈
(
N+ ∪N+ ∪ {τ}

)
;

The syntax of π@ defined as

P ::= 0
˛̨̨ X

i∈I

πi.Pi

˛̨̨
P

˛̨
Q

˛̨̨
! P

˛̨̨
(νx)P

π ::= τ :k
˛̨̨

µ :k(x)
˛̨̨

µ :k〈x〉

5

As previously introduced, some abbreviations are very often used in this paper:

µ(x) = µ :2(x) µ〈x〉 = µ :2〈x〉
µ(x) = µ :1(x) µ〈x〉 = µ :1〈x〉
µ(x) = µ :0(x) µ〈x〉 = µ :0〈x〉

The definition for structural congruence ≡ is exactly the same as given for
π-Calculus, where the function fn is naturally extended to the π@ syntax, that
is

fn(µ : k(y))
def
= {µ1, . . . , µn}

fn(µ : k〈y〉) def
= {µ1, . . . , µn, y}

where µ = µ1@ · · ·@µn. The reduction semantics is very similar, but defined in
terms of an auxiliary function Ik(P), representing the set of actions of priority
k which the process P may immediately execute. For example, if

P = a.Q
∣∣ b

∣∣ c.R
∣∣ d + e.S

∣∣ a.T

then I0(P) = {c, e}, I1(P) = {b, d}, I2(P) = {a, a, τ}, where the availability of
τ action derives from the interaction of the first and last process.

Definition 5 Let Ik(P) be

Ik` X
i

αi : li.Pi

´
= {αi | li = k};

Ik`
(ν y) P

´
= Ik(P) \

˘
α | y ∈ {x1, . . . , xn}∧

(α = x1@ . . . @xn ∨ α = x1@ . . . @xn)
¯
;

Ik`
!P

´
= Ik(P

˛̨
P);

Ik`
P

˛̨
Q

´
= Ik(P) ∪ Ik(Q) ∪ {τ | Ik(P) ∩ Ik(Q) 6= ∅},

Ik(Q) =
˘
α | α ∈ Ik(Q)

¯
π@ semantics is given in terms of the following reduction system:

τ /∈
S

i<k Ii(M)

τ :k.P + M →k P

P →k P ′

(ν x)P →k (ν x)P ′

τ /∈
S

i<k Ii(M
˛̨

N)

(µ :k(y).P + M)
˛̨

(µ :k〈z〉.Q + N) →k P{z/y}
˛̨

Q

cP →k P ′ τ /∈
S

i<k Ii(P
˛̨

Q)

P
˛̨

Q →k P ′
˛̨

Q

P ≡ Q P →k P ′ P ′ ≡ Q′

Q →k Q′

6

π@ reduction rules are exactly the same of π-Calculus, except for the additional
condition τ /∈

⋃
i<k Ii(. . .) which avoids the execution of low priority actions

if higher priority communications (represented by τ actions) are immediately
available.

2.5 Notation

In addition to standard reduction relation →k, some derived relations are used
for the formulation of theorems. As usual, →∗

k is the reflective-transitive closure
of →k, while →(n)

k is used to evidence the length of the derivation, that is

P →(n) Q iff ∃ P1, . . . , Pn−1 : P → P1 → . . . → Pn−1 → Q

Similar notation are used for the derived relations.

Definition 6 Let P,Q,Q′ be π@ processes. The reduction relations →, �k,
7→, ⇒k, are defined as follows:

1. P → Q , P →k Q, k ∈ N;

2. P �k Q , P →h Q, h ≤ k;

3. P 7→ Q , P →k P ′ ∧ P ′ �∗
k−1 Q, τ /∈

⋃
i<k Ii(Q).

4. P ⇒k Q , P �∗
k−1 Q, τ /∈

⋃
i<k Ii(Q) ∧(

P �∗
k−1 Q′, τ /∈

⋃
i<k Ii(Q′) implies Q ≡ Q′).

→ is the standard reduction relation, disregarding the priority of the reduction.
�k denotes the derivation through reduction with priority higher or equal to
k. 7→ indicates that, after a reduction with a certain (low) priority and, in
case, a sequence of higher priority actions, the process comes back to a state
where it is ready to perform only low priority synchronisations. ⇒k states a
confluence property of the process, meaning that all the states from which it is
not possible to perform a reduction of priority higher than k and reachable only
by reductions of priority higher than k, are congruent.

3 Encodings

The key feature which differentiates recent bio-inspired calculi from π-Calculus
is the explicit formalisation of compartments. BioAmbients is a modified ver-
sion of Ambient calculus [5], where compartments are represented by ambients,
a sort of boxes containing processes or other nested boxes. In Brane compart-
ments are bounded by membranes, on the surface of which processes compute.
Both ambients and membranes are organised in a tree structure, both can di-
namically modify this structure by performing for example merge, enter/exit
or exo operations. The central issue is how they modify this structure: the
most observable difference is the bitonality preserved by brane semantics and

7

totally absent in BioAmbients. As remarked in [4], this peculiarity is enough
to preclude an immediate embedding of one language into the other, thus not
allowing a direct comparison of their expressivity. An alternative analysis can
be performed by encoding both in a third formalism and compare their encoding
functions. These functions must obviously satisfy some “reasonable” properties
(as discussed in section 3.1) and they must also be as simple as possible by
hiding irrelevant details. π@ features were chosen to meet these criteria: the
lack of a predefined semantics for compartments together with the possibility
of expressing localisation (by means of polyadic synchronisation) and complex
atomic operations (by means of priority) place π@ one abstraction level lower,
as a sort of assembly language for compartmentalised formalisms.

3.1 Requirements

The fundamental criterion guiding any encoding is the preservation of some
addressed semantics. According to [16], this often means that the encoding
function

[[
·
]]

must at least fulfill the notion of operational correspondence, char-
acterised by two complementary properties: completeness and soundness. The
first means that every possible execution of the source language may be simu-
lated by its translation, the second ensures that all the states reached by the
translation correspond to some state of the source. Since all the languages
we consider are Turing-complete (even Brane [2, 6], despite of its simplicity), as
usual for concurrent languages we require some additional criteria. As remarked
in [17], a reasonable encoding should also preserve the degree of distribution of
the source language (i.e. homomorphism w.r.t. parallel composition) and should
not depend on the channel (or compartment) names of the term to be encoded.
This also implies a very valuable property, that is modular compilation, as dis-
cussed in [1]. In addition to the cited criteria, we also require the encoding
to preserve the termination or diverging behaviour of the translated term, in
order to obtain a totally faithful encoding function. The following definition
formalises the notion of reasonable encoding used in this paper.

Definition 7 An encoding
[[
·
]]

is reasonable if it enjoys the following proper-
ties:

1. homomorphism w.r.t. parallel composition:[[
P1

∣∣ P2

]]
=

[[
P1

]] ∣∣ [[
P2

]]
;

2. renaming preserving:
for any permutation of the source names θ,

[[
θ(P)

]]
= θ(

[[
P

]]
);

3. termination invariance: P ⇓ iff
[[

P
]]
⇓, P ⇑ iff

[[
P

]]
⇑;

4. operational correspondence:

(a) if P → P ′ then
[[

P
]]
→∗ [[

P ′]]
,

(b) if
[[

P
]]
→∗ Q then ∃P ′ : P →∗ P ′ ∧Q →∗ [[

P ′]]
.

8

3.2 Basic ideas

Compartment and their nesting are very intuitive abstractions: the simple state-
ment that an object is enclosed in a box suggests that it is someway isolated
from the external context; putting one box into another means that, after the
operation, the inner box with all its content are located inside the outer one;
merging the content of two boxes implies putting in the same box all the en-
closed objects. To obtain this behaviour in π@ we must recognise the exact
meaning of every operation on compartments and reproduce step by step the
same semantics.

The first concept to unfold is nesting: compartments compose a dynamical
tree structure which must be encoded in π@. As suggested in [15], these kind
of structures can be represented as a set of processes linked by the share of
private channels between parent and child nodes. Like in [22], the scoping
of private names represents the boundaries of compartments, but thanks to
polyadic synchronisation each private name may represent an unlimited number
of private communication channels, as shown in section 2.2. If each node is
supplied with one distinctive name, the simplest way to encode the tree is by
ensuring that each node knows the name identifying its parent compartment.

Therefore, trivial changes in the tree structure may affect an unlimited num-
ber of processes: the simple disclosure of a compartment implies that all con-
tained processes must be notified of their new parent compartment name. The
same situation occurs when splitting or merging the content of two compart-
ments, like in merge+ /merge− and exo/exo⊥ operations. In π@ this turns
out to be a sort of multicast communication, where specifical groups of nodes –
that is sibling and child processes – must receive on the proper channel a new
compartment name. This result is achieved by a smart use of priority levels:
a high priority loop notifies in turn all the interested processes and ends when
such processes do not exist anymore. By a single line of code, we obtain in π@
the same mechanism typical of broadcast communication:

BCAST ≡ ! bcast(x, y).(τ + x〈y〉.bcast〈x, y〉)

The above process can be triggered by an output operation bcast〈chn, newchn〉
and terminate when no high priority synchronisations are available, leaving no
residual terms. Obviously, a high priority complementary output loop
! bcast〈chn, newchn〉 would cause the system to hang, since it prevents any
other computation with normal priority. This is one of the reasons that do
not allow a trivial translation of Brane and Bioambients replication operators
and induce an explicit reproduction of their unfolding technique in both the
encoding functions.

3.3 Encoding BioAmbients

Ambients are containers organised in a tree structure: running processes and
nested sub-ambients are located inside them. If each node of the tree represents
an ambient, nodes are complex structures: each node may contain zero or more

9

parallel processes and may be linked zero or more nested sub-ambients. Conse-
quently, for the implementation of the tree structure each encoded BioAmbients
process must be aware of the name of its containing (immediate) ambient, but
also of the name indicating the parent of its immediate ambient. This explains
why the encoding function

[[]]α

K,a,pa
requires the (bound) names a and ap,

which represent the immediate ambient and the parent ambient, respectively.
The free names oa, opa are placeholders standing for the immediate ambient and
parent ambient of the outer processes, while bound names na and npa represent
a new ambient or new parent ambient name received by the process. The first
parameter K is the set of names used for the explicit unfolding of replicated
processes when encoding the bang operator: the cardinality of K is the number
of bangs in front of the process to encode.

Definition 8 The function
[[
·
]]α from BioAmbients to π@ processes is defined

as follows: ˆ̂
0

˜̃ α
, 0ˆ̂

P
˛̨

Q
˜̃ α

,
ˆ̂

P
˜̃ α ˛̨ ˆ̂

Q
˜̃ αˆ̂

(new n)P
˜̃ α

,
ˆ̂

(new n)P
˜̃ α

∅,oa,opaˆ̂
[P]

˜̃ α
,

ˆ̂
[P]

˜̃ α

∅,oa,opaˆ̂
! P

˜̃ α
,

ˆ̂
! P

˜̃ α

∅,oa,opaˆ̂
0

˜̃ α

K,a,pa
, 0ˆ̂

P
˛̨

Q
˜̃ α

K,a,pa
,

ˆ̂
P

˜̃ α

K,a,pa

˛̨ ˆ̂
Q

˜̃ α

K,a,paˆ̂
(new n)P

˜̃ α

K,a,pa
, νn

ˆ̂
P

˜̃ α

K,a,paˆ̂
[P]

˜̃ α

K,a,pa
, νc

ˆ̂
P

˜̃ α

K,c,aˆ̂
! P

˜̃ α

K,a,pa
, νb(BANG(b, a, pa)

˛̨ ˆ̂
P

˜̃ α

K∪{b},a,pa

˛̨
! new@b(na, npa).

ˆ̂
P

˜̃ α

K∪{b},na,npa
)ˆ̂ X

i∈I, I 6=∅
ξi.Pi

˜̃ α

K,a,pa
, BCAST

˛̨
νs(! s(na, npa).

(
ˆ̂

ξi.Pi

˜̃ α

K,na,npa
+ TREE(s, na, npa))

˛̨
ˆ̂

ξi.Pi

˜̃ α

K,a,pa
+ TREE(s, a, pa))ˆ̂

enter n.P
˜̃ α

K,a,pa
, enter@n@pa(x).bcast〈pa, a, x〉.(

ˆ̂
P

˜̃ α

∅,a,x

˛̨
ΠK)ˆ̂

accept n.P
˜̃ α

K,a,pa
, enter@n@pa〈a〉.(

ˆ̂
P

˜̃ α

∅,a,pa

˛̨
ΠK)ˆ̂

exit n.P
˜̃ α

K,a,pa
, expel@n@pa(x).bcast〈pa, a, x〉.(

ˆ̂
P

˜̃ α

∅,a,x

˛̨
ΠK)ˆ̂

expel n.P
˜̃ α

K,a,pa
, expel@n@a〈pa〉.(

ˆ̂
P

˜̃ α

∅,a,pa

˛̨
ΠK)ˆ̂

merge− n.P
˜̃ α

K,a,pa
, merge@n@pa(x).

bcast〈merge, a, x〉.(
ˆ̂

P
˜̃ α

∅,x,pa

˛̨
ΠK)ˆ̂

merge+ n.P
˜̃ α

K,a,pa
, merge@n@pa〈a〉.(

ˆ̂
P

˜̃ α

∅,a,pa

˛̨
ΠK)ˆ̂

local n!{m}.P
˜̃ α

K,a,pa
, local@n@a〈m〉.(

ˆ̂
P

˜̃ α

∅,a,pa

˛̨
ΠK)

10

ˆ̂
local n?{m}.P

˜̃ α

K,a,pa
, local@n@a(m).(

ˆ̂
P

˜̃ α

∅,a,pa

˛̨
ΠK)ˆ̂

s2s n!{m}.P
˜̃ α

K,a,pa
, s2s@n@pa〈m〉.(

ˆ̂
P

˜̃ α

∅,a,pa

˛̨
ΠK)ˆ̂

s2s n?{m}.P
˜̃ α

K,a,pa
, s2s@n@pa(m).(

ˆ̂
P

˜̃ α

∅,a,pa

˛̨
ΠK)ˆ̂

p2c n!{m}.P
˜̃ α

K,a,pa
, p2c@n@a〈m〉.(

ˆ̂
P

˜̃ α

∅,a,pa

˛̨
ΠK)ˆ̂

c2p n?{m}.P
˜̃ α

K,a,pa
, p2c@n@pa(m).(

ˆ̂
P

˜̃ α

∅,a,pa

˛̨
ΠK)ˆ̂

c2p n!{m}.P
˜̃ α

K,a,pa
, c2p@n@pa〈m〉.(

ˆ̂
P

˜̃ α

∅,a,pa

˛̨
ΠK)ˆ̂

p2c n?{m}.P
˜̃ α

K,a,pa
, c2p@n@a(m).(

ˆ̂
P

˜̃ α

∅,a,pa

˛̨
ΠK)

BANG(b, a, pa) ≡ ! b(na, npa).

(unfold@b.new@b〈na, npa〉+ TREE(b, na, npa))
˛̨

unfold@b.new@b〈a, pa〉+ TREE(b, a, pa))

TREE(b, na, npa) ≡ npa@na(x).b〈na, x〉+ merge@npa(x).b〈na, x〉+

merge@na(x).b〈x, npa〉

ΠK ≡ unfold@k1

˛̨
· · ·

˛̨
unfold@kn ,

K = {k1, . . . , kn}
BCAST ≡ ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉+ τ)

The strict relationship between BioAmbients and π-Calculus simplifies the en-
coding of base operators: parallel composition and restriction are homomorphi-
cally translated. Like for restriction, each ambient produces a private name, but
in this case the new name is inserted in the tree structure by passing it to the
subsequent encoding. Remarkably, the translation of each communication or ca-
pability choice requires a loop: in fact, each process ready to execute an action
may be notified of an occurring change in the nesting tree structure, caused by
other processes. Consequently, it should receive and replace the proper names
representing its immediate and/or parent ambients before attempting to per-
form the desired actions: each TREE subprocess is ready to handle this kind
of events. Communications and capabilities are directly encoded by means of
polyadic synchronisation: the possibility of using an unlimited number of names
for each pi@ channel (up to three, in this case) simplifies extremely the simulta-
neous expression of localisation inside ambients and synchronisation on different
directions (p2p, s2s, . . .) equipped with names. After the execution of each ca-
pability, the reorganisation of the tree structure and the eventual unfolding of
replicated processes is obtained by a sequence of high priority actions consisting
in the triggering of one BCAST loop and a set of unfold@ki synchronisations.

Finally, the encoding function
[[
·
]]α enjoys the requirements discussed in

section 3.1, as stated by the following theorem.

Theorem 9
[[
·
]]α is a reasonable encoding (modulo structural congruence),

that is: let P , P1, P2 be BioAmbients processes, let Q be a π@ process, then

1.
[[

P1 ◦ P2

]]α =
[[

P1

]]α ∣∣ [[
P2

]]α;

2. for any permutation of the source names θ,
[[

θ(P)
]]α = θ(

[[
P

]]α);

11

3. P ⇓ iff
[[

P
]]α ⇓, P ⇑ iff

[[
P

]]α ⇑;

4. (a) if P → P1 then ∃P2 : P2 ≡ P1 ∧
[[

P
]]α →∗ [[

P2

]]α;

(b) if
[[

P
]]α →∗ Q then ∃P1 : P →∗ P1 ∧Q →∗ [[

P1

]]α.

3.4 Encoding Brane Calculi

Like ambients, membranes are organised in tree structures: each node of the tree
may contain membrane processes or nested membranes. Unlike BioAmbients,
Brane Calculi present two main entities: systems and branes. Their distinction
implies slightly different translations, because the encoding function of systems
needs only two parameters (K, the set corresponding to the bang operators in
front of the system and pc, the name representing the parent compartment)
while an additional parameter is needed for encoding branes (c, the name of
the compartment where the brane process resides). Similarly to BioAmbients
encoding, oc and opc are placeholders standing for the compartment and parent
compartment of outer processes, while nc and npc are bound names representing
the new compartment and new parent compartment received during the tree
structure reorganisation.

Definition 10 The function
[[
·
]]β from Brane to π@ processes is defined as

follows: ˆ̂
�

˜̃ β
, 0ˆ̂

P ◦Q
˜̃ β

,
ˆ̂

P
˜̃ β ˛̨ ˆ̂

Q
˜̃ βˆ̂

! P
˜̃ β

,
ˆ̂

! P
˜̃ β

∅,ocˆ̂
σ(|P |)

˜̃ β
,

ˆ̂
σ(|P |)

˜̃ β

∅,ocˆ̂
�

˜̃ β

K,pc
, 0ˆ̂

P ◦Q
˜̃ β

K,pc
,

ˆ̂
P

˜̃ β

K,pc

˛̨ ˆ̂
Q

˜̃ β

K,pcˆ̂
! P

˜̃ β

K,pc
, νb(

ˆ̂
P

˜̃ β

K∪{b},pc

˛̨
! new@b(npc).

ˆ̂
P

˜̃ β

K∪{b},npc

˛̨
! b(npc).

(unfold@b.new@b〈npc〉+ exo@npc(x).b〈x〉)
˛̨

unfold@b.new@b〈pc〉+ exo@pc(x).b〈x〉)ˆ̂
σ(|P |)

˜̃ β

K,pc
, νc(

ˆ̂
σ

˜̃ β

K,c,pc

˛̨ ˆ̂
P

˜̃ β

K,c
)ˆ̂

0
˜̃ β

K,c,pc
, 0ˆ̂

σ
˛̨

ρ
˜̃ β

K,c,pc
,

ˆ̂
σ

˜̃ β

K,c,pc

˛̨ ˆ̂
ρ

˜̃ β

K,c,pcˆ̂
! σ

˜̃ β

K,c,pc
, νb(BANG(b, c, pc)

˛̨ ˆ̂
σ

˜̃ β

K∪{b},c,pc

˛̨
! new@b(nc, npc).

ˆ̂
σ

˜̃ β

K∪{b},nc,npc
)ˆ̂

a.σ
˜̃ β

K,c,pc
, BCAST

˛̨
νs(! s(nc, npc).

12

(
ˆ̂

a.σ
˜̃ β

K,nc,npc
+ TREE(s, nc, npc))

˛̨
ˆ̂

a.σ
˜̃ β

K,c,pc
+ TREE(s, c, pc))ˆ̂

phagon.σ
˜̃ β

K,c,pc
, phago@n@pc(x).bcast〈pc, c, x〉.(

ˆ̂
σ

˜̃ β

∅,c,x

˛̨
ΠK)ˆ̂

phago⊥n (ρ).σ
˜̃ β

K,c,pc
, νx

`
phago@n@pc〈x〉.(

ˆ̂
σ

˜̃ β

∅,c,pc

˛̨ ˆ̂
ρ

˜̃ β

∅,x,c

˛̨
ΠK)

´
ˆ̂

exon.σ
˜̃ β

K,c,pc
, exo@n@pc(x).bcast〈exo, c, x〉.(

ˆ̂
σ

˜̃ β

∅,pc,x

˛̨
ΠK)ˆ̂

exo⊥n .σ
˜̃ β

K,c,pc
, exo@n@c〈pc〉.(

ˆ̂
σ

˜̃ β

∅,c,pc

˛̨
ΠK)ˆ̂

pino(ρ).σ
˜̃ β

K,c,pc
, νx τ.(

ˆ̂
σ

˜̃ β

∅,c,pc

˛̨ ˆ̂
ρ

˜̃ β

∅,x,c

˛̨
ΠK)

BANG(b, c, pc) ≡ ! b(nc, npc).

(unfold@b.new@b〈nc, npc〉+ TREE(b, nc, npc))
˛̨

unfold@b.new@b〈c, pc〉+ TREE(b, c, pc))

TREE(b, nc, npc) ≡ npc@nc(x).b〈nc, x〉+ exo@npc(x).b〈nc, x〉+

exo@nc(x).b〈npc, x〉
ΠK ≡ unfold@k1

˛̨
· · ·

˛̨
unfold@kn ,

K = {k1, . . . , kn}
BCAST ≡ ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉+ τ)

Like for BioAmbients encoding, each operation of the original language is trans-
lated with a synchronisation followed by a sequence of high priority actions
which manage the reorganisation of the tree structure and the unfolding of
replicated processes involved in the computation. The presence of two distinct
replication operators leads to two slightly different encodings which reflect the
fact that systems are only provided of parent compartment, while branes present
also their immediate compartment.

Also the encoding function
[[
·
]]β enjoys the requirements discussed in sec-

tion 3.1.

Theorem 11
[[
·
]]β is a reasonable encoding (modulo structural congruence),

that is: let P , P1, P2 and ρ1, ρ2 be respectively Brane systems and processes,
let Q be a π@ process, then

1.
[[

P1 ◦ P2

]]β =
[[

P1

]]β ∣∣ [[
P2

]]β,[[
ρ1

∣∣ ρ2

]]β =
[[

ρ1

]]β ∣∣ [[
ρ2

]]β

2. for any permutation of the source names θ,
[[

θ(P)
]]β = θ(

[[
P

]]β);

3. P ⇓ iff
[[

P
]]β ⇓, P ⇑ iff

[[
P

]]β ⇑;

4. (a) if P → P1 then ∃P2 : P2 ≡ P1 ∧
[[

P
]]β →∗ [[

P2

]]β;

(b) if
[[

P
]]β →∗ Q then ∃P1 : P →∗ P1 ∧Q →∗ [[

P1

]]β.

13

3.5 Encodings comparison

Brane and BioAmbients are different for several aspects. Brane has a very sim-
ple syntax, provided with only three base operations, lacks any restriction and
choice operator, there is no explicit name communication mechanism. BioAm-
bients is provided with elaborate, multi-level communication primitives in ad-
dition to compartment operations. But in [4] all these operators are considered
as possible Brane extensions and their encoding in π@ would be exactly the
same of the original BioAmbients operators. Therefore, the crucial difference
is not intended to be in the syntax, but in the semantics: Brane compartment
operations have been designed to preserve bitonality, a concept totally absent in
BioAmbients, furthermore processes are thought to be on the surface of mem-
branes, not inside ambients.

By translating both languages in π@, we are able to discern at first sight
where processes are exactly placed and what are the differences in the dynam-
ical rearrangement of the tree structure. The encoding of phago, exo, pino,
enter/accept, exit/expel, merge± operations clearly shows that both kind of
processes own the same information about their localisation in the tree, there-
fore the tree structure is very similar: the only difference is in the scoping of the
names of their parent ambients. In fact, unlike the encoding of ambients, the
encoding function of a Brane system P does not need the parameter c repre-
senting the immediate compartment of the process. This difference justifies the
assumption that Brane processes are located on membranes. Bitonality simply
arises in the order of the parameters given to the last term of the TREE sub-
process and in the choice of the names broadcasted and recursively passed to
the encoding function (this is particulary evident in the exo⊥ operation, where
the name of the parent compartment pc, instead of the immediate compartment
c, is the object of communication).

In conclusion, the two analised languages present much more common points
than differences: concurrency, interleaving semantics, compartments with tree
nesting and very similar structure for nodes, implicit multicast communications
within compartment boundaries. If we consider all the extensions proposed in
[4], the two formalisms may be considered close variants of the same language.

4 Conclusions and future work

We presented a new calculus, π@, designed to be a core language for analysing
formalisms which model localisation and compartmentalisation. We showed π@
at work by a formal comparison of the reasonable encodings of BioAmbients
and Brane languages, which permitted to clarify their structural similarities
and semantical differences.

This is the first part of a wide analysis towards a disparate variety of biolog-
ically inspired languages, like [21, 11, 12]. The generality of π@ features allow
to extend its application not only to process calculi, but also to formalisms not
pertaining to concurrency theory, like P systems [18, 25].

14

Finally, thanks to the strong affinity with π-Calculus, we plan to implement
a stochastic version of π@ as a direct extension of the SPIM simulator [19], hence
providing a platform on top of which it is possible to immediately execute all
the embedded formalisms.

Acknowledgements: we would like to thank Nadia Busi for the precious
suggestions and support.

References

[1] F. de Boer, C. Palamidessi. Embedding as a Tool for Language Comparison.
In Information and Computation 108(1), 1994.

[2] N. Busi, R. Gorrieri. On the computational power of Brane Calculi. Third
Workshop on Computational Methods in Systems Biology. Edinburgh, 2005.

[3] M. Carbone, S. Maffeis. On the Expressive Power of Polyadic Synchroni-
sation in pi-calculus. In Nordic Journal of Computing 10(2): 70-98, 2003.

[4] L. Cardelli. Brane Calculi - Interactions of Biological Membranes. In
Computational Methods in Systems Biology, 2004.

[5] L. Cardelli, A. D. Gordon. Mobile Ambients. In Foundations of Soft-
ware Science and Computation Structures: First International Conference,
FOSSACS ’98. Springer-Verlag, 1998.

[6] L. Cardelli, G. Păun. An universality result for a (mem)brane calculus
based on mate/drip operations. In International Journal of Foundations of
Computer Science. World Scientific Publishing Company, 2005.

[7] D. Chiarugi, M. Curti, P. Degano, R. Marangoni. VICE: A VIrtual CEll.
Computational Methods in Systems Biology. 2004

[8] M. Curti, P. Degano, C. T. Baldari. Causal π-Calculus for Biochemical
Modelling In Computational Methods in Systems Biology. 2003.

[9] R. Cleaveland, G. Lüttgen, V. Natarajan. Priority in Process Algebra.
In J.A. Bergstra, A. Ponse, S. A. Smolka, editors, Handbook of Process
Algebra, Elsevier, 2001..

[10] V. Danos, C. Laneve. Formal Molecular Biology. In Theoretical Computer
Science 325 (1), 2004.

[11] V. Danos , S. Pradalier. Projective Brane-calculus. Computational
Methods in Systems Biology: Second International Workshop, CMSB?04,
3082:134?148. 2004.

[12] C. Laneve, F. Tarissan. A simple calculus for proteins and cells In Proc. of
the Workshop on Membrane Computing and Biologically Inspired Process
Calculi (MeCBIC’06). 2006.

15

[13] P. Lecca, C. Priami, C. Laudanna, G. Constantin. Predicting cell adhesion
probability via the biochemical stochastic pi-calculus. In Symposium on
Applied Computing. 2004

[14] R. Milner. The Polyadic π-Calculus: a Tutorial. In F. L. Hamer, W.
Brauer and H. Schwichtenberg, editors, Logic and Algebra of Specification.
Springer-Verlag, 1993.

[15] R. Milner. Communicating and Mobile Systems: The π-Calculus. Cam-
bridge University Press, 1999.

[16] U. Nestmann, B.C. Pierce. Decoding Choice Encodings. In Proc. of the 7th
International Conference on Concurrency Theory (CONCUR ’96). 1996.

[17] C. Palamidessi. Comparing the expressive power of the synchronous and
the asynchronous π-calculi. Mathematical Structures in Computer Science
13(5): 685-719. 2003.

[18] G. Păun. Computing with membranes. Journal of Computer and System
Sciences, 61(1):108–143, 2000.

[19] A. Phillips, L. Cardelli. A correct abstract machine for the stochastic pi-
calculus. Transactions on Computational Systems Biology. 2005.

[20] C. Priami. Stochastic π-calculus. The Computer Journal 38 (7). 1995.

[21] C. Priami, P. Quaglia. Beta binders for biological interactions. In Compu-
tational Methods in Systems Biology, 2004.

[22] A. Regev, W. Silverman, E. Shapiro. Representation and simulation of
biochemical processes using the π-Calculus process algebra. In Proc. of
the Pacific Symposium on Biocomputing (PSB ’01). World Scientific Press,
2001.

[23] C. Priami, A. Regev, W. Silverman, E. Shapiro. Application of a stochas-
tic passing-name calculus to representation and simulation of molecular
processes. Information Processing Letters 80. 2001.

[24] A. Regev, E. Panina, W. Silverman, L. Cardelli, E. Shapiro. BioAmbients:
an abstraction for biological compartments. Theoretical Computer Science,
2004.

[25] C. Versari. Encoding catalytic P systems in π@. In Proc. of the Work-
shop on Membrane Computing and Biologically Inspired Process Calculi
(MeCBIC’06). 2006.

16

