
Hitting a Set of Line Segments with One or Two Discrete Centers

Xiaozhou He∗ Zhihui Liu† Bing Su‡ Yinfeng Xu§ Feifeng Zheng¶ Binhai Zhu‖

Abstract

Given the scheduling model of bike-sharing, we con-
sider the problem of hitting a set of n axis-parallel line
segments in R

2 by a square (and two squares) whose
center(s) must lie on some line segment(s) such that
the (maximum) edge length of the square(s) is mini-
mized. Under a different model, we also consider the
cases when one needs to compute one (and two) centers
on some edge(s) of a tree of size m, where n labeled seg-
ments must be hit, and the objective is to minimize the
maximum path length from the labeled segments to the
nearer center(s). We give three linear-time algorithms
and an O(n2 log n) algorithm for the four problems in
consideration.

1 Introduction

In recent years, the (private) bike-sharing business are
booming in China (and in Singapore). To use a shared-
bike, a user can use his/her smartphone to scan and
unlock the bike. A small amount of fee, about US$0.16
currently, is charged for any use/transaction during that
day. It is estimated that there are at least 30 million
such transactions in major cities of China alone. Dif-
ferent from the traditional public bike-sharing services,
wherein a user must return the bike to specified bike
racks at fixed locations, in this bike-sharing service a
user can lock and drop a bike anywhere after finishing
using it. Of course, a lot of these bikes are dropped
on some streets typically near bus/subway stations. In
fact, right before and after rush hours, it is not un-
common to notice hundreds of bikes near some major
subway stations in big cities like Beijing and Shanghai.
This also holds when there is a major event near some
site, like an open music show.

∗Business School, Sichuan University, Chengdu, Sichuan,

China, xiaozhouhe126@qq.com
†School of Computer Science and Technology, Shandong

Technology and Business University, Yantai, Shandong, China,

dane.zhihui.liu@gmail.com
‡School of Economics and Management, Xi’an Technological

University, Xi’an, China, subing684@sohu.com
§School of Management, Xi’an Jiaotong University, Xi’an,

China, yfxu@mail.xjtu.edu.cn
¶Glorious Sun School of Business and Management, Donghua

University, Shanghai, China, ffzheng@dhu.edu.cn
‖Gianforte School of Computing, Montana State University,

Bozeman, MT, 59717, USA, bhz@montana.edu

For the bike-sharing company, the objective is cer-
tainly to maximize the profit (i.e., the number of use
of the bikes) and minimize the cost (i.e., collecting the
scattered bikes quickly, and manually, to re-distribute
them in bulk). Our research is motivated by this: given
a set of roads (segments) scattered with shared-bikes,
distribute these bikes in bulk from a center (or several
centers) and transport them to these streets. Hence the
problem is to find a center (resp. several centers) on
these roads as the stations to store the bikes so that
the distance to the farthest target road from the near-
est station is minimal. Note that these centers change
when the target roads are changed.

In this paper, we give two model of the streets in the
cities. One is the classic grid network that is widely
used in the urban streets model. In this model, we de-
scribe all the n target roads as some axis-parallel line
segments and we use the ℓ∞-norm to measure the dis-
tance. Here we also consider a practical restriction: the
center (station) is exactly on one line segment (road) for
the convenience of storage and scheduling, and we only
need to touch every line segment (target road) at any
point (position) to manually distribute the bikes. Also,
note that a ℓ∞ circle is an axis-parallel square.

Thus, follow this model the one-hitting-square prob-
lem is to find the minimum axis-parallel square whose
center is on a line segment, to hit all the line segments,
such that the edge length of the square is minimized.
Analogously, the two-hitting-square problem can be de-
fined.

In addition to the grid networks, we also consider
the geometric tree network, with size m, to model the
streets. The target roads are n segments/edges on the
tree and the distance between any two points on the
tree is the shortest distance between them along the
tree edges. In this case we consider the one-center and
two-center problems such that the centers must lie on
some tree edges and the maximum distance between the
target segments to the nearer centers is minimized. We
next review some previous works.

When the target are n points and the distance is ℓ2,
the corresponding one-center [9, 12], two-center [2, 6, 11]
(and discrete two-center [1]) problems have been well
studied. In fact, even under ℓ∞, the two-center and
three-center problem can be solved in O(n) time [4, 7]
and a variation of the discrete two-center problem
(where the centers of the congruent axis-parallel squares
must be on some input points and the area of the squares

is minimized) can be solved in O(n log2 n) time [8].
(There are other variations of these problems, like the
target to cover is a convex polygon. We refer the read-
ers to [5] for the references.) The research which is the
closest to this one is by Sadhu et al., where the prob-
lem is to cover/hit a set of line segments using one or
two (congruent) axis-parallel squares with the smallest
size (edge length) [10]. Linear time algorithms are given
for these problems. Our problems can be considered as
the discrete version of these problems, where the centers
must line on some input segments. We give O(n) and
O(n2 log n) algorithms respectively. On the tree model,
little is known for the corresponding two-center problem
when the target is a set of edges, though the one-center
solution (for edges) can be adapted to some forklore al-
gorithm on computing the diameter of a tree in linear
time.

This paper is organized as follows: In Section 2, we
present some definitions and formally describe the four
problems. Then, in Section 3-4 we give details for our
solutions for the four problems. We conclude the paper
in Section 5.

2 Preliminaries

2.1 Notations and Definitions

Coordinates: For every point p ∈ R
2, we use x(p)

and y(p) to denote its x-coordinate and y-coordinate,
respectively.
Endpoints: We use L(li), R(li), T (li) and B(li) to
denote the left endpoint, right endpoint, top endpoint
and bottom endpoint of the line segment li (1 ≤ i ≤ n)
where x(L(li)) < x(R(li)) and y(T (li)) > y(B(li)).

Remark: A horizontal line segment has only a
left endpoint and a right endpoint with the same y-
coordinate, this is similar for a vertical line segment.
Distance: (I) In the first model, we use d∞(p, li) to
denote the distance between a point p ∈ R

2 and a line
segment li (1 ≤ i ≤ n), and it is defined to be the min-
imum ℓ∞-distance between p and some point q on li,
where d∞(p, q) = max{|x(p) − x(q)|, |y(p) − y(q)|} and
|x(p)−x(q)|, |y(p)−y(q)| are the horizontal and vertical
components respectively (also denoted as dh(p, li) and
dv(p, li) as shown red in Fig. 1, where p = s′).

(II) In the tree network T , the distance between
two points p, q (denoted as d(p, q)) is the length of the
(unique) path between p and q along tree edges. And
we denote the distance between a point p on an edge of
T and a target edge (line segment) li by d(p, li), which
is the minimum distance between p and any point in
li; formally, d(p, li) = min

q∈lj
d(p, q). Hence, d(p, li) must

be the shortest distance between p and an endpoint of
li. Also, we use d(li, lj) to denote the distance between
two line segments li and lj as d(li, lj) = min

p∈li,q∈lj
d(p, q),

lL

lRlT

lB

li dv(p, li)

dh(p, li)
s′

S′
L

H

l rt

b

Figure 1: A minimum (unrestricted) rectangle S′ hitting
all segments.

li

lj
lx

ly

c t

p

q

Figure 2: Distance on a tree T : d(p, q) = d(p, t)+d(t, q),
and d(p, lj) = d(li, lj) = d(p, q).

which is the shortest distance between the endpoints of
li, lj . (See Fig. 2)

Diameter and radius: The diameter D and radius R
of a set of line segments in a tree network T is defined as
follows. For n line segments U = {l1, l2, ..., ln} on T , its
diameter is the longest of the (shortest) path between
any two line segments (in Fig. 2 the red path denotes the
diameter). And the diameter D is also used to denote
the length of this path, i.e., D = max

1≤i,j≤n
d(li, lj). And

naturally the radius is half of diameter R = D/2.

2.2 Problems

Throughout this paper, all squares are axis-parallel.
Let S be an axis-parallel square with center s and its
edge length (or size) is ℓ, then S can be defined as
S = {p|d∞(p, s) ≤ ℓ/2}. We say a square S hits a seg-
ment li if there is a point p ∈ S such that d∞(p, li) = 0.
We now define the first two problems on finding one and
two hitting squares.

Problem 1 (Discrete One-Hitting-Square):
Given a set of axis-parallel line segments U =
{l1, l2, ..., ln} in R

2, the problem is to find a square S
of minimum size such that S hits all the line segments
in U and its center s is on a line segment in U . (See
Fig. 3)

Problem 2 (Discrete Two-Hitting-Square):
Given a set of axis-parallel line segments U =
{l1, l2, ..., ln} in R

2, the problem is to find two congru-
ent squares S1 and S2 of minimum size such that each
line segment in U is hit by at least one square and the
center s1 (resp. s2) of S1 (resp. S2) is on a line segment
in U .

Figure 3: An example for the one hitting-square prob-
lem.

We next define the problems on a tree network. Note
that in this case a hitting ‘square’ is virtual.

Problem 3 (One-tree-center): Given a set of
edges (line segments) U = {l1, l2, ..., ln} on a geomet-
ric tree T in R

2, the problem is to find a center c on an
edge of T such that the maximum distance from a line
segment in U to c is minimized. (See Fig. 2)

Problem 4 (Two-tree-center): Given a set of
edges (line segments) U = {l1, l2, ..., ln} on a geometric
tree T in R

2, the problem is to find two centers c1 and
c2 on some edges of T such that the maximum distance
from a segment in U to the nearer center is minimized.

3 Solutions for Discrete Hitting-Square Problems

3.1 Discrete One-Hitting-Square

We first compute the minimum axis-parallel rectangle
S′ (with no restriction on its center s′) such that all the
line segments are hit by S′ as in [10]. We then adjust
this rectangle by moving s′ to s and expanding the edge
length to obtain the required square S whose center s
must lie on a line segment in U .

To obtain the rectangle S′, we present the definition
of boundary line segments and boundary points at first.
As shown in Fig. 1, we define four boundary line seg-

ments: the leftmost segment lL, the rightmost segment
lR, the topmost segment lT and the bottommost seg-
ment lB to be the line segments that have boundary

points l, r, t and b at one of their endpoints, respectively,
where l, r, t and b are defined as follows:

l = min
∀li∈U

x(R(li)), r = max
∀li∈U

x(L(li))

t = max
∀li∈U

y(B(li)), b = min
∀li∈U

y(T (li))

Remark: If a boundary line segment is parallel to the
boundary, then any point on it can be recognized as the
boundary point since it is fine to hit any point on this
line segment.

And we can then construct the rectangle S′ by com-
puting its four sides. This is based on the fact that S′

hits all the line segments is equivalent to hitting the four
boundary line segments lL, lR, lT and lB.

Now, we focus on how to adjust the rectangle to ob-
tain the desired square. For every line segment li, we
compute the distance d∞(s′, li), and record the verti-
cal and horizontal components of the distance. Then
we compute the expanding lengths γi’s, i.e., the length
that the longer side of the rectangle must be expanded
into a square which hits all the segments and whose
center lies on li. Finally, we choose the minimum γ∗ to
obtain the target square S.

Without loss of generality, we assume that the hori-
zontal and vertical edge length of the rectangle S′ are
L and H (L > H) respectively, as shown in Fig. 1.

Lemma 1 To obtain a feasible square S(i) which hits
all the segments in U and whose center lies on some seg-
ment li, we need to expand the (horizontal) edge length
of the minimum hitting rectangle S′ by at least γi, where

γi = 2 ∗max{max{dv −
L−H

2
, 0}, dh}, (1)

and dh = dh(s′, li), dv = dv(s′, li) are the horizontal
and vertical components of d∞(s′, li) respectively, with
s′ being the center of S′.

Proof. As we need to move the center s′ of S′ horizon-
tally by a value dh to obtain S(i), the edge length of S(i)
would be expanded by at least 2dh. (In this proof, imag-
ine that S′ is expanded smoothly in both directions, at
the same pace.) At the vertical direction, the height of
S(i) would not be influenced by dv if dv < L−H

2
. This is

because after an expansion by 2dv the height of S′ is still
shorter than the length. If dv > L−H

2
, the edge length

of S′ would have to be expanded by at least 2(dv−
L−H

2
)

to have a feasible S(i) (due to the vertical move of s′).
Hence, γi = 2 ∗max{max{dv −

L−H
2

, 0}, dh}. �

Theorem 2 The edge length of the smallest discrete
hitting square S is L + γ∗, where γ∗ = min

∀li∈U
{γi}; more-

over, S can be computed in O(n) time.

Proof. We first compute γ∗. Then, S can be computed
from S′ by finding the segment l∗ which is γ∗ distance
away from s′, i.e., d∞(s′, l∗) = γ∗/2. The point s on l∗

realizing d∞(s′, l∗) = d∞(s′, s) = γ∗/2 is the center of
S, and the edge length of S is L + γ∗. �

3.2 Discrete Two-Hitting-Square

It seems hard to solve this ‘two-hitting-square’ version
in the same way because simultaneously moving the two
centers of the two hitting rectangles (presumably con-
structed as in [10]) to the destination is hard, and a
brute-force method trying all the O(n2) combinations
of the locations of the two centers s1, s2 (which must lie
on some segments) would result in a high running time.
Hence we use a different method. We try to fix one tar-
get square S1 and then find the other square S2. And

[Configuration 1]

[Configuration 2]

Figure 4: Two configurations for the two centers.

in order to fix S1, it is natural to consider the corre-
sponding decision problem and then obtain the optimal
solution.

For the decision problem, the question is to determine
whether there are two congruent (axis-parallel) squares
S1(α) and S2(α) such that every line segments in U is hit
by at least one of them, the center s1(α) (resp. s2(α))
is on some line segment in U , and the edge length of
S1(α) and S2(α) is 2α.

As the previous subsection, we find the smallest axis-
parallel rectangle S′ that hits all the segments in U .
We assume that we also have the four boundary line

segments and the four boundary points. Besides, we also
assume that the two edge lengths of S′ satisfy L > H .
Then, there are two configurations of S1(α) and S2(α)
similar to [10], see Fig. 4. Here we only discuss the
configuration that S1(α) (resp. S2(α)) hits l and b (resp.
r and t), and the other configuration can be handled
symmetrically.

We know that the coordinates of the center s1(α)
must satisfy x(s1(α)) ≤ x(l)+α and y(s1(α)) ≤ y(b)+α
since the edge length of S1(α) is 2α. Then, for every line
segment li(1 ≤ i ≤ n), we determine whether s1(α) can
lie on it (to constitute a feasible solution) following Ob-
servation 1.

Observation 1 If s1(α) is on a horizontal segment li,
then the left endpoint u of li satisfies that x(s1(α)) ≥
x(u). Similarly, if s1(α) is on a vertical segment lj,
then the bottom endpoint v of lj satisfies that y(s1(α)) ≥
y(v).

In fact, Observation 1 implies that, when li is hor-
izontal, we could locate s1(α) on it such that (A)
x(s1(α)) = min{x(l)+α, x(R(li))} and y(s1(α)) = y(li),
where the y-coordinate of li is y(li). Similarly, when lj
is vertical, we could locate s1(α) on it such that (B)
y(s1(α)) = min{y(b)+α, y(T (li))} and x(s1(α)) = x(li),
where the x-coordinate of li is x(li).

Then, the decision procedure is straightforward: we
locate s1(α) (consequently S1(α)) on a candidate seg-
ment li according to (A) and (B), and for all the seg-
ments not covered by S1(α) we use Theorem 2 to decide

whether they can be covered by S2(α) in O(n) time. As
there are n candidate segments li’s, the decision proce-
dure takes O(n2) time.

For the optimization problem, notice that the opti-
mal solution value α∗ must be in the form d∞(li, lj)
or d∞(li, lj)/2 (the corresponding optimal squares have
an edge length 2d∞(li, lj) or d∞(li, lj) respectively).
Hence we can compute and sort this list of distances
in O(n2 log n) time. Then, we just use the decision
procedure to perform a binary search to find α∗ in
O(n2 log(n2)) = O(n2 log n) time. Consequently, S1 ←
S1(α

∗), S2 ← S2(α
∗).

Theorem 3 The Discrete Two-Hitting-Square problem
can be solved in O(n2 log n) time.

4 Solution for Hitting the Line Segments on a Tree

In this section, we consider the problems on hitting a set
of n segments on a tree T . We assume that T contains m
edges, with m > n. Here a segment li is hit by a center
c on T if d(c, li) is bounded from above by some value
β. Our problems are to hit all target segments with
either one or two centers such that the corresponding β
is minimized (Fig. 2).

4.1 One-tree-center

We present the algorithm to find c in the following al-
gorithm. This algorithm is adapted from a folklore al-
gorithm on computing the diameter of a tree.

1. Arbitrarily choose a node r1 in the tree T as the
root and find the line segment lx that is the far-
thest from r1 by breadth-first-search on T . Let
d(r1, lx) = d(r1, x), where x is an endpoint of lx.

2. Find the farthest line segment ly from x by breadth-
first-search on T . Let d(x, ly) = d(x, y), where y is
an endpoint of ly.

3. Compute the path between x and y as the diameter.
The center c is the midpoint on the path between
x and y (e.g., lx and ly).

Theorem 4 The One-Tree-Center problem can be
solved in O(m + n) time; in fact, the optimal center
c is just the midpoint of the diameter D; formally,
D = d(lx, ly) = max

1≤i,j≤n
d(li, lj) and c is on the path

between lx and ly such that d(c, lx) = d(c, ly).

Proof. The correctness can be proved by contradiction.
The details will be given in the full paper. The running
time of the algorithm is obviously O(m+n) as the main
cost is two runs of the breadth-first-search algorithm
[3]. �

4.2 Two-Tree-Center

In this problem, the objective is to find two centers c1

and c2 on the tree T such that

f
def
= max

li∈U
min{d(c1, li), d(c2, li)}

is minimized for any line segment li on the tree T .
To make our analysis more clean, we initially take c

as a virtual root of the tree T and then perform some
preprocessing, i.e., remove all the subtrees that do not
contain target line segments and denote the position of
every line segment by its endpoint (node) that is closer
to c. Thus, every leaf node is the endpoint of a line
segment in the transformed tree (we still call it T), and
we abuse the terminology by calling these line segments
as leaves.

For the sake of brevity, we use the notation f1 (resp.
f2) to denote the distance between c1 (resp. c2) and the
farthest line segment it hits. Thus, f = max{f1, f2}.

In this subsection, we propose the algorithm first and
sketch its correctness a bit later. We first implement
the same algorithm as we did in the last subsection to
obtain lx, ly ∈ U and c. (Recall that d(lx, ly) gives the
diameter of the segments in U on T .) Then, we discuss
the next steps in the following two cases:

(1) c is not a node of T , i.e., c is between two
adjacent nodes in T . Cut T into two parts T ′ and
T ′′ at c such that lx, ly are contained in T ′, T ′′ re-
spectively. We can find the center c′ (resp. c′′) of T ′

(resp. T ′′) as done in Section 4.1. In Section 4.2.1
we give details to show that c′ and c′′ are just the
two centers c1 and c2 of T ′ and T ′′, respectively, and
f = max{d(c′, lx), d(c′′, ly)}.

(2) c is exactly a node of T . In this case, there
are two subcases to be discussed:

(2.1) There are exactly two subtrees (also denoted
by T ′ and T ′′) of c: One contains lx while the other
contains ly. Without loss of generality, it is assumed
that c is contained in T ′ but not in T ′′. We can also
compute c′ and c′′ similar to (1) and they are also
the two centers of T ′, T ′′. And in this case it can be
computed that f = D/4 = d(lx, ly)/4.

(2.2) There are more than two subtrees of c, denoted
by T 1, T 2, ..., T k, respectively. (Suppose c does not be-
long to any subtree.) Let the two subtrees that contains
lx and ly be T 1 and T 2 respectively. Compute the cen-
ters c1, c2, c−1, c−2 and radii R1, R2, R−1, R−2 of T 1,
T 2, T−1, T−2, where T−1 = T 2 ∪ T 3 ∪ ... ∪ T k ∪ c
and T−2 = T 1 ∪ T 3 ∪ ... ∪ T k ∪ c. In this case,
f = min{max{R1, R−1}, max{R2, R−2}}. We obtain c1

and c2 respectively as c1 and c−1, if max{R1, R−1} ≤
max{R2, R−2}; and vice versa. In summary we have
the following theorem.

lx

ly

lw

c1 c2

c

z

w

x
y

Figure 5: Illustration for the proof of Lemma 9, under
the assumption that lw can be hit by c1 but cannot be
hit c2.

Theorem 5 The Two-Tree-Center problem can be
solved in O(m + n) time.

We next give some details for the above theorem, due
to space constraints, we leave out some details for the
final version of this paper.

4.2.1 Case 1. c is not a node of the tree T

For this case, we have the following properties which are
intuitively obvious. Due to space limit, the proofs are
omitted in this version.

Observation 2 lx and ly must be two leaf nodes of T
and are the farthest nodes from c.

Lemma 6 The two centers c1 and c2 of T must be in
T ′ and T ′′ respectively.

Observation 3 lx and ly in T are hit by c1 and c2

respectively.

Lemma 7 lx and ly are the farthest line segments hit by
c1 and c2 respectively, i.e., d(c1, lx) = f1 and d(c2, ly) =
f2.

Lemma 8 c1 (resp. c2) is on the path between c and lx
(resp. ly).

Lemma 9 In an optimal solution, even if there is a line
segment lw in T ′′ which is hit by c1, i.e., d(c1, lw) ≤ f1,
we can make a swap to use c2 to hit it without making
the solution worse. Similarly, even if there is a line
segment lv in T ′ which is hit by c2, we can make a swap
to hit lv with c1.

Proof. Due to space limit, we only give a sketch of
the proof, see Fig. 5. Assume that lw in T ′′ is hit by
c1, i.e., d(c1, lw) ≤ f1, but cannot be hit by c2, i.e.,
d(c2, lw) > f2. We have f = f2 ≥ f1, but we can show
f1 > f2 to lead the needed contradiction. �

Corollary 1 In an optimal solution of the Two-Tree-
Center problem, c1 hits all the line segments in T ′ and
c2 hits all the line segments in T ′′. Thus we can find c1

(resp. c2) by solving the One-Tree-Center problem on
T ′ (resp. T ′′).

4.2.2 Case 2. c is a node of the tree T

(2.1) There are exactly two subtrees T ′ and T ′′ of c.
It is easy to see that c1, c2 are in T ′, T ′′ and hit lx,
ly respectively, similar to Lemma 6 and Observation 3.
Moreover, at least one of c1 and c2 hits lx and c (or,
ly and c) simultaneously. (Otherwise the solution is
not optimal.) Assume that c1 hits both lx and c, then
f1 = d(lx, ly)/4 = D/4 and f2 cannot be greater, be-
cause lx and ly are the two line segments farthest from
c. Hence, f = max{f1, f2} = max{d(c1, lx), d(c2, ly)} =
d(c1, lx) = D/4 = d(lx, ly)/4.

(2.2) There are more than two subtrees of c:
T 1, T 2, ..., T k. Assume that lx and ly are in T 1 and
T 2, respectively. We first claim that c1 and c2 must
be in T 1 and T 2, respectively. (Otherwise, one of T 1

and T 2, say it is T 1, does not contain any center; thus
f = max{d(c1, lx), d(c2, lx)} > d(c, lx) = D/2 which is
even worse than the corresponding one-center solution.
A contradiction.)

In this case we can also prove that d(c1, lx) = f1,
d(c2, ly) = f2, and c1 (resp. c2) is on the path between
c and lx (resp. ly) similar to Lemma 7 and Lemma 8.
Thus we can also obtain the conclusion that all the line
segments in T 1 (resp. T 2) are hit by c1 and c2, respec-
tively, as in Lemma 9 and Corollary 1. Now we only
need to consider the line segments in T 3, ..., T k: As-
sume that the tree containing the farthest line segment
from c other than T 1 and T 2 is T 3, and suppose that
c1 hits all the line segments in T 3. When we compute
f1 for c1 to hit all the line segments in T 1 and T 3, it is
obvious that all the line segments in T 4, ..., T k can also
be hit by c1 without increasing f1. That is to say, the
line segments in T 1, T 3, ..., T k are all hit by c1. Simi-
larly, if all the line segments in T 3 are hit by c2, then all
the line segments in T 2, T 3, ..., T k are hit by c2. Hence
we obtain the conclusion that either (a) c1 hits all the
line segments in T 1 and c2 hits all the line segments
in T 2, T 3, ..., T k, or (b) c1 hits all the line segments in
T 1, T 3, ..., T k and c2 hits all the line segments in T 2.
Thus, f = min{max{R1, R−1}, max{R2, R−2}}, and c1

and c2 can be computed accordingly. This concludes
the correctness proof of Case 2.

5 Concluding Remarks

An extension of this research is to use a more realistic
model, i.e., an irregular grid network (a grid network
with some edges randomly deleted, e.g., something sim-
ilar to a wall graph). It seems to take some effort to
solve the discrete two-center problem in roughly O(m2)
time or even better, where m is size of the network and
there are n(n < m) streets/segments to cover.

Acknowledgments

This research is partially supported by NNSF of China
under project 61628207. XH is supported by China
Scholarship Council under program 201706240214 and
by the Fundamental Research Funds for the Central
Universities under project 2012017yjsy219. ZL is sup-
ported by a Shandong Government Scholarship.

References

[1] P. Agarwal, M. Sharir and E. Welzl. The discrete
2-center problem, Discrete and Computational Ge-
ometry, 20(3):287-305, 1998.

[2] T. Chan. More planar two-center algorithms, Com-
putational Geometry: Theory and Applications,
13(3):189-198, 1999.

[3] T. Cormen, C. Leiserson, R. Rivest and C. Stein.
Introduction to Algorithms, second edition, MIT
Press, 2001.

[4] Z. Drezner. On the rectangular p-center problem,
Naval Research Logistics, 34(2):229-234, 1987.

[5] H. Du and Y. Xu. An approximation algorithm for
k-center problem on a convex polygon, J. Combi-
natorial Optimization, 27(3):504-518, 2014.

[6] D. Eppstein. Faster construction of planar two-
centers, In Proc. 8th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’97), pages
131-138, 1997.

[7] M. Hoffman. A simple linear algorithm for comput-
ing rectilinear 3-centers, Computational Geometry:
Theory and Applications, 31(3):150-165, 2005.

[8] M. Katz, K. Kedem and M. Segal. Discrete recti-
linear 2-center problem, Computational Geometry:
Theory and Applications, 15(4):203-214, 2000.

[9] N. Megiddo. Linear-time algorithms for linear pro-
gramming in R3 and related problems, SIAM J.
Computing, 12(4):759-776, 1983.

[10] S. Sadhu, S. Roy, S. Nandy and S. Roy. Opti-
mal covering and hitting of line segments by two
axis-parallel squares, In Proc. 23rd International
Computing and Combinatorics Conference (CO-
COON’17), LNCS 10392, pages 459-468, 2017.

[11] M. Sharir. A near-linear algorithm for the planar
2-center problem, Discrete and Computational Ge-
ometry, 18(2):125-134, 1997.

[12] E. Welzl. Smallest enclosing disks (balls and ellip-
soids), In New Results and New Trends in Com-
puter Science (Ed. H. Maurer), LNCS 555, pages
359-370, 1991.

