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ABSTRACT 
 
A framework for simulating the visual attention system in 
primates is presented. Each stage of the attentional 
hierarchy is chosen with consideration for both 
psychophysics and mathematical optimality. A set of 
attentional operators are derived that act on basic image 
channels of intensity, hue, and orientation to produce 
maps representing perceptual importance of each image 
pixel. The development of such operators is realized 
within the context of a genetic optimization. The model 
includes the notion of an information domain where 
feature maps are transformed to a domain that more 
closely represents the response one might expect from the 
human visual system. The model is applied to a number 
of natural images to assess its efficacy in predicting 
guidance of attention in arbitrary natural scenes. 
 

1. INTRODUCTION 
 
The visual attention system in primates appears to employ 
a serial computational strategy when processing complex 
visual scenes [1]. Certain areas of interest in the scene are 
selected based on behavioral significance or on local 
image characteristics. Despite the perception that we see 
everything around us, a relatively small portion of 
information gathered by the human visual system actually 
influences human behavior [2]. The human visual system 
has been well studied but remains far from being fully 
understood. That said, a great deal of evidence now exists 
in support of a two-component system consisting of a 
bottom-up primitive component where attention is guided 
purely by image stimuli and a slower top-down 
component where attentional selection is guided under 
cognitive control [1]. In this paper, we present a 
computational strategy to simulate fast bottom-up 
attentional selection in primates. The existence of such a 
system has been suggested as a necessary component in 
making general vision tractable in real-time [3]. 

    One of the first neurally credible frameworks for 
simulating human visual attention was proposed by Koch 
and Ullman [4]. Their model focused on the idea of a 
'saliency map', defined as a two-dimensional topographic 
representation of conspicuity. Their proposed model 
consisted of 4 key steps: Low-level feature extraction, 

centre-surround differences to produce feature maps, 
combination of those feature maps to produce a unique 
topographical saliency map, and finally, attentional 
selection and inhibition of return. Futher investigation of 
this model has taken place in the last 15 years including 
close examination of various components of the model by 
Koch, Ullman and additionally Niebur and Itti [5]. Some 
of the ideas that come out of the Koch and Ullman 
framework contribute to the work presented in this paper 
and are discussed in more detail in the section that 
follows. 

 Another well-known study on the issue of 
computational visual attention is that of Privitera and 
Stark [6]. Privitera and Stark evaluated numerous 
algorithmic approaches to detecting regions of interest by 
comparing the output of such algorithms to eye tracking 
data captured using standard eye tracking equipment. 
Privitera and Stark compared 10 different algorithmic 
methods for detecting regions of interest. The measures 
that they investigated include such measures as edge 
strength, high curvature, center surround response, gabor 
masks, wavelet transforms, symmetry, and contrast. 
Privitera and Stark found that each of the 10 operators 
showed a strong correlation to measured fixations for 
some of the images but performed quite poorly for others.  

Topper introduced an interesting addition to the visual 
attention literature rooted in information theory [7]. The 
premise of his work is as follows: Strength of a particular 
feature in an image locality does not in itself guarantee 
that ones attention will be drawn to that image region. For 
example, in an image that has a high degree of variance 
throughout most of the image, one may well be more 
likely to attend to more homogenous regions of the 
image. Detectors based on strength in variance or edges 
would fail miserably in such a case. A more realistic 
approach would involve detecting parts of the scene that 
are most different from the rest of the scene. Topper's 
idea was to transform feature maps to a more perceptually 
relevant domain through an operator that quantifies the 
uniqueness of measured feature strengths. Owing to the 
close ties between this premise and ideas that come out of 
information theory, Topper suggested Shannon's measure 
of self information as an appropriate transform for this 
purpose. Shannon's measure of self information may be 



described in the context of the visual attention framework 
as follows: 
Let F be a given feature strength that has a probability of 
occurrence P(F) in the image, and let I(F) represent the 
amount of information gained when one learns that F has 
occurred. Then I(F) = -log(1/P(F)) where P(F) is given 
by a histogram density estimate on F. The information 
operator ensures unique feature strengths (a localized 
region with unusual hue for example) receive a large 
confidence value in the information domain. 

Topper performed a set of experiments along the same 
lines as those of Privitera and Stark. He measured the 
correlation of information maps to eye tracking density 
maps following the application of Shannon's self 
information measure to feature maps. As in the case of 
Privitera and Stark, the correlation for each operator was 
substantial in some cases and worse in others. A key 
difference though, was that the addition of the 
information operator made for a more robust detector, 
able to deal with images where strength in a particular 
feature was not the primary indicator of where attention 
might be drawn. 

    Tompa introduced an approach to computational 
visual attention based on a subset of the measures 
employed by Topper for which the correlation to density 
maps was seen to be particularly strong [8]. The 
information maps derived from this feature subset were 
then integrated by means of a few elementary operators to 
derive an overall perceptual importance map.     

Tompa's model involves three key components: The 
first component is the derivation of feature maps from the 
original image. The 6 operators used in Tompa's approach 
are Sobel edge magnitude, Sobel edge orientation, 
intensity, hue, variance, and moment of inertia. These 
measures were observed to have the strongest correlation 
to eye tracking results in Topper's work when combined 
with the self-information operator. The second stage 
consists of combining the information maps to arrive at a 
final importance map. Tompa evaluated various simple 
approaches at this stage including taking the average, sum 
of squares, minimum, and maximum of the 6 maps. The 
sum of squares operator was found on average to provide 
the best results. 
    It is clear that a variety of different approaches have 
been taken to deal with simulating the human visual 
attention system. One might notice that all of these 
models seem to have common elements. All of them 
involve some form of low-level extraction of features on 
the image. Most involve some transformation from these 
measured feature maps to a domain that more closely 
resembles a representation of perceptual relevance. 
Another common component is the combination of maps 
representing importance to produce an overall saliency 
map. There appears to be a fundamental similarity 

between many of the existing models regardless of 
whether they were derived through psychophysical 
principles or under strictly mathematical considerations. 
This observation provides the motivation for the model 
that is developed in this work. The proposed model may 
be viewed as an abstraction of existing approaches with 
choices for various components made bearing in mind 
both psychophysical and mathematical considerations.  
 

2. THE MODEL 
 

The proposed framework encompasses ideas from a 
number of the approaches mentioned in the previous 
section and consists of 4 key components: 
   
    1. An early feature extraction phase in which the initial 
RGB image is divided into an intensity channel, a hue 
channel and 4 orientation channels using oriented Gabor 
filters as is the case in the Koch and Ullman model. The 
choice of these channels allow us to arrive at any of the 
operators employed in Tompa’s study by applying a 
relatively simple nonlinear operator to one of the 3 
channels. Tompa’s approach may then be viewed as a 
specific case of the model presented in this paper. Koch 
and Ullman also provide strong psychophysical evidence 
in support of using these basic channels.  
    
   2. Nonlinear filtering with operators intended to 
respond (when coupled with the Shannon information 
operator) to signal patterns that tend to draw attention 
from human observers. These operators are found 
through stochastic search of a function space consisting 
of quadratic Volterra filters of local extent. The intention 
of searching the function space is to locate unknown 
operators in the space that exhibit even stronger 
correlation to eye tracking density maps under the 
premise that such operators exist.  It is clear why a 
measure such as variance might hint at areas that will 
draw attention but it is expected that some other operators 
chosen from a function space that includes many of 
Tompa’s choices and designed specifically for focusing 
attention might do far better. The structure of a quadratic 
Volterra filter is as follows: 
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with S the local extent support region of the filter. The h 
coefficients determine the nature of the filter and are the 
parameters that are chosen through the course of the GA 
optimization. The function that measures the 
effectiveness of a particular operator is: 



nn

n

DIgSIC −∗=∑ )(
1

 

where C represents cost, g the local extent quadratic 
Volterra filter being assessed, In image n in the test set,  

Fig. 1. Overview of the proposed attentional hierarchy 
 
SI Shannon's self-information measure, and Dn the 
experimental density map corresponding to the image In. 
The optimization then seeks to find the function g that 
minimizes C. This optimization is performed for one 
channel and at one resolution at a time to produce an 
attentional transformation at each scale and for each 
channel. 
    Experimental density maps were produced for 120 
images based on measured fixations of 20 subjects. 
Images were presented in random order and shown for 4 
seconds each. Attention is not focused on distinct 
mathematical points, but rather on extended regions. A 
density map was computed for each of the images as the 
sum of 2-D Gaussian distributions centered at each 
fixation across all subjects as in [9].  
 
    3. The information operator employed in Topper’s 
work that takes each higher-level map to a domain that 
more accurately reflects the response one might expect 
from the human visual system. This stage is similar to the 
centre surround difference in the Koch and Ullman 
model. 

   4. Combination of the information maps derived in step 
3 to arrive at an overall perceptual importance map. The 
overall importance map is produced by averaging the 
individual information maps. The prediction in one of the 
3 channels is generally quite good. Also, a strong peak in 
one of the 3 channels results in a corresponding strong 
peak in the combined map. For this reason, it is expected 
that not much would be gained from employing a more 
complicated fusion procedure. This scheme is also 
consistent with the psychophysical observation that 
attention is guided by within feature spatial competition 
[10]. An overview of the proposed architecture is shown 
in figure 1. It is clear that there exist similarities between 
this approach and existing models. Key distinguishing 
characteristics include the training of custom attentional 
operators and inclusion of the information operator that 
Topper proposed.    

3. RESULTS 
 

The proposed model was applied to a wide variety of test 
images consisting of indoor and outdoor scenes and 
including images ranging from a few areas of interest to a 
larger number. Fig. 2. demonstrates the working of the 
model on an image of a storefront. In this particular 
example, correct prediction of areas of interest relies 
primarily on the hue and orientation information maps. 
 

  
Fig. 2. Example application of the model. Shown are (Top to 
bottom) the original image, information maps, the combined 
map and the original with fixations superimposed 



Fig. 3. Fixations selected by the proposed model for a variety of images. Fovea sized regions that contain the most confidence are 
selected and inhibited in the combined map until at least 50 percent of the confidence is suppressed. 
 
It is seen here that the averaging preserves the peaks that 
exist in the individual maps. Fovea sized regions that 
contain the most confidence in the combined map are 
selected and inhibited (initialized) as in [5] to determine a 
sequence of fixations. These fixations are indicated by 
yellow circles superimposed on the image. In each case 
shown in figures 2 and 3, fixations are selected until at 
least 50 percent of the confidence in the combined map 
has been inhibited. Figure 3 presents the final result 
indicating the fixations predicted by our model for a 
number of different images. In each image tested, most of 
the key distractors in the image were selected by our 
model. 

4. DISCUSSION 
 
In this paper, we have proposed a new framework for 
simulating the visual attention system in primates. Unlike 
existing approaches, we have designed nonlinear 
operators explicitly for the purpose of responding to 
image stimulus that might draw attention from human 
observers. The model is demonstrated to afford detection 
of features based on a variety of different types of stimuli 
as well as contending with the issue of scale. Predictions 
of the trained operators correlate closely with fixation 
points present in experimental results. Future work will 
include closer analysis of the problem of combining 
information maps. 
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