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Abstract—Connected filters are edge-preserving morphological operators, which rely on a notion of connectivity. This is usually the

standard 4 and 8-connectivity, which is often too rigid since it cannot model generalized groupings such as object clusters or partitions. In

the set-theoretical framework of connectivity, these groupings are modeled by the more general second-generation connectivity. In this

paper, we present both an extension of this theory, and provide an efficient algorithm based on the Max-Tree to compute attribute filters

based on these connectivities. We first look into the drawbacks of the existing framework that separates clustering and partitioning and is

directly dependent on the properties of a preselected operator. We then propose a new type of second-generation connectivity termed

mask-based connectivity which eliminates all previous dependencies and extends the ways the image domain can be connected. A

previously developed Dual-Input Max-Tree algorithm for area openings is adapted for the wider class of attribute filters on images

characterized by second-generation connectivity. CPU-times for the new algorithm are comparable to the original algorithm, typically

deviating less than 10 percent either way.

Index Terms—Mathematical morphology, second-generation connectivity, connectivity class, clustering, partitioning, dual input max-

tree, attribute filter.

Ç

1 INTRODUCTION

IN discrete image analysis the set-theoretic concept of
connectivity [1] describes the way pixels are grouped to

form connected components or flat-zones in gray scale [2].
Connected components are image regions of constant
intensity in which pixels are characterized by a path-wise
connectedness relation. Typically, on the two-dimensional
(2D) discrete space ZZ2 sets of pixels are either 4 or 8-
connected [3], [4].

Based on the notion of connectivity, a family of
morphological operators [5] known as connected filters [2],
[6] has been developed which interact with the connected
components rather than individual pixels. This prevents
edge distortion, a property highly desirable in many
applications. Connected components can either be removed
or remain intact but new ones cannot emerge. Early
members of this family were openings by reconstruction,
for which efficient algorithms have been developed [7].
Furthermore, the concept of attribute filters [8] was
introduced, which allows filtering based on the connected
component attributes. Examples of this are attribute open-
ings, closings, thinnings, and thickenings [6], [8], [9], [10].

In recent years, several theoretical developments concern-
ing generalizations of the notion of connectivity have been
presented [11], aiming to improve the robustness and
increase the versatility of these filters. These generalizations
aim at modeling object clusters and partitions in an edge
preserving manner. A well-established approach known as
second-generation connectivity [12], [13], [14] handles both cases

independently by creating a “child” connectivity class, by
using some operator. Second-generation connectivity can be
classified as either clustering or contraction-based [14] depend-
ing on whether the operator expands, or contracts the original
image. An example of filtering based on clustering con-
nectivity is given in Fig. 1 illustrating an Anabaena complex.
Assuming we target the largest complex, using standard 4
and 8-connectivity we can only retrieve the bigger fragment
of the two, which are separated by the heterocyst—Fig. 1c.
Instead, if the connected filter is defined on the more general
clustering-based connectivity, the two fragments merge as
illustrated in Fig. 1b, and the filter considers them as one
object—Fig. 1d. The original image has been obtained from
http://www.f-suiki.or.jp/suisitu/saikin/saikin.htm.

Second-generation connectivity is realized by means of a
connectivity opening which is associated with a structural
operator. The dependency on this operator imposes con-
straints as to how the image domain can be connected, and
apart from clustering and partitioning, no further cases such
as combinations of the two are supported. In our work, we
counter this limitation by introducing a composite connec-
tivity opening in which all dependencies to the structural
operator are eliminated. Instead, we propose an association
with a connectivity mask which is an image containing some
arbitrary transformation of the original. This yields a single
framework termed mask-based connectivity that accounts for
all possible ways the image domain can be connected. This
includes the two known cases of clustering and partitioning
through the design of filters which yield results identical to
the previous approach, even though formally based on
different connectivity classes. The difference between these
classes lies in the fact that, for a given operator, we generate a
different connectivity class for each target image, rather than
one, generally applicable connectivity class.

Algorithmic realizations of second-generation connectiv-
ity originally suggested the use of binary and gray-scale
reconstruction operators for recovering the object clusters or
partitions [14]. This introduced a family of filters based on
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width as the attribute criterion. An efficient algorithm for
gray-scale area filters using second-generation connectivity
has also been presented [15]. This method builds a hierarch-
ical image representation based on gray-scale image pairs
comprising the original image and its modified replica. In
regions where the two images differ the algorithm evaluates
the connectivity based on the properties of the structural
operator and assigns pixels to the appropriate connected
components. The algorithm which is inspired by Salembier
et al. [16], is referred to as the Dual-Input Max-Tree algorithm
[15] and supports both clustering and partitioning. In this
work, we employ the Dual-Input Max-Tree modified for the
more general family of gray-scale attribute filters on 2D and
3D data sets characterized by mask-based second-generation
connectivity. We demonstrate its capacity on biomedical
images and 3D data sets using nonincreasing shape filters
based on moment invariants and provide the functionality to
extend to other filter types.

The structure of this paper is organized as follows: In
Section 2, a number of preliminaries is presented. These are
the fundamental concepts of connectivity classes and con-
nectivity openings, the notion of second-generation connec-
tivity, and attribute filters. In Section 3, we investigate the
drawbacks of the existing second-generation connectivity
framework. Section 4 introduces the mask-based connectivity
scheme and formalizes an expression of attribute openings
associated to it. Following this, Section 5 gives a short
introduction on the Max-Tree structure complemented by the

description of the Dual-Input Max-Tree algorithm adopted
for mask-based connectivity representation. Section 6 gives a
number of examples on attribute filtering and a brief
discussion on the results while conclusions are summarized
in Section 7.

2 THEORETICAL BACKGROUND

2.1 Connectivity Classes and Connectivity
Openings

This section briefly outlines the concept of connectivity
from the set-oriented morphological perspective. For the
purpose of this analysis, we assume a universal (nonempty)
set E and denote by PðEÞ the collection of all subsets of E.

Definition 1. A family C � PðEÞ for any arbitrary set E, is
called a connectivity class if it satisfies:

1. ; 2 C and for all x 2 E, fxg 2 C and
2. for any fAig � C for which

T
Ai 6¼ ; )

S
Ai 2 C.

This means that both the empty set and singleton sets are
connected and any union of sets which have a nonempty
intersection is also connected. Members of C are called
connected sets [1], [13], [17]. The family of all singleton sets is
denoted by S � C.

Addressing connected regions in binary images is often
more practical by means of connected components or grains C
[6]. If C is a grain of X, we denote this . A connected
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Fig. 1. Area opening using clustering-based connectivity: (a) original image, (b) the expanded set obtained by a structural closing, (c) the filtered
image using an area criterion relying on the standard 4-connectivity, and (d) clustering-based connectivity.



component C of a binary image X is a connected set of
maximal extent, in the sense that there is no set C0 � C such
that C0 � X and C0 2 C.

Connected components are accessed by means of a
connectivity opening �x, which is an operator extracting the
union of all connected sets within X that have a point x 2 E
in their intersection, i.e.,

�xðXÞ ¼
[

Ai 2 C j x 2 Ai;Ai � Xf g ð1Þ

for every X � E. From (1), it is trivial to show that �x is an
algebraic opening [18] marked by x, i.e., it is an increasing,
antiextensive and idempotent operator. Furthermore,
8x =2 X, �xðXÞ ¼ ;.

Evidently connectivity classes and connectivity openings
are interrelated. This is formally given by the following
theorem [1], [12], [13].

Theorem 1. The datum of a connectivity class C in PðEÞ is
equivalent to the family f�xjx 2 Eg of openings on x such that:

1. �x is an algebraic opening marked by x 2 E,
2. for all x 2 E, we have �xðfxgÞ ¼ fxg,
3. f o r a l l X � E, a n d a l l x 2 E, w e h a v e

x =2 X ) �xðXÞ ¼ ;, and
4. for all X � E, x; y 2 E, if �xðXÞ \ �yðXÞ 6¼ ; )

�xðXÞ ¼ �yðXÞ, i.e., �xðXÞ and �yðXÞ are equal or
disjoint.

This shows that connectivity openings characterize
uniquely the connectivity class with which they are
associated and that there is a one-to-one correspondence
between the two. We see this from two points of view [12]:

1. From the connectivity class to the system of con-
nectivity openings: �x is the union of all sets A in the
connectivity class C, such that x 2 A and A � X.

2. From the system of connectivity openings to the
connectivity class C: The connectivity class C is
formed of all �xðXÞ for x 2 E and X � E.

Concluding, we see that to prove a family of sets is a
connectivity class, it is sufficient to show that the operator
extracting these sets is a connectivity opening satisfying the
four conditions of Theorem 1.

2.2 Second-Generation Connectivity

Given a connectivity class C, it is possible to generate a child
class with either reduced or enriched members by modify-
ing its associated connectivity opening. This is referred to as
second-generation connectivity [12], [13], [17] and aims at
modeling object clusters or partitions that cannot be
captured otherwise.

Each of the two cases is defined separately and we identify
second-generation connectivity as either clustering or contrac-
tion-based [14]. In both cases, the connectivity openings � x of
the family associated to the child connectivity class are given
in an expression dependent on a structural operator such as
a dilation, a closing, or an opening.

2.2.1 Clustering-Based Connectivity

The first case of second-generation connectivity describes
groups of image objects that can be perceived as clusters of
connected components if their relative distances are below a
given threshold. This is controlled by the size of the
structuring element used along with an operator  termed

clustering [12], [13], [14]. Following is a list summarizing the
properties required to define a clustering:

1.  is increasing and extensive.
2.  ðCÞ � C.
3. For a family fXig in PðEÞ such that  ðXiÞ 2 C, 8i,

and
T
i Xi 6¼ ; )  ð

S
XiÞ 2 C.

4.  does not create connected components; i.e., if 8x 2
C and .

5.  treats the clusters of X independently; i.e., if 8x 2
C and .

Further analysis of each item is given in [14].
If the operator  satisfies the first three properties, it is

referred to as a weak clustering or simply clustering.

Definition 2. Let C be a connectivity class in PðEÞ and  be a
clustering operator on PðEÞ. Then,

C ¼ fX 2 PðEÞ j  ðXÞ 2 Cg ð2Þ
is a clustering-based connectivity class with

C � C : ð3Þ

Operator  is a strong clustering if and only if it satisfies
all five properties above. Typical examples of clustering
operators are certain extensive dilations and closings, using
connected structuring elements.

Definition 3. Let f�x j x 2 Eg be the connectivity openings
associated with C. If  is a strong clustering on PðEÞ, the
family of connectivity openings f� x j x 2 Eg associated to C 
are given by

� xðXÞ ¼
�xð ðXÞÞ \X; if x 2 X ð4aÞ

;; otherwise: ð4bÞ

8<
:

An example of clustering sets is illustrated in Fig. 2a which
shows a set of five individual connected components and
Fig. 2b, an expanded replica by a structural closing. The
connectivity opening of (4) for ðx; yÞ ¼ ð128; 200Þ extracts the
cluster of the connected components, as illustrated Fig. 2c.

2.2.2 Contraction-Based Connectivity

The second case is a partitioning scheme in which wide object
regions bridged in the original image by narrow elongated
structures can be treated as separate objects [12], [14], [18].
The “narrowness” of these structures is determined by the
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Fig. 2. Clustering Sets: (a) The original image X illustrates five separate
objects which expanded by  yield (b) the sets making up the cluster.
(c) By intersecting the connected components of  ðXÞ with X, the
operator � x ðXÞ extracts the cluster of the previously disconnected
objects.



size the structuring element used along with an increasing
and antiextensive operator  on PðEÞ, called a contraction.
Furthermore, any set X � E which is invariant to  is called
stable, i.e.,  ðXÞ ¼ X.

Restricting the original connectivity class C by turning all
connected members that are not invariant to  to connected
singleton sets, yields a child connectivity class defined as
follows:

Definition 4. Let C be a connectivity class in PðEÞ and  be a
contraction on PðEÞ. Then,

C ¼ f;g [ S [ fX 2 C j  ðXÞ ¼ Xg ð5Þ
is a contraction-based connectivity class with

C � C: ð6Þ

Contractions are typically structural openings. A neces-
sary condition to define the family of connectivity openings
associated with C is for  to be locally invariant with
respect to C for any X � E [14], i.e.,

 ðXÞ ¼ X )  ð�xðXÞÞ ¼ �xðXÞ; 8 x 2 E: ð7Þ

This means that for any set X invariant to  , all connected
components of X must also be invariant to  . An example of
a locally invariant opening is a structural opening with a
connected structuring element.

Definition 5. Let f�x j x 2 Eg be the connectivity openings
associated with C. If  is an opening on PðEÞ locally invariant
with respect to C, the family of connectivity openings
f� x j x 2 Eg associated to C are given by

� xðXÞ ¼
�xð ðXÞÞ if x 2  ðXÞ ð8aÞ
fxg if x 2 X n  ðXÞ ð8bÞ
; otherwise: ð8cÞ

8><
>:

Partitioning an image with this scheme does not modify
the existing edges and the union of all stable sets with the
singletons that complement them yields back the original
image. An example is illustrated in Fig. 3 where there exists
a single connected component which we supposingly
would like to handle as five separate objects disconnected
from the grid. The grid, in this example, represents a
background object connecting the objects of interest in a
nondesirable way. Applying a structural opening  on X
removes the grid and yields the set of all the components
invariant to  , termed stable by [14] (Fig. 3b). Elements of

the grid removed by  are treated as singletons in C .
Applying � xðXÞ will extract each of the five objects seen in
Fig. 3b separately (Fig. 3c for ðx; yÞ ¼ ð128; 200Þ).

2.3 Attribute Openings

Binary attribute openings [8] are a family of connected
filters [2], [6] that incorporate a trivial opening �� on the
output of a connectivity opening �x. The trivial opening
accepts or rejects connected components subject to an
increasing and shift invariant criterion � given by:

�ðCÞ ¼ ðAttrðCÞ � �Þ ð9Þ

with AttrðCÞ some real-value attribute of the connected
component C and � an attribute threshold. The increasing-
ness of � implies that, if a set A satisfies �, then any set B
such that B � A satisfies � as well. We can summarize the
definition of �� to the following �� : C ! C operating on
C 2 C yields C if �ðCÞ is true, and ; otherwise. Further-
more, ��ð;Þ ¼ ;. The binary attribute opening can be
defined as follows:

Definition 6. The binary attribute opening �� of a set X with
increasing criterion � is given by:

��ðXÞ ¼
[
x2X

��ð�xðXÞÞ: ð10Þ

An example is the area opening [19]. Note that, if � is
nonincreasing, we have an attribute thinning [8] or nonincreas-
ing grain filter [6] rather than an attribute opening. An
example is the scale-invariant elongation criterion in which
AttrðCÞ ¼ IðCÞ=A2ðCÞ, with IðCÞ the moment of inertia of C
and AðCÞ the area [10], [20], [21]. For the volume set that we
demonstrate later on, the moment of inertia is given by

IðCÞ ¼ V ðCÞ
4
þ
X
x2C
ðx� xÞ2 ð11Þ

in which V ðCÞ denotes the volume of C, and the elongation
(or noncompactness) [21] is measured by the ratio

AttrðCÞ ¼ IðCÞ
V 5=3ðCÞ : ð12Þ

AttrðCÞ has a minimum for a sphere (0.23) and increases
rapidly with elongation.

3 DRAWBACKS OF CONVENTIONAL

SECOND-GENERATION CONNECTIVITY

This section summarizes some drawbacks of second-
generation connectivity due to the dependency of the
associated connectivity openings on the properties of the
structural operators used along with them. The objective is
to demonstrate that there exist useful structural operators
that are excluded because they do not comply with the
requirements listed in Section 2.2.

The connectivity openings associated with the two cases
of second-generation connectivity reviewed in Section 2.2
can be summarized in a unified formalism given by:

� xðXÞ ¼
�xð ðXÞÞ \X if x 2 X \  ðXÞ ð13aÞ
fxg if x 2 X n  ðXÞ ð13bÞ
; otherwise: ð13cÞ

8><
>:
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Fig. 3. Partitioning Sets: (a) The original image containing a single
connected component, (b) the set of stable components given by  ðXÞ,
and (c) an independent connected component previously connected to
the grid.



It is evident that, if  is a strong clustering (extensive), the
situation in which an element x 2 X n  ðXÞ cannot occur,
therefore (13) simplifies to (4). If  is a contraction (anti-
extensive), then for x 2 X \  ðXÞ, the corresponding term in
(13) simplifies to �xð ðXÞÞdue to the antiextensivity of and,
hence, we obtain (8).

Merging the two cases of clustering and partitioning as
operations in a single expression unifies implementations of
second-generation connectivity like in [15]. The connectivity
opening of (13) also allows a number of other structural
operators to be used, but because they violate the properties
described in Section 2.2, they prevent obtaining a valid
connectivity class.

Typical examples are the alternating-sequential filters or
AS-filters [1], [22], [23] which are excluded since they are
neither extensive nor antiextensive operators. AS-filters
modify the original image by introducing regions that
appear as the result of local clustering or partitioning. They
are defined as either:

 cp ¼  c p ð14Þ

or

 pc ¼  p c; ð15Þ

where c and p are closings and openings, respectively, by a

connected structuring element. Examples of each case are
illustrated in Fig. 4 and Fig. 5. When clustering contracted
sets, first the input image is contracted to disconnect objects
from thin elongated structures like the grid in Fig. 4a which is
no longer present in the second. If the resulting objects are to
be treated as groupings a further clustering operator is

applied which merges the neighboring connected compo-
nents to the desired clusters as Fig. 4c. By contrast, when
partitioning expanded sets, we aim at disconnecting the

expanded objects as in Fig. 5b from unwanted narrow

structures by applying a contracting operator. The grid as in

Fig. 3 represents a background object.
An example of operators violating the increasingness

property are directional Minkowski additions which perform
a maximum operation along the direction of elongation using
adaptive structural elements. They are nonincreasing ex-
tensive operators; hence, for X � Y , we may obtain  ðXÞ 6�
 ðY Þ (see Fig. 6). For an element x with x 2 X \  ðXÞ,
x =2 Y \  ðY Þ, therefore � x ðXÞ 6� � xðY Þ. This implies that � x
is nonincreasing, hence, not an algebraic opening.

A typical case of an increasing, antiextensive, and
nonidempotent operator is that of erosions. Erosions violate
the idempotence of the contraction-based connectivity
opening which requires that

� s ð� xðXÞÞ ¼ � xðXÞ: ð16Þ
For the case that x 2 X \  ðXÞ according to (13) this is:

� xð� xðXÞÞ ¼ � xð�xð ðXÞÞ \XÞ: ð17Þ

This is equivalent to � x ð�xð ðXÞÞÞ due to the antiextensivity
of  and can be written as:

� xð� xðXÞÞ ¼ �xð ð�xð ðXÞÞÞÞ 6¼ �xð ðXÞÞ; ð18Þ

i.e., erosions are not valid operators.
All three cases demonstrate incompatibility with the

existing second-generation connectivity framework by
violating the properties of the connectivity opening � x
through the properties of  . In Section 6.2, we show
practical examples of the first two cases.

4 MASK-BASED SECOND-GENERATION

CONNECTIVITY

4.1 Mask-Based Connectivity

The limitations on the nature of the second-generation

connectivity to clustering or partitioning only can be
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Fig. 4. Clustering Partitioned Sets: (a) original image X, (b) the
contracted set by  p, and (c)  cpðXÞ: expanding the contractions by  c
on  pðXÞ.

Fig. 5. Partitioning Clustered Sets: (a) original image X, (b) the
expanded set by  c, and (c)  pcðXÞ: the contraction by  p on the
expanded set  cðXÞ.

Fig. 6. An example of an extensive and nonincreasing operator
(adaptive Minkowski addition) that violates increasingness of the
connected openings; (a) original image X, (b) image Y � X, (c)  ðXÞ,
and (d)  ðY Þ. Note that the connected components are expanded along
the direction of elongation.



eliminated if the associated family of connectivity openings is
no longer dependent on a structural operator. For this
purpose we present an alternative scheme in which we
associate the connectivity openings to the resulting image of
some arbitrary transformation on X. We call this the
connectivity mask and since we initially make no assumptions
as to how it is created, we denote it as a generic setM � E. The
key notion is that we only apply the modifying operator  to
imageX once to obtain maskM, whereas the operator-based
framework applies  each time a filter is applied which uses
connectivity based on C . Thus, if we were to compute a
granulometry based on attribute filters [8] within this
framework, mask M would be precomputed and all
subsequent openings performed using the same M. Based
on M, the connectivity openings f�Mx j x 2 Eg “mask” the
desired members of C to the child class CM . Apart from the
family of the singleton sets and the empty set which are
essential in the definition of a connectivity class, the members
ofCM can be summarized to all subsetsAof the universal setE
that are included in some grain ofM, denoted as �xðMÞ. This
is formalized accordingly:

Definition 7. Let C � PðEÞ be a connectivity class and M � E
a connectivity mask for an image X. The mask-based second-
generation connectivity class CM is given by:

CM ¼ f;g [ S [ fA � E j 9 x 2 E : A � �xðMÞg: ð19Þ

Inspired by (13), we propose an association of CM with a
family of connectivity openings f�Mx j x 2 Eg as follows:

Proposition 1. Let C be a connectivity class in PðEÞ and
X;M � C be the original image and the connectivity mask,
respectively.

1. Then, the operator

�Mx ðXÞ ¼
�xðMÞ \X if x 2 X \M ð20aÞ
fxg if x 2 X nM ð20bÞ
; otherwise ð20cÞ

8><
>:

extracting subsets of X found within the grains of M
is a connectivity opening and

2. the family f�Mx j x 2 Eg is associated to CM .

Proof.

1. To prove this proposition, we must show that
�Mx ðXÞ meets the requirements of Theorem 1.
First, we show that it is an algebraic opening, i.e.,
it is an antiextensive, increasing, and idempotent
operator.

Antiextensivity is trivial since for all three cases
of (20) �Mx ðXÞ � X. Increasingness requires if X �
Y ) �Mx ðXÞ � �Mx ðY Þ. We can identify two im-
portant cases: 1)x =2 X and 2)x 2 X. In the first case,
�Mx X ¼ ; so whichever case of (20) holds for �Mx ðY Þ,
we have �Mx ðXÞ � �Mx ðY Þ. In the second case,x 2 Y
because X � Y . Again, we identify two cases:
1) x 2M and 2) x 62M corresponding to (20a) and
(20b), respectively. If x 2M, we have

�Mx ðXÞ ¼ �xðMÞ \X ð21Þ

and

�Mx ðY Þ ¼ �xðMÞ \ Y : ð22Þ

Obviously, if X � Y , then �xðMÞ \X � �xðMÞ \
Y and, therefore, we have �Mx ðXÞ � �Mx ðY Þ.
Finally, if x 62M, we have

�Mx ðXÞ ¼ �Mx ðY Þ ¼ fxg; ð23Þ

so that �Mx ðXÞ � �Mx ðY Þ holds in all three cases of
(20). For idempotence, we require that

�Mx ð�Mx ðXÞÞ ¼ �Mx ðXÞ: ð24Þ

Again, we treat the three cases of (20) separately.
The simplest is the case (20c), in which �Mx ðXÞ ¼ ;.
Because of antiextensivity �Mx ð;Þ ¼ ;, so in this case
(24) holds. In the case of (20b), we have
�Mx ðXÞ ¼ fxg. Obviously, x 2 fxg nM, so that in
�Mx ðfxgÞ, the case of (20b) applies again, and (24)
holds. Finally, if x 2 X \M, we have

�Mx ðXÞ ¼ �xðMÞ \X: ð25Þ

In this case x 2 �Mx ðXÞ \M, so (20a) applies:

�Mx ð�Mx ðXÞÞ ¼ �xðMÞ \ �Mx ðXÞ
¼ �xðMÞ \ �xðMÞ \X
¼ �xðMÞ \X ¼ �Mx ðXÞ

ð26Þ

and, therefore, idempotence holds in all three
cases. Note that no restriction is placed on M, i.e.,
�Mx ðXÞ is an algebraic opening for any M � E.

The second requirement of Theorem 1 states
that �Mx ðfxgÞ ¼ fxg, 8x 2 E. In the case where
x 2 X \M, �Mx ðfxgÞ ¼ �xðfxgÞ \M ¼ fxg f o r
whatever M. Similarly, if x ¼ fxg nM, �Mx ðfxgÞ ¼
fxg from (20b). The third requirement states that
8X � E, and 8x 2 E, if x =2 X ) �xðXÞ ¼ ;. From
(20c), we see that, if x =2 X ) x 2 ;, therefore
�Mx ðXÞ ¼ ;.

To prove the fourth requirement of Theorem 1,
we require that for any x, y 2 E, the connected
components returned by the connectivity opening
which are marked by x and y are either equal or
disjoint, i.e., �Mx ðXÞ \ �My ðXÞ ¼ ; or �Mx ðXÞ ¼
�My ðXÞ. We identify four cases:

1. If x; y 2 X \M, then �Mx ðXÞ and �My ðXÞ are
equal or disjoint, because �xðMÞand �yðMÞare
equal or disjoint by the definition of connec-
tivity openings.

2. If x; y 2 X nM, then �Mx ðXÞ ¼ fxg and �My
ðXÞ ¼ fyg, which are equal or disjoint.

3. If either x or y =2 X, then �Mx ðXÞ \ �My ðXÞ ¼ ;.
4. If x 2 X \M and y 2 X nM, then �Mx ðXÞ \

�My ðXÞ ¼ ; because ðX \MÞ \ ðX nMÞ ¼ ;,
i.e., the two connected components are
defined over disjoint partitions of X.

2. So far, we showed that �Mx ðXÞ satisfies Theorem 1,
hence the family f�Mx j x 2 Eg is associated with a
connectivity class. Now, we verify that this is CM
according to Definition 7.

OUZOUNIS AND WILKINSON: MASK-BASED SECOND-GENERATION CONNECTIVITY AND ATTRIBUTE FILTERS 995



A connectivity class is equivalent to the
union over all x 2 E of the invariance domains
of the associated connectivity openings [6], [12].
The invariance domain of �Mx contains besides
the empty set, all connected sets in CM that
contain x, i.e.,

Invð�Mx Þ ¼ f;g [ ffxgg
[ fA

� E j x 2 A;A � �xðMÞg; ð27Þ

for each x 2 E. By ffxgg we denote the set
containing the singleton set fxg, to distinguish
the two. The first term is trivial since the empty
set is invariant to every �Mx , i.e., �Mx ð;Þ ¼ ;. The
second is included because �Mx is a connectivity
opening so that �Mx ðfxgÞ ¼ fxg for all x 2 E. The
last term states that �Mx ðAÞ ¼ A if x 2 A and
A � �xðMÞ, which follows from (20a). This read-
ily shows that Invð�Mx Þ � CM , from (19) and,
therefore,

[
x2E

Invð�Mx Þ � CM: ð28Þ

We will now show that

CM �
[
x2E

Invð�Mx Þ; ð29Þ

by proving that any element of CM is included in
the right-hand side of (29). Obviously, this holds
for ;. We now verify that for any nonempty
element C 2 CM , C 2 Invð�Mx Þ for all x 2 C. If C is
a singleton, this is obvious because �Mx is a
connectivity opening (Property 2, Theorem 1).
Otherwise, C is subset of a grain of M, i.e., for any
x 2 C we have C � �xðMÞ, and C 2 Invð�Mx Þ for
all x 2 C. Thus, every element of CM is contained
in the union of the invariance domains of
operators from the family f�Mx j x 2 Eg. There-
fore, (29) is true and, with (28), we have

[
x2E

Invð�Mx Þ ¼ CM: ð30Þ

tu
The connectivity opening of (20) can be used for both
clustering or partitioning by generating the connectivity
mask with an appropriate operator  from X. From (13) and
(20), it is obvious that connectivity openings � xðXÞ ¼ �Mx ðXÞ,
if M ¼  ðXÞ for any x 2 E and any X 2 PðEÞ, and that the
resulting attribute filters will yield the same result. However,
the connectivity classes are not the same. Consequently, the
connectivity class CM cannot be expressed explicitly as a
superset or subset of the original C.

4.2 Gray-Scale Mask-Based Attribute Filters

Attribute openings as mentioned earlier apply a trivial
opening �� on the output of a binary connectivity opening
�x. To associate these operators with the connected sets of a
second-generation connectivity class, we replace �x with the
corresponding connectivity opening [15], which in the case
of mask-based connectivity is �Mx . The increasingness of ��

and �Mx makes it possible to extend ��
M directly to gray scale

by the principle of threshold superposition [24]. Superimposing
threshold sets requires their hierarchical nesting along the
gray scale. Given that a gray-scale image f can be decom-
posed to a set of binary images ThðfÞ resulting from
thresholding f at all levels h 2 ½0; N � 1�, i.e.,

ThðfÞ ¼ fx 2 E j fðxÞ � hg; ð31Þ

the nesting of ThðfÞ within TkðfÞ is trivial for any h � k. In
operator-based second-generation connectivity with  
being any of the increasing structural operators described
in Section 2.2, the nesting of  ðThðfÞÞ �  ðTkðfÞÞ is obvious
since the connectivity class C applies to all threshold sets
[25]. In mask-based connectivity, however, this is not the
case; a different mask applies to every threshold set and,
therefore, a different connectivity class.

Let m ¼ �ðfÞ be a gray-scale connectivity mask where �
is an arbitrary operator, with Mh ¼ ThðmÞ denoting each
threshold set of m. Obviously, Mh �Mk for any h � k (even
if �, is nonincreasing). At each level h, the family of
connectivity openings given in Proposition 1 yields a set of
connected components according to CMh . Because any
connected component Pi

h of ThðfÞ must remain connected
at lower gray levels (see [25] for details), we require that
CMh � CMk for any h � k. Since Mh �Mk, all we need to
prove is the following proposition:

Proposition 2. For any two mask-based connectivity classes CM
and CL associated to connectivity masks M � L � E, the
following property holds:

CM � CL: ð32Þ

Proof. Comparing two mask-based connectivity classes as
given in (19) is by looking at the nesting of the grains. For
two connectivity masks such that M � L, the nesting
implies that:

8 CM
i 9 j : CM

i � CL
j ð33Þ

in which CM
i and CL

j are connected components ofM and
L, respectively. Therefore, for any set A � E:

A � CM
i ) A � CL

j : ð34Þ

Therefore, if A 2 CM , this implies A 2 CL, i.e., CM � CL.tu
Superimposing the outputs of the filtered threshold sets

can be summarized to:

Definition 8. For a mapping f : E ! IR, the gray-scale mask-
based attribute opening ��

mðfÞ is given by:

ð��
mðfÞÞðxÞ ¼ supfh j x 2 ��ð�ThðmÞx ðThðfÞÞÞg: ð35Þ

Thus, the mask-based attribute opening of a gray-scale
image assigns each point of the original image the highest
threshold at which it still belongs to a connected foreground
component. Similarly, using a nonincreasing criterion �, we
can define the mask-based attribute thinnings.

5 COMPUTING SECOND-GENERATION ATTRIBUTE

FILTERS

5.1 The Max-Tree Algorithm

The Max-Tree is a hierarchical image representation algo-
rithm introduced by Salembier et al. [16] in the context of
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antiextensive attribute filtering. The tree structure encodes
the set-theoretical notion of connectivity and its gray-scale
extension within the nesting properties of the level compo-
nents which are represented by nodes. It resembles to a
certain extent the Component Tree by Jones [26] and its
derivative Gray-scale Component Tree by Braga-Neto and
Goutsias [25] where the nodes of the first correspond to level-
sets while those of the second to gray-scale images.
Connectivity at multiple scales is modeled by the Connectivity
Tree of Tzafestas and Maragos [27], but can only handle
binary images. Our work on second-generation connectivity
representation and filtering is based on the Max-Tree
primarily due to the algorithm’s ability to handle nonincreas-
ing attributes on gray-scale images at rather low computa-
tional time.

The Max-Tree nodes correspond to connected components
or sets of flat zones and there exists a unique mapping to peak
components. A peak component Ph at level h is a connected
component of the thresholded image ThðfÞ and a regional
maximum Mh at level h is a level component no members of
which have neighbors of intensity larger that h. The regional
maxima in this case correspond to the leaves of the tree.
Each tree node Ck

h (k is the node index) corresponding to a
certain peak component contains only those pixels in Pk

h

which have gray-level h. In addition each node except for the
root, points toward its parentCk0

h0 withh0 < h. The root node is
defined at the minimum level hmin and represents the set of
pixels belonging to the background.

The attributes of the connected components are com-
puted during the construction phase of the tree and stored
within the corresponding node structure. The attributes can
be either increasing or nonincreasing such as area/volume
or shape descriptors such as moment invariants, respec-
tively. In both cases, the peak component k at level h
inherits the attribute data of all the peak components Pk

h0

connected to Ck
h at levels h0 > h. Thus, computing an

attribute filter reduces to removing all nodes with attribute
value smaller than a given threshold � from the tree. Note
that the node filtering is a separate stage from the
computation of attributes and connected component analy-
sis [16] and consumes only a short fraction of the total
computation time.

5.2 The Dual-Input Max-Tree Algorithm

The Dual-Input Max-Tree algorithm presented in this section
operates like the conventional Max-Tree [28] only it requires
two input images; the original image X and the connectivity
maskM according to Proposition 1. The tree is constructed in
a recursive manner from data retrieved from a set of
hierarchical first in-first out (FIFO) queues. The queues are
allocated at initialization in the form of a static array called
HQueue segmented to a number of entries equal to the
number of gray levels in the connectivity mask. Data are
accessed and stored in each queue entry by the flooding
function (Fig. 7) which reassigns priority pixels to the Max-
Tree structure and stores new pixels retrieved from the
neighborhood of the one under study, to the appropriate
queue entries.

The Max-Tree structure consists of nodes corresponding
to pixels of a given peak component Pk

h at level h. Each node
is characterized by its level h and index k and contains
information about its parent node id, the node status, and
the attribute value (note that the tree structure is shaped by
the histogram of the original image).

The two structures are managed with the aid of three
arrays; the STATUS½p�, the NumberOfNodes½h�, and the
NodeAtLevel½h�.STATUS is an array of image size that keeps
track of the pixel status. A pixel p can either beNotAnalyzed,
InTheQueue, or already assigned to node k at level h. In this
case, STATUS½p� ¼ k. The NumberOfNodes is an array that
stores the number of nodes created until that moment at
level h. Last, NodeAtLevel is a Boolean array that flags the
presence of a node still being flooded at level h.

5.2.1 Initialization

During initialization, the status of all image pixels is set to
NotAnalyzed. Similarly, the NumberOfNodes is set to zero,
while NodeAtLevel is set to FALSE for each gray level. The
histograms of both images are then computed to shape the
HQueue and Max-Tree structures accordingly. The first
pixel with the lowest intensity hmin in M, retrieved during
the histogram computation, is placed in the corresponding
queue while the three arrays are updated. This pixel defines
the root node and is passed on to the main routine (flood) as
the starting element.

5.2.2 The Flooding Function

The flooding routine is a recursive function involved in the
construction phase of the Max-Tree. It is initiated by accessing
the first root pixel from the queue at level hmin and proceeds
with flooding nodes along the different root paths that
emerge during this process. The pseudocode in Fig. 7
describes in detail the steps involved. ORI and P ORI are
two image-size arrays containing the pixel intensities in the
original image and connectivity mask, respectively.

Calling this function for a given level h, it first initializes
an attribute variable attr which is updated for every pixel
at level h in both ORI and P ORI. An inspection on pixel
availability for the given queue entry at level h proceeds by
retrieving the first available pixel and continues with
flooding, otherwise it skips flooding and finalizes the
current node. If a pixel is available, its status is updated
to the current node index for the level at ORI½p� and its
coordinates are computed. The process until this instance is
identical to the conventional Max-Tree algorithm. The Dual
Input Max-Tree upon retrieving a pixel inspects for an
intensity mismatch between the ORI and P ORI entries. If
ORI½p� < P ORI½p�, where p is the pixel under study, the
connectivity mask involves local clustering, while if
ORI½p� > P ORI½p�, it involves local partitioning.

The first case implies that p is a background pixel in the
original image therefore it is regarded as connected to the
current active node at level ORI½p� through the connected
component at level P ORI½p�, i.e., it defines a peak
component at level ORI½p� to which p in the modified
image is connected. NodeAtLevel½ORI½p�� is set and a
subroutine inspects for a node allocated for that level. If
not found, a node is created and its attribute is initialized
otherwise we simply update the existing node attribute.

In the second case where partitioning is involved, we have
P ORI½p� < ORI½p�. Pixel p is therefore part of a discarded
component according to Definition 1 and, consequently, is
treated as a singleton. Singletons define a node of unit
attribute at levelORI½p� hence upon detection the node must
be finalized before retrieving the next priority pixel from the
corresponding queue at level P ORI½p�: This involves setting
the node status to the node index at level ORI½p� and

OUZOUNIS AND WILKINSON: MASK-BASED SECOND-GENERATION CONNECTIVITY AND ATTRIBUTE FILTERS 997



detecting the parent node id. The attribute is initialized and
upon completion NodeAtLevel½ORI½p�� is set to FALSE
indicating that this node is finalized. Note that since the
singleton nodes are not flooded, they do not return their
attributes to the their parent node by default, hence attr at
the current level must be updated separately.

Both cases are demonstrated in Fig. 8 using a 1D example.
The first two diagrams illustrate the nesting of peak

components in the original image X and the connectivity
maskM. Note thatM was chosen such thatP 0

X2 andP 1
X2 from

X are clustered to a single peak component while P 1
X1

vanishes. This results in replacing C0
2 and C1

2 with a single
node in which the attributes of the two components are
merged and splitting the node C1

1 to a number of singleton
nodes equal to the number of pixels in P 1

X1 (illustrated in the
last diagram).
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If there is no mismatch between ORI and P ORI we
simply update attr and proceed with inspecting the
neighborhood of p. The number of neighbors depending on
the foreground connectivity is stored temporarily in a
dynamically allocated array from which we retrieve them
sequentially and inspect their status. If the status of a
neighboring pixel q is set to NotAnalyzed, its placed in the
appropriate queue entry at level P ORI½q� and its STATUS
and NodeAtLevel attributes are updated accordingly. This
process terminates there unless the pixel q is at a higher level
from p. In that case, flooding halts at level P ORI½p� and a
recursive call to the same function initiates flooding at level
P ORI½q�. This is repeated until reaching the regional
maximum along the given root path. Once a node is flooded,
there are no more pixels in the queue for the given level
therefore the algorithm proceeds with parent detection and
node finalization. Note that as opposed to the conventional
Max-Tree, the node attribute is merged with attr since the
last one is updated by pixels at the same level or by singletons
at higher levels while the node attribute is possibly updated
by local clusters already flooded at higher levels in P ORI.
A parameter thisattr is also updated with the overall
node attribute and returns to the calling function (usually
the flood of the parent). The Max-Tree structure is completed
when all nodes are finalized.

5.2.3 Masks by Operators with Nonflat Structuring

Elements

Connectivity masks generated by operators with nonflat
structuring elements often introduce new gray levels or
remove existing ones. The Dual-Input Max-Tree algorithm
structure is based on the histogram of the original image and
nodes generated on gray levels that are not present in ORI
overlap with others creating a memory conflict. To counter
this, on the initialization of the Max-Tree structure we allocate
a total of twice the image size entries for Max-Tree nodes and
segment the structure based on the sum of the maximum
number of pixels in ORI and P ORI for each level.

In the case where gray levels are removed, a further
routine is required to handle a possible intensity mismatch
between hmin in ORI and in P ORI. If hmin in P ORI is
smaller than that in ORI, no action is required since all
nodes will be finalized during the flooding procedure. If,
however, the opposite is true, i.e., hmin in P ORI is higher
than in ORI, then the flood function will stop when it
reaches hmin in P ORI on all nodes at gray levels below it
will remain nonfinalized. Furthermore, the structure will
not have a root node. To counter this when reaching the
only node at hmin in P ORI, we reduce by one the updated
node counter since no other nodes can be found at this
intensity. A postprocess flag which is set if this mismatch

occurs during the computation of the image histograms,
triggers an additional routine that follows the tree flooding.
Starting from hmin in P ORI to hmin in ORI, the only one
node that can exist per level in this margin is detected, its
attribute measure is updated, the parent node is set and it is
finalized in the same way as in the flood function.

5.2.4 Attribute Management

Attributes are managed by the use of four different functions;
InitializeAttributeðÞ, NewAuxDataðÞ, AddAuxDataðÞ, and
MergeAuxDataðÞ. Our implementation demonstrates two
types of attribute filtering, area/volume openings and
elongation filtering based on moment invariants. To handle
both, we use a structure called InertiaDatamade of the area/
volume count and four sums namely SumX, SumY, SumZ, and
SumSquares. For 3D data sets, the shape filter is described in
Section 2.3 and in [21].
InitializeAttributeðÞ simply allocates a structure of size

InertiaData and initializes all members to zero.
NewAuxDataðÞ does similar but initializes area/volume
to 1 and sets the four sums to the given coordinates.
AddAuxDataðÞ updates the area count by 1 and adds the x,
y, z coordinates to the corresponding sums. SumSquares
is updated by the sum of the squared x, y, z coordinates.
Last, MergeAuxDataðÞ merges two structures of size
InertiaData, the first corresponding to the parent data
and the second to the child data and sums the individual
members accordingly. With the aid of these four functions,
the algorithm allows a number of other attributes to be
computed this way.

5.3 Filtering and Image Restitution

The construction phase of the Dual-Input Max-Tree algo-
rithm returns the same type of tree structure with the
conventional Max-Tree. Routines for attribute filtering
therefore do not differ between the implementations.

Filtering the Max-Tree constitutes a separate stage and
involves visiting all nodes of the tree maximally twice. The
node attributes are compared against a threshold � and if the
criterion as in (9) is not met the parent pointers of children
ofCk

h are updated to point at the oldest “surviving” ancestor of
Ck
h. The comparison is repeated until the criterion is satisfied.

This is described as the Direct Rule [16] and has no further
effect on the descendants of the filtered node. In contrast to
this, the Subtractive Rule from [10], [20], [21], classified as a
nonpruning strategy lowers in gray value all the descendants
by the same amount as Ck

h itself. Other filtering rules are
described by Salembier et al. [16], [29].

The node attributes are computed upon visiting each node
from the attribute data stored in the node structure during the
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Fig. 8. Dual Input Max-Tree: The attributes of C0
2 and C1

2 are merged to C0
2 since all pixels at level h ¼ 2 are clustered to a single peak component.

Furthermore C1
1 breaks up to a number of singleton nodes equal to the number of pixels in P 1

X1.



construction phase of the tree. This is realized by a routine
implementing the I=V 5=3 term explained in Section 2.3.

The output image Out is generated by visiting all
pixels p, retrieving their node ids from ORI½p� and
STATUS½p� and assigning the output gray level of that
node to Out½p�.

6 EXPERIMENTS AND DISCUSSION

The Dual-Input Max-Tree algorithm has been employed for
area openings in [15] and in this paper an extension is
presented to handle more complicated attributes such as the
elongation measure discussed in Section 2.3 both in 2D and
3D. Furthermore, the new update supports connectivity
masks generated by nonflat structural operators. The Dual-
Input Max-Tree algorithm is derived from the conventional
Max-Tree, therefore it shares a number of characteristics
concerning its performance which are discussed in depth in
[16], [28]. If the same image is used twice in the Dual-Input
Max-Tree algorithm, i.e., if M ¼ X, it simply returns the
Max-Tree of the original image.

In this section, we first demonstrate the new features of the
algorithm on a 3D biomedical data set and compare the result
with that obtained using the same filter based on ordinary
connectivity. The second part demonstrates the filtering
improvements using various operators that were previously
excluded due to constraints imposed by the earlier formula-
tion of the second-generation connectivity framework. The
performance of the algorithm is evaluated by experiments on
the 3D data set by measuring the CPU times for multiple runs
and comparing it against the conventional Max-Tree.
Dependencies of the algorithm are also discussed. All
experiments were carried out on a 2.8 GHz Pentium 4 CPU
with 1 GB DDR memory. Our implementation was written in
ANSI-C and the code is available upon request.

6.1 Three-Dimensional Biomedical Data Sets

This first experiment shows the applicability of the Dual-
Input Max-Tree algorithm to the case of operator-based
second-generation connectivity, in the case of a nonincreas-
ing attribute. Max-Trees have been employed for volume
filtering and 3D filament enhancement [21] of biomedical
data sets. In this section, we demonstrate a similar application
with second-generation connected volumes. The algorithm
uses the nonincreasing 3D shape filter based on the elonga-
tion measure of the filamentous structures (discussed in
Section 2.3). All the illustrations are isosurface projections.

The data set shown in Fig. 9a is a 256� 342� 243, 8-bit
confocal microscopy volume of a pyramidal neuron. The
noise density is relatively low, but the filamentous structures
(the dendrites in this case) are fragmented at low levels.
Filtering using ordinary connectivity consequently removes
noise together with a considerable fraction of the dendrites. If
the volume is clustered, however, nearby fragments are
connected into a single entity with overall elongation greater
than the threshold � and, hence, are retained. The top right
image shows the result of the shape filter based on clustering
connectivity and using a cubic SE of size 5� 5� 5. The two
images of the bottom row show two different views of the
difference volume between the filtering methods. Timings for
this data sets were were 3.498 s for tree construction and
0.089 s for tree filtering using the conventional Max-Tree and
3.849 s and 0.061 s using the Dual-Input Max-Tree algorithm,
respectively.

6.2 Images of Proteins

In this section, we demonstrate the use of AS filters and
directional Minkowski additions with adaptive structuring
elements for generating connectivity masks. All cases are
compared with attribute thinnings based on clustering
connectivity since the objective is to extract filamentous
structures with disconnected members from the noisy
background.

The first case is illustrated in Fig. 10. Generating a
connectivity mask with either dilations or closings proves
insufficient since both operators merge neighboring particles
to the targeted object. The third image from the left - top row
shows the result of elongation filtering using a mask (middle
image) by a closing with a square SE of size 5� 5 and � ¼ 3.
We arrive at these settings since with any larger SE we cluster
too much noise together with the protein chain and with any
larger � further parts of the chain are removed. If, however,
after a closing, we perform an opening with an SE of equal size
all the thin bridges introduced by the closing are removed.
Applying a further closing by an SE of 13� 13 clusters all
desired members of the chain to large elongated fragments
which are retained after filtering. The specific operator is both
increasing and idempotent, but neither extensive nor anti-
extensive. The filtering improvement is evident in the second
image of the bottom row and to highlight the difference
between the two types of connectivity masks we compute the
difference image and enhance it with contrast stretching.
Concluding it can be seen that to avoid merging background
noise, ordinary clustering-based masks are limited and,
therefore, cannot capture the entire chain thus elongation
filters with high attribute threshold flatten certain chain
regions by removing higher-intensity components. Had we
used a sequence of attribute filters, with alternating cluster-
ing-based and contraction-based connectivities, we would
not obtain the same result. This is because the partitioning
operator may remove small objects which are irretrievably
lost to any consecutive clustering operation. We perform the
clustering/partitioning sequence, and only after pixels have
been grouped properly, decide what the attributes of these
groups are. Any interim filtering could distort or even
completely destroy a group we wish to retain.

The second case illustrated in Fig. 11 is handled with
directional Minkowski additions. To generate the connectiv-
ity mask, we first employ the Gabor wavelet-based method of
[30] to compute the predominant orientation along which to
perform the addition. The kernel used is of a fixed size and we
use 18 angle steps of 10 degrees each. The convolution of the
resulting wavelets with the input image is only used to
compute the direction with the maximum filter response and
no intensity modification takes place. Weak responses are
ignored by thresholding the output while in cases where
there is more than one response we handle each orientation
separately. For each response above the threshold, we
perform a Minkowski addition using a line SE along the
given orientation. Our implementation is based on the
original algorithm by Soille et al. [31]. To counter thin line
fragments of high elongation emerging at the background, we
compute an additional structural opening which for a square
SE of size 3� 3 yields a connectivity mask as seen in the first
image of the bottom row in Fig. 11. The filtered output with an
elongation threshold � ¼ 6 is given in the next image and the
difference between this method and the equivalent result
using the optimal clustering-based connectivity mask is
shown in the last image after a log enhancement. The filtered
outputs of both methods retain certain background elements
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which can be later removed with an area opening. The
advantage of the idempotent, nonincreasing, and neither
extensive nor antiextensive operator presented as opposed to
an ordinary closing is that it merges elements of the chain only
and we can use large enough kernels to create a single object.
By contrast, using a structural closing we face limitations
similar to those mentioned in the previous example and
consequently the protein chain remains fragmented. This
results in severe flattening by the elongation filter which is
illustrated in the difference image.

The images used in this section are courtesy of the Institute
for Molecular Virology—University of Wisconsin, Madison,
and can be obtained from the online Electron Micrograph
Library at http://www.biochem.wisc.edu/inman/empics/
index.html.

6.3 Computational Complexity

The computational complexity of our implementation has a
strong dependency on the image content and on the size of
the structuring element used to create the connectivity
mask. The content obviously affects the size of the tree, the
number of recursions and, therefore, the time complexity.

The size of the SE affects the timing depending on the type
of connectivity mask. For cases where M is generated by an
extensive operator from X, the greater the size of the SE, the
lower the number of the connected components. Therefore,
building the Max-Tree should consume less time as the SE
size increases. This however is not the always the case with
dynamically allocated attributes since the greater the number
of mismatches between voxels in the two volumes the larger
the number of searches for nodes at the parent level in ORI.
With attributes represented by a scalar variable instead this is
not true since no parent nodes need to be detected and
allocated before finalizing the one being flooded.

IfM is generated by an antiextensive operator fromX, then
the time overhead rises as the size of the SE increases since
there are more singletons generated and, hence, more nodes
that need to processed. Dynamically allocated attributes
contribute an additional delay as discussed above.

For cases where M results from a neither extensive nor
antiextensive operator from X or is independent of X, the
performance of the algorithm depends strongly onthe content
of M. Means of evaluating it is by studying the frequency of
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occurrence of regions of M that appear as the result of an
either extensive or antiextensive operator with respect to X.

The filtering stage contributes a fixed time overhead
which varies with the image/volume size. In all cases of M,
filtering needs to access each pixel at most twice, therefore,
the search depth along different root-paths is compensated
by reducing the number of remaining pixel visits.

7 CONCLUSIONS AND FURTHER WORK

In this paper, we presented an extension of the theory of
second-generation connectivity. The connectivity opening
introduced for this purpose is associated with connectivity
masks rather than structural operators eliminating this way
dependencies on their properties. This allows for images to be
connected in any arbitrary fashion according to the con-
nectivity mask and poses no restriction as to how the mask

should be created. The main advantage is that any operator
can be used to derive a second-generation connectivity class
as opposed to the previous framework that was restricted to
certain dilations, closings and openings only. Indeed, we
could even use images of the same scene taken in different
frequency bands (e.g., optical/IR combinations), or using
different imaging modalities (optical/range imaging or
registered CT/MRI pairs) to act as connectivity masks. When
using a single filtering step, using a mask derived from the
image by an arbitrary operator, the distinction between mask-
based and operator-based connectivity may not seem very
great. When trying to compute, e.g., granulometries using
multiple filtering steps, the distinction is far more obvious.
The difference is whether one considers mask generation and
attribute filtering as a single operator (as in the operator-
based case), or as two distinct steps (as in the mask-based
case). If we use operators which do not meet the requirements
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Fig. 10. Top row: The original image, the mask by a closing with an SE of size 5� 5, and the filtered output with � ¼ 3. Bottom row: The mask by an

ASF followed by an additional closing, the filtered output with � ¼ 4, and the difference image after contrast enhancement.



imposed by the operator-based framework, but insist on
interpreting mask-generation as part of the resulting filter,
the question arises what the properties of such filters are.
While our theory allows the use of any operator for mask
generation, it is not concerned with the properties of the
resulting combined mask-generation/filtering operator. By
studying these combinations, we may find operators, beyond
the known examples, which actually yield an operator-based
second-generation connectivity, which is neither clustering
nor partitioning. This is the topic of future work.

This theoretical work is complemented by and indeed
validates, an efficient algorithm for attribute filtering using
mask-based connectivity, referred to as the Dual-Input Max-
Tree algorithm, which is demonstrated on both 2D and
3D data sets. The algorithm is an extension of the conventional

Max-Tree [16]. The current version supports connectivity
masks generated with both flat and nonflat structuring
elements and provides the functionality for a wider range of
attributes to be computed.

Potential applications of this work include filtering and
segmentation of data sets characterized by thin elongated
structures (like the neuron demonstrated in the previous
section), connected component analysis and processing of
second-generation connected sets and flexible attribute
management depending on the image context. The relatively
low-computational requirement in 2D examples makes it
possible to use the presented algorithm also in real-time
applications such as motion detection/analysis, tracking, and
decision making tasks.
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Fig. 11. Top row: The original image, the mask by a closing with an SE of size 5� 5, and the filtered output with � ¼ 6. Bottom row: The mask
described in the text, the filtered output with � ¼ 6, and the difference image after contrast enhancement.



Future work on this area involves deriving connected
operators that can counter the oversegmentation effect in
the case of partitioning [32], [33], [34], with extensions to
gray scale as well as algorithmic methods for their efficient
computation. The issue of noise clustering is also being
investigated and currently we are working on attribute-
based clustering techniques that will allow the algorithm to
cluster only objects of similar structural characteristics.
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