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Abstract

Restricted permutations are those constrained by having to avoid subsequences
ordered in various prescribed ways. A closed set is a set of permutations all satisfying
a given basis set of restrictions. A wreath product construction is introduced and
it is shown that this construction gives rise to a number of useful techniques for
deciding the finite basis question and solving the enumeration problem. Several
applications of these techniques are given.
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1 Introduction

This article is a sequel to [1]. In that paper we studied the partial order
“involvement” on permutations and argued that it should be studied through
ideals called closed sets. Closed sets are a natural setting for many combinato-
rial and computational problems [2,3,7,11,12,16], particularly those concerned
with avoided subsequences [6,13-15,17,18]. Two issues arise for closed sets:
whether they have a finite basis, and the enumeration of the permutations
of each length. Answers to these questions are generally arrived at by uncov-
ering the combinatorial structure of the closed set. In this paper, as in [1],
we are primarily concerned with developing tools to analyse this structure.
These tools are illustrated by a number of applications to the finite basis and
enumeration questions.
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We begin by recalling the basic definitions. If 7 and ¢ are permutations and
7 is order isomorphic to a subsequence of ¢ then we say that 7 is involved in
o and write m = 0. For example 231 < 13542 because 231 is order isomorphic
to the subsequence 352 in 13542. A set X of permutations is said to be closed
if, whenever 0 € X and 7 < o, then 7 € X'. Closed sets can be defined by
“forbidden sets”. More precisely, the basis X* of a closed set X is the set of
permutations, minimal with respect to <, that do not belong to it. Clearly,

then X is exactly the set of permutations that do not involve any permutation
of X*.

Much research in this subject centres around enumeration problems. Let X,
denote the subset of X whose permutations have length n. One of the most
significant open questions on closed sets was asked by Richard Stanley and
Herbert Wilf: if X'* is non-empty is there a constant k£ such that X, has at
most £" permutations?

A more precise conjecture was made by Ira Gessel for closed sets with a finite
basis: does || satisfy a recurrence equation with polynomial coefficients?
Of course, one can make this conjecture for an arbitrary closed set but it
would have the following seemingly unlikely consequence. It is known that
there are uncountably many closed sets. On the other hand there are but
countably many recurrence equations with polynomial coefficients. Therefore
there would be an uncountable number of closed sets with the same numbers
of permutations of each length.

A more general conjecture was made in [10] but, in [1], this was shown to be
equivalent to Gessel’s.

The decision problem for a closed set X is to decide of any permutation o
whether o € X. If X has a finite basis the problem is in the complexity class
P although the set of deque sortable permutations provides a counterexample
to the converse statement (see [9]). For this and other reasons it is an important
problem to determine whether X is finitely based and to find its basis.

In section 2 we define basic terminology and in section 3 we develop a general
construction on closed sets called the wreath product, and explore its most
useful special cases. In section 4 we discuss how the construction respects the
finite basis property while section 5 describes some enumeration formulae in
terms of generating functions. In section 6 we give a number of applications
of the general theory.



2 Terminology

In this section we introduce notation and definitions beginning with the fol-
lowing convention. When discussing a set X of permutations we shall freely
use terminology such as ¢ € X when o is any sequence of distinct integers.
What we actually mean is that o is order isomorphic to a permutation of X.
Foundationally it would perhaps be more satisfactory to consider equivalence
classes (under order isomorphism) of finite sequences of distinct integers for
then every equivalence class would have a unique representative which was a
permutation. However, the present terminology is now so well established that
we have preferred not to do this.

We write permutations in “image” form as lists of integers sometimes sepa-
rated by commas.

Any set of consecutive integers is called an interval.

If a and 8 are two sequences or sets and if a < b for alla € o and b € f3
then we write o < 8. The notation a > (3 is defined similarly. Next, we define
a permutation to be forward indecomposable or simply indecomposable if it
cannot be expressed as a concatenation «f with both «, S non-empty and
with @ < (. This term was first defined by Avis and Newborn [4] who also
defined a permutation to be backward indecomposable if it has no non-trivial
expression as «f with a > (. Furthermore we say that a permutation is
strongly indecomposable if it is both forward and backward indecomposable.

The notion of indecomposability will play a key role in the paper. There is
another notion, called irreducibility, that, in some sense, plays a dual role. A
permutation which has no segment of the form 7, ¢+1 will be called irreducible.
Similarly, if it has neither a segment 7,7 + 1 nor a segment ¢ + 1,7 it will be
called strongly irreducible.

Associated with indecomposability and irreducibility are two concepts that
apply to sets of permutations. A set X with the property that, whenever
o, 5 € X, with o < 3, then also the permutation a8 € X is called complete.
It is called strongly complete if a8 € X in both the cases a < f and a > f.
Notice that this is our first use of the convention that @ € X may mean that
« is order isomorphic to a permutation in X.

Also a set X' of permutations is said to be ezpanded if whenever a permutation
o = auff € X so is the permutation obtained by replacing 7 by 4,7 + 1 and
increasing all symbols greater than ¢ in o by 1. This permutation is called
the (positive) expansion of o at i. The set is called strongly expanded if it is
invariant under these expansion operations and also those where i is replaced
by i + 1,7 (negative expansions).



The intersection of complete (respectively, strongly complete, expanded, strongly
expanded) sets is again complete (respectively, strongly complete, expanded,
strongly expanded). Therefore we may define the completion of a set X as
the smallest complete set containing X'. Similarly we may define the strong
completion, expansion, and strong expansion.

Clearly, the completion of X consists of all permutations of the form &,& ... &
where each & € X and & < & < ... < &. The most elementary example of
this situation is the case that X is the trivial set 7 consisting of the single
permutation 1. Obviously the completion of 7 is just the set Z of all identity
permutations.

To describe the strong completion we use binary trees. Each node of a binary
tree will be labelled by a permutation and will be either a ‘forward’ node or
a ‘backward’ node. The label on any internal forward (respectively backward)
node N will be a permutation a8 where a < [ (respectively o > () and
where «, § are the labels on the left and right children of N. We can view
such a tree as a set of rules for constructing the root permutation from the
leaf permutations. It is easy to see that the permutations o in the strong
completion of X are exactly those for which there exists a tree with o at the
root and with permutations in X at the leaves.

In the case of the trivial set 7 these trees will have all their leaves labelled
with the permutation 1 but we could rename each of the leaf symbols by the
corresponding symbol in the root permutation reading from left to right. In
this case therefore the trees are essentially those which were introduced in [8]
to define the set S of separable permutations. In other words § is the strong
completion of 7.

The expansion and strong expansion of a set X are more easily described. The
expansion of X is obtained by repeated positive expansions at each symbol
in each permutation of X while for the strong expansion we must allow both
positive and negative expansions. It is clear that the expansion of the trivial
set T is again the set Z and we also have

Lemma 1 § is both the strong completion and the strong erpansion of the
trivial set T .

PROOF. Only the second characterisation of S needs proof. We temporarily
let S’ be the strong expansion of 7. Thus &' is that set of permutations which
can be obtained from 1 by a series of positive and negative expansions.

If a, 8 € 8’ with a <  we can obtain af starting from the expansion of 1 to
1,2, expanding 1 to « and expanding 2 to §. Thus af € &' if a < 3. But also
af € 8" if a > [ by starting with the expansion of 1 to 2, 1. This proves that



S’ is complete and hence that S C S'.

On the other hand we can prove that &’ C § by showing that S is expanded
and we do this by induction. Let o be a typical element of § so that 0 = af
with o, € § and either a < § or a > . Any expansion of ¢ must occur
either within « or within 5. Assume the expansion occurs within § producing
the permutation 3’ say. Then 3’ € S by induction and so the expansion af’
of o is therefore also in S.

Finally, in this section, we recall the profile of a permutation as defined in [1].
Suppose that a permutation o is expressed as ¢ = ajas . ..a, where each o
is a segment of increasing consecutive integers and k is minimal. Then we can
choose symbols a; € a; and consider the (necessarily irreducible) permutation
« that is order isomorphic to a; ...ag. This depends on o alone (not on the
choice of the a;) and is called the profile (o) of o. For example, the profile of
34512678 is 213.

3 The wreath product

This section introduces the main construction A B of the paper. By examin-
ing extremal cases of the construction we shall see why the ideas of indecom-
posability and irreducibility are necessary and why the sets Z,S are natural
candidates to play the roles of A or B.

The wreath product of two (not necessarily closed) sets A, B of permutations
is the set A B of all permutations 0 = ajqs ... q; where

(1) Each o; is a rearrangement of an interval

(2) Each ¢ is order isomorphic to a permutation of B (which, as previously
noted, we sometimes abbreviate as «; € B)

(3) If a; is a symbol of a; then a;ay . . . ax is order isomorphic to a permutation
of A (again we sometimes abbreviate this as a;as . .. a, € A). Notice that,
because of the first condition, the order isomorphism class of aias ... a;
is independent of the choice of each a; € o;.

The following two results are easy to verify.
Lemma 2 If A and B are closed then Al B is closed.
Lemma 3 The wreath product is associative: (A1 B)1C = A (B1C).

Since the representation of a permutation of A B may not be unique it is
useful, in the case that both A and B are closed, to consider the two extremal



values of k£ in the above definition.

I k£ maximal. Then, for all 7, one of the following holds:

(a) «; is strongly indecomposable.

(b) a; = By with 8 < 7 but the positive expansion of a; ...ax at a; is
not in A.

(¢) a; = By with 8 > v but the negative expansion of a; ...a; at a; is
not in A.

The conditions simplify in some cases:

(i) It A = T the conditions are just the requirement that each «; is
indecomposable. Furthermore, every permutation of Z3 has a unique
representation as ay...qx with a3 < ay < ... < o and each «;
indecomposable.

(ii) If A =S the conditions are the requirement that each «; is strongly
indecomposable. Also, every permutation of S B has a unique rep-
resentation as «...ax with ajas...a; € S and each «; strongly
indecomposable.

IT k£ minimal. Then, for all ¢, one of the following holds:

(a) a; # aiy1 £1

(b) a; = a;41 + 1 but o441 € B

(C) a; = Qi1 — 1 but (6710 78K] g B

Similarly, the conditions simplify in the cases B =7 and B = S.

(i) If B = T the conditions become that each ajas...ax should be irre-
ducible. Moreover, every permutation of A?Z has a unique represen-
tation in the form oy ... a; where ajaq .. .a; is irreducible and each
o; is an increasing sequence of consecutive integers.

(ii) If B = S the conditions become that each ajas...a, should be
strongly irreducible. In this case, every permutation of 4! S has
a unique representation in the form a;...q, where ajas...a; is
strongly irreducible and each o; € S.

It also follows from these considerations that

Lemma 4 For any closed set X we have

(1) XT is the expansion of X
(2) XS is the strong expansion of X
(8) ZUX is the completion of X
(4) SVX is the strong completion of X



4 Bases

We have seen that X1 Z and 7! X are particularly interesting special cases of
the wreath product construction. We now investigate the question of whether
they are finitely based.

Lemma 5 (1) The closed set X is expanded (respectively, strongly expanded)
if and only if every basis element is irreducible (respectively, strongly ir-
reducible).

(2) The closed set X is complete (respectively, strongly complete) if and only
if every basis element is indecomposable (respectively, strongly complete).

PROOF.

(1) If X is expanded then a basis element cannot have a segment 7,7 + 1
since then it would be a (positive) expansion of a permutation in X’ and
so would belong to X. Conversely, if none of the basis elements have any
segments of the form 4,7 + 1 expanding a permutation cannot introduce
an involved basis permutation; thus expansions of permutations in X are
also in X.

(2) If X is complete then a basis element cannot have the form f¢ with
f < ¢ since then both 6, ¢ € X and so 8¢ would belong to X'. Conversely,
suppose that all the basis elements are indecomposable. Let o, 5 € X
with a < 8. Then af € X for otherwise there would be a basis element p
of X with u < «af; but, since p is indecomposable, we would have y < «
or i = f3, a contradiction.

The variants where X is strongly expanded or strongly complete follow in the
same way.

Lemma 6 (1) 7 is a basis element of AT if and only if m is minimal (under
involvement) subject to
(i) m is irreducible
(i) ™ ¢ A
(2) = is a basis element of VA if and only if m is minimal (under involvement)
subject to
(i11) 7 is indecomposable

(iv) ¢ A.

PROOF. For the first part we begin by noting that any permutation in A1 Z
either belongs to A or is not irreducible. Now suppose 7 is a basis element of
AlZ. Then, as A1Z is expanded by Lemma 4, 7 is irreducible by Lemma 5.
Also m ¢ A since A C AVZ and m ¢ A1 Z. Thus 7 satisfies conditions (i) and



(ii). Subject to this it is minimal since, if 7, < 7, then m; € A1Z and not both
(i) and (ii) can hold for ;.

Conversely, if 7 is not a basis element of A?Z then either 7 € A?Z in which
case not both (i) and (ii) can hold or 7 properly involves a basis element that,
as above, does satisfy (i) and (ii) in which case 7 would not satisfy (i) and (ii)
minimally.

The proof of the second part is almost the same. Here we observe instead that
any permutation in Z A either belongs to A or is not indecomposable, and
we use the fact that Z A is complete.

The obvious analogous statements hold for A1 S and S A.
Lemma 7 Let m be any permutation and o a permutation minimal subject to

(1) m <o
(2) o is irreducible

Then |o| < 2|m| — 1.

PROOF. Let 7 = pip2...px and 0 = s152...5, where s;s;,...s; is the
subsequence of o that is order isomorphic to w. We choose this to be the
lexicographically left-most subsequence of o that is order isomorphic to 7.

We now construct another subsequence ¢’ of o. This subsequence contains all
the symbols s;,, si,, . . ., 8;,. In addition, each pair p;, p;+1 causes 0 or 1 further
symbols to be included in ¢’ as now described:

Suppose that p;,p;11 is not consecutive increasing. Such a pair requires no
further symbol to be included in ¢’. Notice that, irrespective of what other
symbols we place into ¢’ during its construction, the symbols s;, and s;;,, will
always correspond to distinct symbols in the profile of o”.

Now consider some p;,p;;+1 that is consecutive and increasing. If there was
a symbol ¢ positioned between s;; and s;, such that s;; < g < s;,,, we
could match p;; to g rather than to s;,, to contradict the lexicographically
left-most property of s;, s, . .. S, -
Therefore, if there is a symbol ¢ positioned between s;; and s;,, it satisfies
q < si; or s;;,, < g and in either case we place g into o (but this is done for
only one such ¢). This ensures that s;; and s;,,, will correspond to distinct
symbols in the profile of ¢’.



If no such ¢ exists then s;; and s;,,, are positioned adjacently within o. How-
ever, as o is irreducible, s;; and s;;,, cannot be consecutive in value. Therefore
there must be, in o, a symbol r with s;; <r <'s;;,,. We place one such r into
o' and, again, this ensures that s;; and s;,,, correspond to distinct distinct
symbols in the profile of o’.

We have constructed ¢’ so that its profile o* involves 7. However, as * < o and
o was minimal, we must have o = o*. Because of the construction, |o| < k+/¢
where £ is the number of pairs p;, p; 11 which are increasing and consecutive.
Obviously, ¢ < k — 1 and the proof is complete.

Theorem 8 If X is a finitely based closed set then X T is also finitely based.

PROOF. Let o be a basis element of X1Z. Then o is irreducible (by Lemma
5 and because X' Z is fully expanded). As o ¢ X there is a basis element 7
of X with 7 < 0. We now choose a permutation ¢’ minimal such that

(1) # < o' <0, and
(2) o' is irreducible

But, by Lemma 7, |0'| is bounded in terms of |7|. However, Lemma 6, the
properties of o’ guarantee that it is a basis element of X' ! Z; therefore o = o'
and has bounded length.

On the other hand we have

Theorem 9 Let X be the closed set with single basis element 321654. Then
IV X s not finitely based.

PROOF. Consider the following set of permutations defined for m > 2:

Bn=3,2,5,1,7,4,9,6,11,8,...,20 — 1,21 — 4,20+ 1,21 — 2, ...
2m —1,2m —4,2m+2,2m — 2,2m+ 1,2m

Apart from the first four and last four symbols the remainder of /3, is defined
by interleaving odd-valued and even-valued symbols as indicated by the typical
segment 27 — 1,21 — 4,27 + 1,27 — 2 given above.

By inspection we see that 3,2, 1 and 2m+2,2m+1, 2m are the only decreasing
subsequences of length 3 and therefore 3,2,1,2m+2,2m+ 1, 2m is the unique
subsequence order isomorphic to 321654. In particular 3, € X.



We also observe, since the segment 3251 overlaps 5174 which in turn overlaps
7496 etc., that 3, is indecomposable.

Now consider the effect of omitting any of the symbols of 3,,. If we omit any of
3,2,1,2m+2,2m+ 1, 2m then 321654 will no longer be involved so the result
will lie in X'. On the other hand if we omit one of the other symbols then the
result will not be indecomposable since 3, 2,1 and 2m + 2, 2m + 1, 2m will be
in different components. Hence both components will lie in X' as they do not
involve 321654 and the resulting permutation will therefore be in Z? X'. This
proves that, subject to 3,, € X and [, indecomposable, 3, is minimal.

By Lemma 6 each (3, is a basis element of Z? X which is therefore not finitely
based.

5 Enumeration

The principal tool for computing the sequence of numbers |X,,| for a set X
is the ordinary generating function of the sequence; we call this simply the
generating function of X. Unless stated otherwise we consider these generating
functions to have zero constant term. Thus the generating function for Z is
z/(1—z) and the generating function for Sis s(z) = (1—z—+/1 — 6z + 22)/2
8]

Theorem 10 Let G, H be (not necessarily closed) sets of permutations and
let = GVH. Suppose that each permutation of F' has a unique representation
as a permutation in the wreath product. Let f(x),g(x), h(z) be the ordinary
generating functions of F,G,H. Then f(z) = g(h(z)).

PROOF. Let f(z) =32 fax™, g(x) = 300 gnaz™, and h(z) = 300, h,a™.
Every permutation of F' has a unique representation in the form ¢ = vy, ...,
where each v; € H and, if u; € v;, we have u;...u € G. For a fixed uy...u
and fixed lengths n; = |v;| there are Hle hy,; possibilities for ¢ and, letting
the n; vary over all positive integers that sum to n, we find

> 1l

T13T2 53T

such permutations (the summation being over all n,...,n, that sum to n).
But this is the coefficient of 2™ in (hix + hoz? +...)¥ = h(x)~.

As k varies and wu; ...uy varies over all the g permutations of length k& we
obtain all the permutations in F' of length n so that f, is the coefficient of 2"
in 3 grh(z)*. Therefore f(z) = g(h(x)) as required.

10



There are a number of corollaries of this theorem that follow in conjunction
with the remarks preceding Lemma 4

Corollary 11 Let F be a closed set, G its set of irreducible permutations, and
let f(z) and g(x) be their generating functions. Then f(x) = g(z/(1 — x)) is
the generating function for F1Z.

PROOF. 7 = G and permutations of GZ have a unique representation.

Corollary 12 Let F' be a closed set, G its set of strongly irreducible permuta-
tions, and let f(x) and g(x) be their generating functions. Then f(x) = g(s(x))
s the generating function for F1 S.

PROOF. 1§ = S and permutations of GS have a unique representation.

Corollary 13 Let F' be a closed set, H its set of indecomposable permutations,
and let f(x) and h(x) be their generating functions. Then f(x) = h(x)/(1 —
h(z)) is the generating function for TV F.

PROOF. I F = 1NG and permutations of Z?G have a unique representation.

Corollary 14 Let F be a closed set, H its set of strongly indecomposable per-
mutations, and let f(x) and h(z) be their generating functions. Then f(x) =
s(h(x)) is the generating function for S F.

PROOF. S$1F = 8G and permutations of S1G have a unique representation.

We conclude this section with a theorem that is useful in cases where we are
able to enumerate permutations that are both irreducible and indecomposable.
It requires the following lemma.

Lemma 15 Let 0 = aqas ... o where each «; s irreducible and indecompos-
able and o; < ;1. Then o is irreducible if and only if no two consecutive o
have length 1.

PROOF. The permutation ¢ will have a segment j,j + 1 if and only if the
symbol 7 is the final symbol of some «; and the symbol 7 + 1 is the initial
symbol of a; ;. But then 57 would be the largest symbol of «; and j + 1 would
be the smallest symbol of ;1. Then, as «; and «;,; are indecomposable, they
must each have length 1.

11



Theorem 16 Let F' be a complete closed set, K its set of irreducible indecom-
posable permutations, and let f(x),k(x) be their generating functions. Then

(1 = 2)k(z/(1 = z)) — 2?
(1—2)k(z/Ql—2)—2?+2—1

flz) =

PROOF. Let g, be the number of irreducible permutations of length n in
F and let ¢, be the number of irreducible permutations of F' that begin with
1. Then ¢, enumerates permutations 1o where « is irreducible and does not
begin with its lowest symbol 2. Since there are g, 1 — ¢, 1 choices for o we
have

In-1 = qn—1 1t qn

The irreducible permutations of F' are of two kinds. Those that begin with 1,
of which there are ¢,, and those that begin with an indecomposable segment,
of length 7 > 2, of which there are k;g,,_; if 2 < ¢ < n and k, if + = n. Hence

n—1

1=2
n—1

=qn t Z kign—i —gn—1 + kn
i=1
n—1
= Z kign—i — Qn—1 + kn
i=1

Adding this equation to the corresponding equation where n is replaced by
n — 1 gives

n—1 n—2
n t gn-1= Z kign—i + Z kign-1-i — Gn-1— Guo + kn + k1
i=1 1=1

n—1 n—2
In+ Gn—1+ Gn—2= Z kign—i + Z kign—1-i + kn + kn_1

i=1 =1

We now multiply by z" and sum from 2 to oo recalling that go = 0, g1 = 1,
ko =0, k; = 1. This gives

g9(z) — v+ zg9(x) + 2%g9(2) + 2° = k(z)g(x) + 2k(2)g(z) + k(z) — 2 + zk()

12



Solving for g(x) we find

_ (1+2)k(z) — 2?
l+z+22— (1+2)k(z)

9(x)

Finally, the proof is completed by using Corollary 11.

6 Applications

In this section we shall give a number of examples of the use of the wreath
product and the associated ideas of indecomposability and irreducibility. We
shall see that basis questions still need to be answered by rather ad hoc argu-
ments but that enumeration questions can often exploit the generating func-
tion results very effectively.

6.1 Sorting with a stack of queues

We shall apply the theory in the case of the closed set U of stack sortable
permutations whose basis is {231} to the investigation of U2 Z. Note that U Z
has an interpretation in terms of data structures. It is the set of permutations
that can be sorted by a stack in which the push operation can take any number
of input symbols at a time, place them in a queue, and then place this queue on
the stack. The pop operation always removes an entire queue and discharges
its elements to the output in the natural way. Certainly, by Theorem 8, U/ 1 Z
will be finitely based and, from Lemma 7, its basis elements have length at
most 5. Then a case by case search (whose details we omit) shows that the
basis is {2431, 3241, 2413, 3142}

Now let g, be the number of irreducible stack sortable permutations. If ¢ is
any one of these put 0 = Anu. Necessary and sufficient conditions on A and p
are

(1) A<p

(2) Ais an irreducible stack sortable permutation of length &k, with 0 < k <
n—1and if K = n—1 then A does not end with its maximal symbol n —1

(3) u is an irreducible stack sortable permutation of length n — 1 — k

In view of this we define p, to be the number of irreducible stack sortable

permutations of length n that end with n. Each one of these permutations has
the form 7n where 7 is irreducible and does not end with n — 1; hence there

13



are g,_1 — pn_1 possibilities for 7. Thus

Gn—1 =Pn—1+Dn (1)

The conditions on A and p give

n—2
In=0n-1+ D Gkn-1—k + Gn—1 — Pn—1
k=1
n—2
= Z 9kGn-1—k + 29n—1 — Pn-1
k=1

Adding this equation to the corresponding equation in which 7 is replaced by
n — 1 and using Equation 1 we find

n—2 n—3
In+ Gno1 = D Gkn-1-k + D GkGn—2—k + 20n—1 + 20n—2 — Gn—2
k=1 k=1
and therefore
n—2 n—3
9= GkGn-1-k+ D GkIn—2-k + Gn-1+ Gn2
k=1 k=1

Now we multiply throughout by z™, sum from 2 to oo, and rearrange terms
to get

g(@)*(a* +2) + g(z)(@® +z—1)+2=0

from which we obtain

() 1—2—a2%—+1—2z — 522 — 223 + a#
T) =
J 2(x + 22)

Finally, using Corollary 11, we have

Theorem 17 The generating function for UL T is

1
- —3z+ 2% — V1 — 6z + 722 — 223 + 14) =
a
x + 222 + 623 + 20z + 702° + 2542° + 94827 + 36182° + . ..

14



6.2 Stack sortability and completion

Continuing with the notation of the previous subsection we might now ask
about 7. However, because 231 is indecomposable, U/ is complete by Lemma,
5. Therefore, by Lemma 4, Y = Z1U. To get a more interesting example we
consider instead the closed set V whose single basis element is 213 (the set of
permutations that can be sorted into reversed order by a stack).

We begin by finding the basis elements of 7Y} (despite the example in Theorem
9, 72V is finitely based).

Theorem 18 The basis of TV is {4213, 2413, 3142, 3241}.

PROOF. Let m be a basis permutation. Then, by Lemma 6, 7 is indecom-
posable, 213 < m, and 7 is minimal with these properties. Suppose that = is
not one of the permutations in the statement of the theorem; then none of
them will be involved in 7. We put

T = arfyyz0

with zyz order isomorphic to 213. We choose z to be the earliest symbol after
y that exceeds z, and x to be the latest symbol before y whose value is between
y and z. Then we have

i) If g € v then g < z (from the choice of z)
(ii) If b € B then £ > b or b > z (since x < b < z contradicts the choice of x)
(iii) If b € B then b < z (otherwise zbyz is order isomorphic to 2413)
(iv) If b € 8 then = > b (from (ii) and (iii))
v) If a € a then a < z (otherwise azyz is order isomorphic to 4213)
(vi) If d € § then y > d or d > z (for, if y < d < z, then zyzd is order
isomorphic to 3142)
(vii) If d € 0 then y < d (otherwise zyzd is order isomorphic to 3241)
(viii) If d € § then z < d (from (vi) and (vii))

These facts prove that fyy < x < 26 and that o < z. We now prove that o <
0. This will prove that azfyy < zd and hence that 7 is not indecomposable,
a contradiction. So let a € a, d € § with a > d. Then, by (viii), a > x and
azxyd is order isomorphic to 4213 which is impossible.

To compute the generating function of Z !V we need the generating func-
tion h(xz) = hix + hea?® + ... for the indecomposable permutations of V.
We can obtain this by noting that a permutation of V, when expressed as
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0 = ajQy...qE, With ay < as < ... and all «; indecomposable, must have
la| =1 fori=1,...,k —1 (this is because 213 4 o).

Hence, if f(z) = Y f,a™ is the generating function for V, we have f, = Y>p_; hy
for n > 0. Thus f(z) = @ and so h(x) = f(z)(1 — x). But it is known that

x

f(z) = =221 and so h(z) can be calculated. Now, from Corollary 13, we
obtain

Theorem 19 The generating function of Z1V is given by

—2x
1 -5z —+/1—4z ++/1— 4z + 222
x + 222 + 623 + 20z + 692° + 2432° + ...

6.3 Pop-stacks in series

In [4], Avis and Newborn introduced a data structure called a ‘pop-stack’. Pop-
stacks resemble ordinary stacks in having a push operation which transfers the
next item of an input stream onto the top of the stack, but their pop operation
empties the entire stack content into an output stream. They studied pop-
stacks ‘in series’. A series arrangement of m pop-stacks is one in which the
(entire) set of items popped from the " stack is pushed onto the (i+1)%. The
items from the input stream are pushed one by one onto the first pop-stack,
travel through the system of stacks, and the output stream is generated by
the output of the last pop-stack. We say that a permutation is m-feasible if
it can be sorted by such a system (a slight departure from the Avis-Newborn
definition). A permutation is said to be feasible if it is m-feasible for some m.
Avis and Newborn gave enumeration results for both m-feasible and feasible
permutations. In this section we use our wreath product results to give a
somewhat simpler treatment.

We have already defined the set Z of identity permutations. There is a related
set R of all reversed identity permutations n,n —1,...,2,1. The sets Z and
R are easily seen to be the smallest infinite closed sets. We define the sets

An =T 1R 1I... (m factors)
B, =RIZI!R1... (m factors)
Theorem 20 (1) A,, is the set of (m — 1)-feasible permutations
(2) Use_, Ay, is the set of feasible permutations and this is also the set S

PROOF. To prove the first part of the theorem we prove, by induction, the
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stronger result that A,, is the set of permutations sortable in m —1 pop-stacks
and B, is the set of permutations reverse sortable in m — 1 pop-stacks. This
is clearly true for m = 1. We let m > 1 and make the inductive hypothesis
that this result is true with m replaced by m — 1.

Let 0 € A,, =71 B,,_;. Then 0 = ojay...a, where each o; € B,,_; and
a1 < ap < ... By the inductive hypothesis, each «; can be reverse sorted by
m — 2 pop-stacks in series. Therefore we can transfer the items of oy onto an
(m — 1) pop-stack sorted decreasingly from bottom to top and so output the
items of «; in sorted order. Repeating this for oy, as, ... shows that o can be
sorted using m — 1 pop-stacks in series. Similarly, if o € B,, = R A,,_1 then
o =mqaay...,a € A,_1 and a1 > g > ...; then we can imitate the proof
above to demonstrate the reverse sortability of o in m — 1 pop-stacks.

Conversely, suppose that o can be sorted by m — 1 pop-stacks in series. The
sequence of pops from the final pop-stack defines a segmentation 8,5, . .. of the
sorted output 1,2, .... It is easily seen, from the defining serial property, that,
if u € B;, v € B; and 7 < j, then u must precede v in 0. Hence 0 = a0 ..
with a; < g < ..., and each «; can be reverse sorted onto the final pop-
stack. By the inductive hypothesis «; € B,,_1 so that 0 € Z! B,,_1 = A,
By a similar argument we can also show that a permutation that is reverse
sortable by m — 1 pop-stacks must belong to B,,.

For the second part it is clear from the first part that the set of of feasible
permutations is |J;._; A,,. That this is also the set of separable permutations
follows from the definition of S as the strong completion of 7.

Corollary 21 The set of m-feasible permutations is finitely based

PROOF. The proof of Theorem 8 can easily be adapted to prove that X R is
finitely based whenever X is finitely based and the corollary therefore follows
by repeated application of Theorem 8.

Now let a,, = a;,(x) be the generating function for the set A,,. Since the
permutations of B,, are the reverses of those in A,,, a,, also enumerates the
permutations of B,,. Furthermore, let ¢, and d,, be the generating functions
for the forward indecomposable and backward indecomposable permutations
of A,, respectively; these are also the generating functions for the backward
and forward indecomposable permutations of B,,.

Since the permutation of length 1 is the only permutation of A, that is both
forward and backward indecomposable and since every permutation of A,
is either forward or backward indecomposable we have a,, + * = ¢, + d,.
Moreover, every permutation of A,, has the form ajas. .., with each «; €
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B,,—1 and a1 < a... < . If such a permutation is forward indecomposable
then » = 1 and it is a forward indecomposable permutation of B,,_;. Hence
Cm = dpy1. This gives d,,, 1 +d,, = a,, +z. By Corollary 13, a,,, = ¢,/ (1 — )
and these equations prove the following

Theorem 22 Let a,, = a,,(z) be the generating function of A,,. Then a,, =
dm—1 + dp — x where d, is defined by d; = z/(1 —z) and dyy = v+ d2,_, /(1 —
dm—1) for m > 1.

This theorem demonstrates that the generating functions a,,(x) are all ratio-
nal. Although they rapidly become rather complicated as m increases they
can be calculated for small values of m quite readily. For example,

z(1l — 2z + 22?)
203 — 42?2 4+ 42 — 1

az(z) =

from which the recurrence

fan=4fn1 —4fn2+2fn3

as computed in [4] can be obtained from the denominator.

6.4 Pop-stacks in genuine series

The serial pop-stacks considered in the last section are not true serial struc-
tures since a pop from one of the pop-stacks entails the pushing of all popped
items onto the next stack. In a genuinely serial construction we would have to
save the output from one stack before subjecting it to the next pop-stack.

The set P of permutations that are sortable by a single pop-stack can be
analysed using the results of the previous section. We have P = Z ! R and
the generating function as(z) = x/(1 — 2x); therefore there are 2" ! pop-stack
permutations of length n. Furthermore it is easily seen that {231,312} is the
basis of P.

This section considers the set @ = P?, the closed set of permutations that can
be sorted by two pop-stacks in genuine series. The permutations of length n
in @ arise by multiplying two permutations in P together. A general context
for such problems was discussed in [5].

Lemma 23 O is complete and expanded.

PROOF. If 0 = af with a < B where both o, € Q then ¢ can clearly

18



be sorted by two pop-stacks in genuine series: « is first processed and sorted,
followed by 3. Thus o € Q and Q is complete.

Suppose next that o = i € Q and consider the expansion az,7 + 13 of o
at 7. We can sort this using two pop-stacks in genuine series by following the
algorithm A for sorting ¢ but pushing both ¢ and 7+ 1 onto the first or second
pop-stacks when A pushed i. Because the symbols ¢ and 7+ 1 remain together
in this algorithm they emerge in the output as a segment 4,7 + 1 and since A
sorted o the new algorithm sorts ai,7 + 18. Thus Q is expanded.

Lemma 24 The number of irreducible indecomposable permutations of length
ninQislifn=1,23and2" ' —1 forn > 3.

PROOF. The permutations of Q arise by multiplying two pop-stack permu-
tations together. They therefore arise by multiplying a permutation of the
form o = a ...y, where a7 < oy < ... and each q; is decreasing, by another
pop-stack permutation. Multiplying o by a pop-stack permutation entails di-
viding « into disjoint segments 1, B, ... and reversing each segment to obtain
a permutation o. If we require o to be irreducible and indecomposable there
are strong restrictions on [y, fo, . . ..

If o is to be irreducible no ; can contain a segment r, r + 1. Therefore, apart
from the initial and final symbol of each «;, each symbol of an «; must lie
within a segment 3; of length 1. It remains to describe how the initial and
final symbols of each ¢ lie within the ;.

Consider the final symbol of some «; that is not the last symbol of o itself.
Since o is to be indecomposable this symbol cannot be the last symbol of any
B; and so the segment [; that contains it must also contain the first symbol
of a;1. In particular, notice that this implies that any singleton «; must lie
in the same 3; as both the predecessor and successor symbol of ¢;.

These observations prove that there is at most one irreducible indecomposable
permutation that arises by multiplying o by another pop-stack permutation.
They also show how to find the resulting permutation of @ when it exists.
For example, if « is the permutation 321|4|5|76|8, where the segments «; are
marked, then the segments (; are as shown in 3|2|1457|68 and the resulting
permutation of Q is 32754186.

It remains to determine which permutations arising from this construction
are actually irreducible and indecomposable, and how many are distinct. We
leave to the reader the check that, if n > 3, the rule above produces only
irreducible, indecomposable permutations; and to verify that all the permu-
tations produced are distinct except for the ones generated from o =12...n
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and o = n...21 both of which produce n...21. Since there are 2"~ choices
for a the lemma follows.

From the lemma we see that the generating function for the number of irre-
ducible indecomposable permutations of Q is

k(z) =2 —22° +x/(1 - 2z) — /(1 — )

Now Theorem 16 can be applied and it gives
Theorem 25 The generating function for the set @) is
z — 722+ 1923 — 212* + 1025 — 62°

~1— 9z + 3122 — 5323 + 442* — 162° + 62°
=2+ 22% + 623 + 24z + 1022° + 4142° + 159827 + 598228 + . ..

f(z)

Note 1 We have also proved that Q) is a finitely based closed set and found
its basis explicitly. It consists of 29 permutations of lengths 5 and 6.

6.5 Enumeration given the basis

As our final application we give a brief example of how one can sometimes go
about solving the enumeration problem for a closed set that is given by its
basis. In this example we use the idea of strong irreducibility.

Consider the set W whose basis is {3142,24135,52413,13524}. As the result
of a fairly short computation we find the set G' of strongly irreducible permu-
tations of W. It turns out that, for each n > 5, there are exactly two such,
and otherwise there is one of each length 1 and 4 but none of length 2 or 3.
Thus the generating function for G is

g@) =z 41" +225+ 225+ =z +2'+245/(1 - 2)

By Corollary 12 the generating function for G S is g(s(z)). But Lemmas 4
and 5 tell us that G1.S =W1S = W. We deduce

Theorem 26 The generating function for W is

1 — 9z + 2922 — 3023 + 102* — 2° — /1 — 62 + 22(1 — 62 + 132% — 723 + %)

2z
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