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Abstract— Background: The Tower of Hanoi problem was
formulated in 1883 by mathematician Edouard Lucas. For over
a century, this problem has become familiar to many of us
in disciplines such as computer programming, data structures,
algorithms, and discrete mathematics. Several variations to Lu-
cas’ original problem exist today, and interestingly some remain
unsolved and continue to ignite research questions.
Research Question: Can this richness of the Tower of Hanoi be
explored beyond the classical setting to create opportunities for
learning about recurrences and proofs by induction?
Contribution: We describe several simple variations on the Tower
of Hanoi that can guide the study and illuminate/clarify the
pitfalls of recurrences and proofs by induction, both of which
are an essential component of any typical introduction to discrete
mathematics and/or algorithms.
Methodology and Findings: Simple variations on the Tower of
Hanoi lead to different interesting recurrences, which in turn
are associated with exemplary proofs by induction.

Index Terms—Tower of Hanoi, Recurrences, Proofs by Induc-
tion.

I. INTRODUCTION

THE Tower of Hanoi problem, formulated in 1883 by
French mathematician Edouard Lucas [8], consists of

three vertical pegs, labeled x, y, and z, and n disks of different
sizes, each with a hole in the center that allows the disk to go
through pegs. The disks are numbered 1, . . . , n from smallest
to largest. Initially, all n disks are stacked on one peg as shown
in Figure 1, with disk n at the bottom and disk 1 at the top.

Fig. 1. Lucas’ Tower of Hanoi for n = 4.

The goal is to transfer the entire stack of disks to another
peg by repeatedly moving one disk at a time from a source
peg to a destination peg, and without ever placing a disk on
top of a smaller one. The physics of the problem dictate that
a disk can be moved only if it sits on the top of its stack. The
third peg is used as a temporary place holder for disks while
they move throughput this transfer.

The classical solution for the Tower of Hanoi is recursive in
nature and proceeds to first transfer the top n− 1 disks from
peg x to peg y via peg z, then move disk n from peg x to peg
z, and finally transfer disks 1, . . . , n− 1 from peg y to peg z
via peg x. Here’s the (pretty standard) algorithm:

Hanoi(n, x, y, z)
if n > 0

then Hanoi(n− 1, x, z, y)
Move(1, x, z)
Hanoi(n− 1, y, x, z)

In general, we will have a procedure
Transfer(n, from, via, to) to (recursively) transfer a stack of
height n from peg from to peg to via peg via, which will be
named according to the problem variation (it’s Hanoi above),
and a procedure Move(k, from, to) to move the top k (1 in
Hanoi) from peg from to peg to (in one move). We will also
use Exchange(i) to exchange disk i and disk 1 (see Section
VI).

An analysis of the above strategy is typically presented by
letting an be the total number of moves, and establishing the
recurrence an = an−1+1+an−1 = 2an−1+1, where a1 = 1.
The recurrence is iterated for several values of n to discover
a pattern that suggests the closed form solution an = 2n −
1. This latter expression for an is proved by induction using
the base case above and the recurrence itself to carry out the
inductive step of the proof.

Perhaps a very intriguing thought is that we need about 585
billion years to transfer a stack of 64 disks 1 if every move
requires one second! This realization is often an aha moment
on a first encounter, and illustrates the impact of exponential
growth on complexity. Though not immediately obvious, other
interesting facts can also be observed (and proved):
• Fact 1. When n = 0 (empty stack of disks), a0 = 20 −

1 = 0 is consistent in that we need zero moves to transfer
all of the disks (none in this case).

• Fact 2. The number of moves an = 2n−1 is optimal, i.e.
2n− 1 represents the smallest possible number of moves
to solve the problem (and the optimal solution is unique).

• Fact 3. Disk i must make at least 2n−i moves (exactly
2n−1 in the optimal solution). Observe that

∑n
i=1 2n−i =

1The case of n = 64 is related to a myth about 64 golden disks and the
end of the world [5].



2n − 1 for n ≥ 0 (again touching on the notion of the
empty sum when n = 0).

• Fact 4. If we define a repeated move as the act of moving
the same disk from a given peg to another given peg, then
every solution must have a repeated move when n ≥ 4
(pigeonhole principle applied to the moves of disk 1).

• Fact 5. There is a (non-optimal) solution for n = 3 with
eight moves none of which are repeated moves.

The above facts highlight some richness of the problem as
they touch on several aspects of mathematical and algorithmic
flavor which, when pointed out, can be very insightful. For
instance, Fact 1 is a good reminder of whether to associate
a 0 or a 1 when dealing with an empty instance of a given
problem (empty sum vs. empty product). Fact 2 directs our
attention to what is optimal (not just feasible), and Fact 3 is a
more profound way to address that optimality. Fact 4 is a nice
application of the pigeonhole principle that requires knowledge
of Fact 3; a weaker version can be proved, namely when n ≥ 5
instead of n ≥ 4, if we only rely on Fact 2. Finally, Fact
5 raises the question of how things may be done differently
when we seek non-typical answers. Along those lines, several
variations for the Tower of Hanoi already exist, which include
a combination of restricted moves, colored disks, multiple
stacks, and multiple pegs. For instance, we refer the reader
to [11], [12], [13], [7], [2], [4], [1], [5] for some literature and
examples.

Here we explore several variations while sticking to the
one stack of disks and three pegs. Our goal is not to extend
the research on the Tower of Hanoi problem but rather
provide simple, and yet interesting, variants of it to guide (and
enrich) the study of recurrences and proofs by induction in
introductory discrete mathematics. Therefore, we assume basic
familiarity with mathematical induction and solving linear
recurrences of the form

an = p1an−1 + p2an−2 + . . .+ pkan−k + f(n)

Several techniques for solving recurrences can be used, such as
making a guess and proving it by induction (e.g. an = 2an−1+
1), summing up

∑n
i=0 ai to cancel out factors and express

an in terms of a1 or a0 (e.g. an = an−1 + 2n), applying a
transformation to achieve the desired form (e.g. an = 2an/2 +
n− 1 and take n = 2k, or an = 3a2

n−1 and let bn = log an),
generating functions (of the form g(x) = a0 + a1x+ a2x

2 +
. . . =

∑∞
n=0 anx

n), etc... [9].
In particular, the method of using the characteristic equa-

tion xk =
∑k
i=1 pix

k−i when f(n) = 0 (homogeneous
recurrence) is systematic and suitable for an introductory
level. For example, when an = p1an−1 + p2an−2 (a second
order homogeneous linear recurrence), and r1 and r2 are
the roots of x2 = p1x + p2, then an = c1r

n
1 + c2r

n
2 if

r1 6= r2, and an = c1r
n + c2nr

n if r1 = r2 = r. We
can solve for the constants c1 and c2 by making an satisfy
the boundary conditions; for instance, a1 and a2 for n = 1
and n = 2, respectively. This technique can be generalized to
homogeneous linear recurrences of higher orders.

When f(n) 6= 0 (non-homogeneous recurrence), we try to
find an equivalent homogeneous recurrence, by annihilating
the term f(n). For instance, the recurrence for the Lucas’

Tower of Hanoi problem satisfies an = p1an−1 +f(n), where
p1 = 2 and f(n) = 1, so it’s non-homogeneous, but subtract-
ing an−1 from an gives an − an−1 = 2an−1 − 2an−2, which
yields the homogeneous recurrence an = 3an−1 − 2an−2.

II. DOUBLE DECKER

In this variation, called Double Decker, we duplicate every
disk to create a stack of 2n disks with two of each size
as shown in Figure 2. For convenience of notation, we will
consider (only for this variant) that a stack of height n has 2n
disks.

Fig. 2. Double Decker for n = 3, suggested in [3].

A trivial solution to Double Decker is to simply treat it as
a standard instance of the Tower of Hanoi with 2n disks and,
thus, will need the usual 22n− 1 = 4n− 1 moves. This trivial
solution, however, does not benefit from equal size disks. For
instance, if we do not require that disks of the same size must
preserve their original order, then a better solution for Double
Decker is to emulate the standard Tower of Hanoi solution by
duplicate moves, to give a0 = 0, a1 = 2, a2 = 6, ... The
algorithm is shown below.

DoubleDecker(n, x, y, z)
if n > 0

then DoubleDecker(n− 1, x, z, y)
Move(1, x, z)
Move(1, x, z)
DoubleDecker(n− 1, y, x, z)

The Double Decker recurrence is an = 2an−1+2 and, since
we expect that the solution now requires twice the number
of original moves, we can use that recurrence to show by
induction that an = 2(2n − 1) � 4n − 1. The inductive step
for n = m > 0 will be as follows:

am = 2am−1 + 2 = 2 · 2(2m−1 − 1) + 2

= 2 · 2m − 4 + 2 = 2 · 2m − 2 = 2(2m − 1)

with a0 = 0 as a base case (examples of making a careful
choice of base case(s) will follow throughout the exposition).

Alternatively, we can solve the recurrence itself, by first
changing it into a homogeneous recurrence using the technique
outlined in the previous section, to obtain an = 3an−1−2an−2

with the characteristic equation x2 = 3x − 2, and the roots
r1 = 1 and r2 = 2. So we write an = c11n + c22n and solve
for c1 and c2 using an for two values of n; for instance,

a0 = c110 + c220 = c1 + c2 = 0

a1 = c111 + c221 = c1 + 2c2 = 2



which will result in c1 = −2 and c2 = 2.
An interesting subtlety about Double Decker is to observe

that, although we did not require to preserve the original order
of disks (so long no disk is placed on a smaller one), the above
solution only switches the bottom two disks (disks 2n − 1
and 2n). This can be verified by Fact 3: since disk i of the
original Tower of Hanoi must make 2n−i moves, and that’s
an even number when i < n, disks 2i − 1 and 2i in Double
Decker must do the same, and hence will preserve their order.
However, disks 2n − 1 and 2n in Double Decker will each
make an odd number of moves (namely just 2n−n = 1 move),
and hence will switch.

Therefore, to make Double Decker preserve the original
order of all disks, we can perform the algorithm twice, which
will guarantee that every disk will make an even number of
moves, at the cost of doubling the number of moves.

DoubleDeckerTwice(n, x, y, z)
if n > 0

then DoubleDecker(n, x, z, y)
DoubleDecker(n, y, x, z)

The total number of moves for the above algorithm is
therefore twice 2(2n − 1), which is 4(2n − 1). But can we
do better? One idea is to avoid fixing the order of the last two
disks by forcing the correct order in the first place. Here’s a
first bad attempt.

DoubleDeckerBad(n, x, y, z)
if n > 0

then DoubleDeckerBad(n− 1, x, y, z)
Move(1, x, y)
DoubleDeckerBad(n− 1, z, x, y)
Move(1, x, z)
DoubleDeckerBad(n− 1, y, z, x)
Move(1, y, z)
DoubleDeckerBad(n− 1, x, y, z)

The DoubleDeckerBad algorithm is a simple disguise of
the standard Tower of Hanoi algorithm for 2n disks, which
was presented as algorithm Hanoi in Section I. Observe that
in order to transfer 2n disks from peg x to peg z, we first
transfer 2n− 1 disks from peg x to peg y (recursively in the
first three lines following if n > 0), then move the top disk
from peg x to peg z (in the subsequent fourth line), and finally
transfer 2n− 1 disks from peg y to peg z (recursively in the
last three lines). This is nothing but the standard sequence of
moves for the 2n-disk Tower of Hanoi.

In fact, it is not hard to verify that the recurrence bn =
4bn−1 + 3 of DoubleDeckerBad has the solution bn = 4n − 1
(same as Tower of Hanoi for 2n disks). However, an interesting
take on this is to consider the following two recurrences:

an = 2an−1 + 1 Hanoi
bn = 4bn−1 + 3 DoubleDeckerBad

and show by induction that bn = a2n. For instance, an
inductive step for n = m > n0 will be

bm = 4bm−1 + 3 = 4a2m−2 + 3

= 2(2a2m−2 + 1) + 1 = 2a2m−1 + 1 = a2m

Although only one inductive step is involved (bm and bm−1),
an = 2an−1 + 1 was iterated twice “backwards” (a2m−2,
a2m−1, and a2m), which on the one hand is not how one would
typically proceed from an = 2an−1 + 1 to establish some
truth about an, and on the other hand raises the question of
whether multiple base cases are needed (what should the value
of n0 be?). The number of base cases is often a subtle detail
about proofs by induction, and without it, there will be a lack
of insight into the method of mathematical induction itself.
Before we address this aspect of the proof, let us establish
few base cases to verify their truth: b0 = a2·0 = a0 = 0,
b1 = a2·1 = a2 = 3, b2 = a2·2 = a4 = 15, ... Typically, a
person who is attempting this proof by induction will be easily
inclined to verify a bunch of base cases, as this feels somewhat
safe for providing enough evidence that the property bn = a2n

holds. In principle, however, one should have a systematic
approach. A careful examination of the inductive step above
will reveal that it works when m − 1 ≥ 0 and 2m − 2 ≥ 0
(otherwise, bm−1 and a2m−2 are not defined). Therefore, we
need m > 0, so n0 = 0 is good enough, and we only need to
verify that b0 = a0.

So far, 4(2n−1) is our smallest number of moves for solving
the Double Decker Tower of Hanoi. As it turns out, we can
save one more move (and we later prove optimality)! This can
be done by adjusting the previous attempt not to recursively
handle the two bottom disks (but only disks 2n− 1 and 2n):

DoubleDeckerBest(n, x, y, z)
if n > 0

then DoubleDecker(n− 1, x, y, z)
Move(1, x, y)
DoubleDecker(n− 1, z, x, y)
Move(1, x, z)
DoubleDecker(n− 1, y, z, x)
Move(1, y, z)
DoubleDecker(n− 1, x, y, z)

Switching the order of equal size disks is not an issue now
since DoubleDecker is called an even number of times (namely
four times). The total number of moves is given by an =
4 · 2(2n−1− 1) + 3 = 4(2n− 1)− 1 when n > 0, and a0 = 0.

To prove the above is optimal, we observe that the other
possible strategy is to move the largest disk to its destination
from the intermediate peg (instead of the source peg).

DoubleDeckerAltBest(n, x, y, z)
if n > 1

then DoubleDecker(n− 1, x, y, z)
Move(1, x, y)
Move(1, x, y)
DoubleDecker(n− 1, z, y, x)
Move(1, y, z)
Move(1, y, z)
DoubleDeckerAltBest(n− 1, x, y, z)

else Hanoi(2n, x, y, z)

The above algorithm generates the recurrence an =
2(2n−1 − 1) + 2 + 2(2n−1 − 1) + 2 + an−1 = an−1 + 2n+1

when n > 1, which can be shown by induction to have the
solution an = 4(2n−1)−1, thus proving that this is optimal.



The Double Decker can be easily generalized to a k-Decker
(k > 1) with an>0 = 2k(2n − 1) − 1 moves. A further
generalization of k-Decker in which there are ki disks of size
i is also suggested in [3]. It is not hard to show that, based
on Fact 3, this generalization requires 2(

∑n
i=1 ki2

n−i) − 1
moves if kn > 1, and

∑n
i=1 ki2

n−i if kn = 1, which is equal
to 2k(2n − 1) − 1 when k1 = k2 = . . . = kn = k > 1, and
2n − 1 if k = 1.

III. MOVE ONE GET SOME FREE

In this variation, we can move the top k ∈ N or fewer disks
from a given peg to another simultaneously, and still consider
this to be one move. Hence the name Move One Get Some
(k − 1) Free. It is not hard to see that the optimal number of
moves can be achieved by (when n > 0)

an = min
0<i≤min{k,n}

2an−i + 1

= 2an−min{k,n} + 1 = 2amax{n−k,0} + 1

since an must be non-increasing in n and, therefore, it is
better to moves simultaneously as many disks as possible when
moving the largest to its destination. The above recurrence is
simply an = 2an−k + 1 when n ≥ k. As such, we can show
that an = 2dn/ke − 1, which amounts to breaking the original
stack of disks into dn/ke virtual disks, each consists of k or
fewer disks. The algorithm for this variation is shown below:

MoveOneGetSomeFree(n, x, y, z)
if n > 0

then MoveOneGetSomeFree(n− k, x, z, y)
Move(min{k, n}, x, z)
MoveOneGetSomeFree(n− k, y, x, z)

The proof that an = 2dn/ke− 1 is by (strong) induction for
n = m > n0:

am = 2am−k + 1 = 2(2d(m−k)/ke − 1) + 1

= 2 · 2dm/k−1e − 1 = 2 · 2dm/ke−1 − 1 = 2dm/ke − 1

Following the same line of thought from the previous section
about the choice of base cases, we must ensure that we verify
enough, but not too many. The inductive step requires that
am−k be defined and thus m ≥ k. So n0 = k − 1, which
means that we must verify all bases cases for n = 0, . . . , k−1.

a0 = 2d0/ke − 1 = 1− 1 = 0

an = 2dn/ke − 1 = 2− 1 = 1, n = 1, . . . , k − 1

Therefore, the Move One Get Some (k−1) Free generalizes
the standard Tower of Hanoi (which becomes the special case
when k = 1). Interestingly, we could also study this general
variation of the Tower of Hanoi by solving the recurrence an =
2an−k+1 itself, using the method of characteristic equations.
First, we transform the recurrence into a homogeneous one,
by subtracting (as outline in Section 1) an−an−1 = 2an−k−
2an−k−1, which yields:

an = an−1 + 2an−k − 2an−k−1

and the characteristic equation:

xk+1 = xk + 2x− 2

By observing that r0 = 1 is a root, we can express the
characteristic equation as follows:

(x− 1)(xk − 2) = 0

and thus the k + 1 (distinct) roots are r0 = 1, and rs+1 =
k
√

2ei2πs/k for 0 ≤ s < k (the kth roots of 2), where eiθ =
cos θ+ i sin θ. An example when k = 5 is shown in Figure 3.

Fig. 3. The kth roots of 2 when k = 5: r1 = 5√2, r2, . . . , r5; and r0 = 1.
Generated in part by WolframAlpha at https://www.wolframalpha.com [14].

Using the above information about the roots for a given
k, one can construct several interesting proofs by induction
(possibly involving the complex numbers). For instance, when
k = 2 (Move One Get One Free), we have r0 = 1, r1 =

√
2,

and r2 = −
√

2. Given the form an = c1+c2
√

2
n
+c3(−

√
2)n

with a0 = 0, a1 = 1, and a2 = 1, we obtain

a0 = c1 + c2 + c3 = 0

a1 = c1 +
√

2c2 −
√

2c3 = 1

a2 = c1 + 2c2 + 2c3 = 1

and c1 = −1, c2 = (1 +
√

2)/2, c3 = (1−
√

2)/2, and

an = −1 +
1 +
√

2
2

√
2
n

+
1−
√

2
2

(−
√

2)n

Therefore, one could try to prove by induction the following
for n ≥ 0:

2dn/2e =
1 +
√

2
2

√
2
n

+
1−
√

2
2

(−
√

2)n

which provides an interesting and not so trivial interplay of the
patterns 2d e and

√
2, but rather intuitive because 2n/2 =

√
2
n

.
The proof (by strong induction) and the careful choice of base
case(s) follow, given n = m > n0:

2dm/2e = 2d(m−2)/2+1e = 2 · 2d(m−2)/2e

= 2
[1 +

√
2

2

√
2
m−2

+
1−
√

2
2

(−
√

2)m−2
]

= 2
[1 +

√
2

4

√
2
m

+
1−
√

2
2(−
√

2)2
(−
√

2)m
]

=
1 +
√

2
2

√
2
m

+
1−
√

2
2

(−
√

2)m



and since we must have m − 2 ≥ 0 in the inductive step,
m > 1 = n0 so we must establish the base case for n = 0
and n = 1 (which are both true). In general, one can prove in
a similar way that the number of moves is

2dn/ke − 1 = 2n/k
k−1∑
s=0

cse
i2πns/k − 1

for some appropriate values of c0, . . . , ck−1.
Observe that 2dn/ke is infinitely faster than 2n, in fact the

ratio 2dn/ke/2n is asymptotically equal to 2−n(k−1)/k, which
approaches 0 for large n (and a fixed k). By choosing k ≈
n/ log2 f(n), where 1 < f(n) ≤ 2n, the number of moves
for this version of the Tower of Hanoi grows asymptotically
as f(n).

Finally, one interesting aspect of this variation is that the
number of optimal solutions can be huge. If we denote this
number by bn, for n disks, and let r = n mod k, then

bn = 1 +
min{k,n}∑

i=r+1+k·0r
b2n−i

Therefore, bn = 1 iff n mod k = 0. If n mod k = k− 1 6= 0,
then bn = 1 + b2n−k (and bk−1 = 1), so this generates the
sequence 1, 2, 5, 26, 677, 458330, . . . for n ≡ k−1, e.g. for odd
n when k = 2, which can be shown to grow asymptotically
as (1.225902 . . .)2

(n+1)/k
(https://oeis.org/A003095 [10]).

IV. RUBBER DISK IN THE WAY

In this variation, and in addition to the stack of n disks,
there is a rubber disk initially placed through one of the two
other pegs as shown in Figure 4. The rubber disk is rubbery
and light so it can sit on any disk, but only disks 1, . . . , k
where k ∈ {0} ∪ N can appear above the rubber disk (when
k = 0 no disk can sit on top of the rubber disk). At any point
in time, however, all disks must represent a legitimate Tower
of Hanoi state, i.e. respecting proper placement of disk sizes
once the rubber disk has been ignored and taken out of the
picture. The goal of this variation, called Rubber Disk in The
Way, is to transfer the entire stack of disks to another peg and
end up with the rubber disk on its original peg (with nothing
on top or below).

Fig. 4. Rubber disk in the way, n = 4

It is not immediately obvious how one could benefit from
placing a disk on top of the rubber disk (e.g. when k > 0). For
instance, a trivial solution, though not optimal since it ignores
k, is to first move the rubber disk on top of the initial stack of
height n, then treat the resulting problem as one instance of
Tower of Hanoi with n+1 disks, where the rubber disk plays

to role of disk 1 (the smallest). Finally, the rubber disk (still on
top of the stack) is moved to its original peg. This explicitly
requires 1+(2n+1−1)+1 = 2n+1 +1 moves (which can still
be optimized because the first and last moves of the rubber
disk may be redundant, so to be exact, we have 2(2n− 1)− 1
and 2(2n − 1) + 1 moves for odd and even n, respectively).
Since the above solution makes no use of k (in fact it treats
k as 0), then can we do better? Well, if k ≥ n − 1, then
we can simply transfer the stack of n disks in 2n − 1 moves
with the standard Hanoi algorithm while keeping the rubber
disk in place at all times. Therefore, we must use k somehow,
and the optimal number of moves will vary asymptotically in
[2n, 2 · 2n].

We first present a non-optimal algorithm that guarantees an
asymptotic (2 − 1

2α−1 )2n number of moves, where 0 < α =
n − k ≤ n. To keep the illustration simple, we assume that
the original stack of n disks will end up on some peg and
the rubber disk on another (not necessarily its original peg).
As this can be fixed by at most two additional moves, 2 the
asymptotic behavior is preserved. In addition, we use n as an
argument within the recursive function RubberDiskInTheWay,
as well as a global parameter (in Forward).

RubberDiskInTheWay(n, x, y, z)
if n > k

then Hanoi(k, x, z, y)
(y, z)←Forward(k + 1, x, y, z)
Move(1, x, z)
(x, y)←Backward(n− 1, x, y, z)
Hanoi(k, y, x, z)

else Hanoi(n, x, y, z)

Forward(h, x, y, z)
if h < n

then Move(1, x, z)
Hanoi(h, y, x, z)
return Forward(h+ 1, x, z, y)

return (y, z)

Backward(h, x, y, z)
if h > k

then Hanoi(h, y, z, x)
Move(1, y, z)
return Backward(h− 1, y, x, z)

return (x, y)

The algorithm above works by first placing the top k disks
on the rubber disk (first call to Hanoi in RubberDiskInThe-
Way) to make a stack of height k+1, then gradually grow the
height of that stack to n (using Forward) until disk n is free
to move. After moving disk n, we gradually shrink the height
of the stack from n down to k + 1 (using Backward) to pile
up the n−k largest disks (thus moving n−k−1 disks on top
of disk n). Finally, we transfer the k disks that sit above the

2An initial move of the rubber disk to the other empty peg will produce the
symmetric solution. In addition, one last move of the rubber disk can ensure
its proper positioning.



rubber disk (second call of Hanoi in RubberDiskInTheWay),
leaving the rubber disk free.

It is easy to see that RubberDiskInTheWay contributes
asymptotically 2 · 2k moves through its two calls to Hanoi,
and

[1 + (2k+1 − 1)] + [1 + (2k+2 − 1)] + . . .+ [1 + (2n−1 − 1)]

moves through each of the Froward and Backward algorithms,
resulting in a total of

2(2k + 2k+1 + . . .+ 2n−1) = 2k+1 + 2k+2 + . . .+ 2n

moves (asymptotically). Perhaps one of the famous proofs by
induction pertains to power series, so we can easily prove (by
induction) our result stated earlier for n > k (recall α = n−k).

2k+1 + . . .+ 2n =
(
2− 1

2α−1

)
2n

The inductive step for n = m > n0 proceeds as follows:

2k+1 + . . .+ 2m = (2k+1 + . . .+ 2m−1) + 2m

=
(
2− 1

2m−1−k−1

)
2m−1 + 2m = 2m + 2m − 2m−1

2m−1−k−1
=

2 · 2m − 2m

2m−k−1
=
(
2− 1

2m−k−1

)
2m

Now let us articulate the base case. Since we had to isolate
one term in the above sum (namely 2m), the inductive step
should work as long as the sum has at least that one term
and, therefore, m must satisfy m ≥ k + 1. So m > k = n0

and hence we must verify the base case for n = k. But since
the statement of the proven property requires n > k, such a
base case is not valid. How do we handle this subtlety? Well,
the inductive step still works if m > k + 1, so we could set
n0 = k + 1 and verify the base case for all n ≤ k + 1. But
since n > k, the base case for n = k+1 is all we need, which
states that 2k+1 = (2− 1

21−1 )2k+1 (true).
In light of the above discussion, when a condition like n > k

is not stated explicitly, do we face an endless search for a base
case? The answer is, of course, “No” because one has to know
something about what is being proved. A statement such as
the above requires a condition for it to be true. On the other
hand, if the truth of it cannot be established, then the failure
of the base case is exactly what we want.

One can interpret the solution presented above as wedging
the rubber disk en route in its “correct” relative position below
the top k and above the remaining n − k disks. Therefore,
we seem to be solving for a setting in which disk k + 1 was
magically pulled away from the stack and placed on a separate
peg, and must remain there after the transfer. Intuitively,
pulling the smallest disk away does not affect the asymptotic
number of moves, while pulling the largest disk away reduces
that asymptotic number by half (with the general number of
moves being anywhere between the two bounds).

However, the algorithm still does not benefit from the fact
that the rubber disk itself can be placed anywhere. Therefore,
we can do even better! In fact, the optimal solution is not that
hard to conceive. The trick is to virtually consider the rubber
disk and the smallest k disks as one entity (which can assume
two configurations, either rubber disk on top of k disks, or k

disks on top of rubber disk). This entity represents the smallest
disk in a Tower of Hanoi instance with n−k+1 disks, where
this smallest disk requires 1 + (2k − 1) = 2k moves to move
once. By Fact 3, it is then easy to see that the total number
of moves is asymptotically 2k(2n−k) + 2n−k = 2n + 2n−k,
since the smallest disk must move 2n−k times. Therefore, the
optimal number of moves is asymptotically (2− 2k−1

2k
)2n.

We end this section with a funny recursive algorithm for the
Rubber Disk in The Way variation, for the sake of illustrating
how a “seemingly good” solution might not work out nicely
after all:

KeepMovingIt(n, x, y, z)
if n > 0

then Move(1, y, z) (rubber)
KeepMovingIt(n− 1, x, z, y)
Move(1, z, y) (rubber)
Move(1, x, z)
Move(1, y, x) (rubber)
KeepMovingIt(n− 1, y, x, z)
Move(1, x, y) (rubber)

There is a nice symmetry to the solution and, in addition,
observe that by ignoring the rubber moves in the above
description, the algorithm will be exactly that of a standard
Tower of Hanoi. Unfortunately, the recurrence an = 2an−1+5
is not as good. By changing the recurrence into a homogeneous
one (with the same technique used so far), we obtain an =
3an−1− 2an−2, with the characteristic equation x2 = 3x− 2,
and r1 = 1 and r2 = 2 as the two distinct roots. Therefore,
we conclude that an = c1 + c22n. Now,

a0 = c1 + c2 = 0

a1 = c1 + 2c2 = 1

a2 = c1 + 4c2 = 7

where a0 and a1 correspond to trivial solutions, and a2 is
obtained from the recurrence a2 = 2a1 + 5 = 7 (already an
indication that our solution is not optimal). A common mistake
here is to use a0 and a1 to solve for c1 and c2, and obtain
an = 2n − 1 (as good as plain old Hanoi!). Indeed, a0 and
a1 cannot be used as the base to solve for c1 and c2 because
a1 6= 2a0 + 5, a result of the solution not being optimal (the
same is true for a0 and a2 since a2 6= 3a1−2a0). Therefore, we
should use a1 and a2 instead, to obtain c1 = −5, c2 = 3, and
an = 3 ·2n−5 (and observe that this does not satisfy a0). This
is outside the asymptotic range [2n, 2 · 2n], as expected. The
sequence an≥1 mod 10 cycles through 1, 7, 9, and 3 (same
as DoubleDecker but shifted), which can be easily proved by
induction (Hanoi cycles through 1, 3, 7, and 5).

V. EXPLODING TOWER OF HANOI

We now consider an Exploding Tower of Hanoi. In this
variation, if the largest remaining disk becomes free with
nothing on top, it explodes and disappears. The goal is to
make the whole tower disappear. For instance, an = 0 when
n ≤ 1 (with either no disks or one free disk). With two disks,
once the smallest is moved, the largest disk becomes free and



explodes, so the smallest, being now the largest remaining free
disk, will follow, resulting in a2 = 1. Similarly, it is not hard
to see that a3 = 2. The optimal solution can be derived as
follows: To free the largest disk, one must move the second
largest, which as illustrated for the case of n = 2, will also
explode. Observe that no disks can explode prior to the largest.
Therefore, we first transfer n−2 disks to some peg, then move
the second largest disk to another, hence freeing two disks for
two explosions at once, and finally repeat the solution for the
remaining n− 2 disks.

Exploding(n, x, y, z)
if n > 1

then Hanoi(n− 2, x, z, y)
Move(1, x, z)
disks n and n− 1 explode
Exploding(n− 2, y, x, z)

Given this algorithm, we establish the recurrence:

an = an−2 + 2n−2

and change it into a homogeneous one by annihilation of 2n−2

as follows:
an = an−2 + 2n−2

2 · an−1 = 2 · an−3 + 2 · 2n−3

an − 2an−1 = an−2 − 2an−3

to finally obtain an = 2an−1 + an−2 − 2an−3 and the
characteristic equation x3 = 2x2 + x − 2. By observing that
r1 = 1 is a root, we express the characteristic equation as
(x− 1)(x2 − x− 2) = 0 and solve the quadratic equation for
the other two roots. The three distinct roots will be r1 = 1,
r2 = −1, and r3 = 2. Therefore, an = c1 + c2(−1)n + c32n,
and since

a0 = c1 + c2 + c3 = 0

a1 = c1 − c2 − 2c3 = 0

a2 = c1 + c2 + 4c3 = 1

we have c1 = −1/2, c2 = 1/6, and c3 = 1/3. Finally,

an =
(−1)n + 2n+1 − 3

6
So the Exploding Tower of Hanoi is asymptotically three

times as fast as the Tower of Hanoi. An interesting aspect of
this solution, and more generally solutions to recurrences for
integer sequences, is the ability to generate statements related
to divisibility that are suitable for proofs by induction. For
instance, an immediate thought is to prove (by induction) that
(−1)n + 2n+1− 3 is a multiple of 6, as follows for n = m >
n0:

(−1)m + 2m+1 − 3 = (−1)m−2 + 4 · 2m−1 − 3

= [(−1)m−2 + 2m−1 − 3] + 3 · 2m−1 = 6k + 6 · 2m−2

The above (strong) induction requires that 2m−2 is an integer
so m− 2 ≥ 0, and thus m > 1 = n0. So we must verify the
base case for n = 0 and n = 1, both of which are true.

Iterating an≥0 produces the following integer sequence
0, 0, 1, 2, 5, 10, 21, 42, 85, 170, . . . (https://oeis.org/A000975
[10]), with an = 2an−1 if n is odd, and an = 2an−1 + 1 if n
is even (and n > 0). This property can be proved by induction
using the recurrence we derived earlier. The inductive step
for n = m > n0 works as follows:

am = 2am−1 + am−2 − 2am−3 = 2am−1 + [am−2 − 2am−3]

which is 2am−1 + 0 if m− 2 (and m) is odd, and 2am−1 + 1
if m − 2 (and m) is even. Since the inductive step requires
that m − 3 ≥ 0, i.e. m > 2 = n0, we must verify the base
case for n = 1 and n = 2, which are both true since a1 = 2a0

and a2 = 2a1 + 1.
The above property means that an≥1 is the nth non-negative

integer for which the binary representation consists of alter-
nating bits. Therefore, when n ≥ 2, this alternation starts with
1 and has exactly n − 1 bits, making it super easy to write
down an in binary (for Hanoi, an consists of n bits that are all
1s). 3 This is another nice candidate for a proof by induction,
for n = m > n0:

The number am−1 has m− 2 alternating bits starting with
1. If m is odd (so is m − 2), then am−1 has an odd number
of bits thus ending with 1, and am = 2am−1 shifts the bits of
am−1 and adds 0. If m is even (so is m−2), then am−1 has an
even number of bits thus ending with 0, and am = 2am−1 +1
shifts the bits of am and adds 1. In both cases, am has m− 1
alternating bits starting with 1.

The working of this inductive step relies on am−1 having
at least one 1 bit in its binary representation; therefore, we
need m− 2 ≥ 1 or m > 2 = n0. This means n = 2 must be
our base case and, indeed, a2 = 1 has an alternating pattern
of 2− 1 = 1 bit starting with 1.

Finally, it is worth noting here that this is one of the few
Tower of Hanoi variations where the optimal number of moves
can be even (an≥1 mod 10 cycles through 0, 1, 2, and 5).

VI. THE PIVOT

In this variation, called the Pivot Tower of Hanoi, only two
types of moves will be allowed. Either the smallest disk (disk
1) is moved to any peg, or some disk and the smallest exchange
places (and this is considered to be one move). Therefore,
except for the smallest disk, disks can only move by pivoting
around disk 1, hence the name of this variation. Of course,
we still require that, by pivoting, a disk cannot be placed on a
smaller one. So, for instance, only the disk on top of a stack
can be exchanged with the smallest.

It is not immediately clear why this variation can be solved.
But it can, since every move of disk i 6= 1 to peg x can be
emulated by moving disk 1 to peg x then making the exchange
with disk i, and in fact, the solution can be even faster than
the original Tower of Hanoi; the main focus will be on a proof
by induction.

First we observe that the optimal solution for the Tower of
Hanoi is an alternating Hanoi sequence of moves in which

3The recurrence an = an−2 + 2n−2 already suggests that an is either a
sum of consecutive even powers of 2, or a sum of consecutive odd powers of
2, hence the alternating bit pattern.



Fig. 5. Pivot Tower of Hanoi for n = 5, the disk on top of a stack can be
exchanged with the smallest.

the smallest disk is involved in every other move. This can
be seen from Fact 3: Since disk 1 makes 2n−1 moves, there
are 2n−1 − 1 moves of the other disks (for a total of 2n − 1
moves). With the solution being optimal, we never move the
smallest disk twice in a row, so the 2n−1 moves of disk 1
must perfectly interleave the rest, and we have an alternating
sequence of moves (starting with the smallest disk). Similarly,
an alternating Pivot sequence for the Pivot Tower of Hanoi
is a sequence of moves that alternate between moving disk
1 (also the starting move) and pivoting a disk (exchanging it
with disk 1). We will say that two alternating sequences are
equivalent if they result in the same placement of all disks,
except possibly for the smallest (disk 1). We are now ready
for a proof by induction for the following:

(H2P) Every alternating Hanoi sequence of length l has
an equivalent alternating Pivot sequence of length at most l,
and (P2H) every alternating Pivot sequence of length l has
an equivalent alternating Hanoi sequence of length at most l.

An inductive step can proceed as follows for l = k > l0:
(H2P) Given an alternating Hanoi sequence h1, . . . , hk,

if hk is a move of disk 1, then consider the alternating
Pivot sequence equivalent to h1, . . . , hk−1; this alternating
Pivot sequence of length at most k − 1 is also equivalent
to h1, . . . , hk (since the last move is for disk 1). If hk is
a move of disk i 6= 1 to peg x, then consider the alternating
Pivot sequence equivalent to h1, . . . , hk−2; we can assume that
this alternating Pivot sequence of length at most k − 2 ends
with pivoting, otherwise we can simply drop the last move
of disk 1 only to make the sequence even shorter. Therefore,
we can extend p1, . . . , pk−2 by first moving disk 1 to peg x,
then exchanging disk i with disk 1 (pivoting), to produce an
alternating Pivot sequence equivalent to h1, . . . , hk of length
at most (k − 2) + 2 = k.

(P2H) Given an alternating Pivot sequence p1, . . . , pk, if
pk is a move of disk 1, then consider the alternating Hanoi
sequence equivalent to p1, . . . , pk−1; this alternating Hanoi
sequence of length at most k−1 is also equivalent to p1, . . . , pk
(since the last move is for disk 1). If pk is an exchange of
disk i on peg x with disk 1 on peg y, then consider the
alternating Hanoi sequence equivalent to p1, . . . , pk−2; we can
assume that this alternating Hanoi sequence of length at most
k − 2 ends with a move for some disk j 6= 1, otherwise we
can simply drop the last move of disk 1 only to make the
sequence even shorter. Therefore, we can extend h1, . . . , hk−2

by first moving disk 1 to peg z (if it’s not already there), then
moving disk i from peg x to peg y, to produce an alternating

Hanoi sequence equivalent to p1, . . . , pk of length at most
(k − 2) + 2 = k.

Since the (strong) inductive step requires k − 2 ≥ 0 (the
length of the empty sequence), we must have k > 1 = l0 and
hence verify the base case for l = 0 and l = 1, which are both
true because the empty sequence (of length zero) is equivalent
to any alternating (Hanoi or Pivot) sequence of length l ≤ 1,
in which only the smallest disk can move.

The equivalence of alternating sequences (we only need
H2P) implies that the first 2n − 2 moves (excluding the last
move of disk 1) in the optimal solution of the Tower of Hanoi
have an equivalent alternating sequence of moves for the Pivot
Tower of Hanoi. Adding one last move of the smallest disk
positions it correctly on top of the stack for a total of at most
2n − 1 moves. But how fast is the optimal solution for the
Pivot Tower of Hanoi if we do not require the sequence of
moves to be alternating (we have no choice but to alternate in
the Tower of Hanoi)?

A quick exploration reveals that, for the Pivot Tower of
Hanoi, a0 = 0, a1 = 1, a2 = 3, a3 = 7 (so far matching the
Tower of Hanoi), and a4 = 13 (as opposed to a4 = 15 for the
Tower of Hanoi). To gain some insight into the recurrence, an
optimal solution must transfer the top n− 1 disks but without
placing the smallest on top of the stack, so that it can be
used for pivoting to move the largest disk to its destination.
This maneuver results in a stack of n − 2 disks with disk 1
separated from the stack, which implies that the solution for
n − 1 disks needs to be repeated, except that the first move
is now provided for free! This suggests that the recurrence is
an = (an−1 − 1) + 1 + (an−1 − 1) = 2an−1 − 1. However,
depending on the value of n, the separation of the smallest
disk might not place it on a favorable peg; for instance, disk
1 can end up sitting on top of disk n (with disks 2, . . . , n− 1
forming a stack). So we require an extra move before we can
pivot disk n to its destination. But this will place disk 1 back
on the same peg, so we require yet another extra move to carry
out the remainder of the solution. As it turns out for n ≥ 3,
an = 2an−1 − 1 when n is even, and an = 2an−1 − 1 + 2 =
2an−1 + 1 when n is odd.

Pivot(n, x, y, z,NoLstMv = False, F rstMvFree = False)
if n > 2

then Pivot(n− 1, x, z, y,True, F rstMvFree)
if n ≡ 1 (mod 2)

then Move(1, x, z)
Exchange(n)
if n ≡ 1 (mod 2)

then Move(1, x, z)
Pivot(n− 1, y, x, z,NoLstMv,True)

if n = 2
then if not FrstMvFree

then Move(1, x, z)
Exchange(n)
if not NoLstMv

then Move(1, x, z)
if n = 1

then if not NoLstMv and not FrstMvFree
then Move(1, x, z)



To annihilate the extra term in the non-homogeneous recur-
rence, we find

an + an−1 = 2an−1 + 2an−2

to yield an = an−1 + 2an−2 and the characteristic equation
x2 = x + 2 with roots r1 = 2 and r2 = −1. So an =
c12n + c2(−1)n. Since our recurrence works for n ≥ 3, we
now have:

a2 = 4c1 + c2 = 3

a3 = 8c1 − c2 = 7

with c1 = 5/6 and c2 = −1/3. Therefore, when n ≥ 2:

an =
5 · 2n − 2(−1)n

6
So the Pivot Tower of Hanoi is asymptotically 6/5 times

as fast as the Tower of Hanoi. It is worth noting here that the
number of exchanges satisfy, for n ≥ 1, en = 2en−1 + 1,
with e1 = 0; thus en = 2n−1 − 1 for n ≥ 1, which
means limn→∞ en/an = 3/5, so exchanges make about a
3/5 fraction of the total number of moves (as opposed to half
in the trivial alternating solution).

As in the previous section, the expression for an suggests
to prove by induction that 5 · 2n − 2(−1)n is a multiple of
6 when n ≥ 1. The inductive step for m > n0 proceeds as
following:

5 · 2m − 2(−1)m = 5 · 4 · 2m−2 − 2(−1)m−2

= [5 · 2m−2 − 2(−1)m−2] + 15 · 2m−2 = 6k + 6 · 5 · 2m−3

For this strong induction we need 2m−3 to be an integer, so
m > 2 = n0. Therefore, n = 1 and n = 2 must be verified as
(and hence are) the base cases.

Finally, we observe that iterating an≥0

produces the following integer sequence:
0, 1, 3, 7, 13, 27, 53, 107, 213, 427, 853, 1707, . . .
(https://oeis.org/A048573 [10]). Therefore, starting with
n = 2, an mod 10 alternates between 3 and 7, and starting
with n = 3, an mod 100 cycles through 7, 13, 27, and 53.
These properties can also be proved by induction.

VII. BEAM ME UP SCOTTY! (THE FIBONACCI TOWER)

For our last variation, we consider one called Beam Me
Up Scotty, in which disk i for 1 < i < n is teleported for
free between the two disks i − 1 and i + 1, whenever the
former is sitting directly on top of the latter. 4 This seamless
teleport, which does not count among the moves, stands behind
the borrowed name of this variation from a phrase in popular
culture on Star Trek (even though captain James Kirk never
really uttered that phrase) [6].

The solution to this variation will relate the number of
moves in a Tower of Hanoi game to the Fibonacci numbers.
As usual, we must (recursively) transfer the top n − 1 disks

4We do not explicitly require that the teleported disk be on top of its stack;
however, this is surprisingly the only possible scenario: when disk i − 1 is
placed on top of disk i+1, the teleported disk i is either free to move (on top
of its stack), or sitting directly under disk i− 2; the latter case is impossible
since disk i− 1 would have been first to teleport prior to its move.

first, then move the largest disk to its destination, and finally
transfer n − 2 disks (recursively) on top of the largest; the
(n−1)st disk will benefit from the free teleport between disks
n − 2 and n. Obviously, when n ≤ 2, no disk can benefit
from any teleport. The algorithm is shown below, and gives
the recurrence an = an−1 + an−2 + 1, for n > 2.

BeamMeUpScotty(n, x, y, z)
if n > 2

then BeamMeUpScotty(n− 1, x, z, y)
Move(1, x, z)
BeamMeUpScotty(n− 2, y, x, z)
disk n− 1 will be teleported

else Hanoi(n, x, y, z)

Iterating an≥0 produces the integer sequence
0, 1, 3, 5, 9, 15, 25, 41, . . . that, starting with a1, coincides
with Leonardo numbers (https://oeis.org/A001595 [10]). For
n > 0, we can show that an = 2Fn+1 − 1, by induction for
n = m > n0:

am = am−1 + am−2 + 1 = 2Fm − 1 + 2Fm−1 − 1 + 1

= 2(Fm + Fm−1)− 1 = 2Fm+1 − 1

Since the recurrence is defined for n > 2, the above (strong)
inductive step requires m > 2 (also m− 2 ≥ 0 so that am−1,
am−2, and Fm−1 are all defined). Therefore, m > 2 = n0,
and the base case must be verified for n = 1 and n = 2.
Indeed, a1 = 1 = 2F2 − 1 and a2 = 3 = 2F3− 1.

Solving the recurrence an = an−1 + an−2 + 1 using an −
an−1 = an−1 − an−3 and the characteristic equation x3 =
2x2 − 1, which is (x− 1)(x2 − x− 1) = 0, will result in

an =
2√
5

[
φn+1 − (1− φ)n+1

]
− 1

for n > 0 and can also be proved by induction, where φ = (1+√
5)/2 is the golden ratio (in fact this solution is exactly the

expression for 2Fn+1 − 1 obtained by solving the recurrence
for Fibonacci numbers).

Interestingly, one can easily show that the number of
teleports also satisfies the recurrence tn = tn−1 + tn−2 + 1
for n > 2 with t0 = t1 = t2 = 0, giving tn = Fn − 1
for n > 0. Therefore, if we were to add the number of
moves and the number of teleports for n > 0 we obtain
an + tn = 2Fn+1 − 1 + Fn − 1 = Fn+3 − 2.

Another interesting observation is that the solution to this
variation is infinitely faster (in the asymptotic sense) than the
original Tower of Hanoi (a feature that is shared only with
Move One Get Some Free variation that can explicitly move
multiple disks simultaneously). This can be seen from the fact
that an ≈ −1 + 2φn+1/

√
5 for large n and that

lim
n→∞

2φn+1

√
5 · 2n

= 0

It is worth noting here that if disk n is also allowed
to be teleported under disk n − 1 whenever disk n − 1
makes a move, then an≥0 becomes shifted as follows:
0, 1, 1, 3, 5, 9, 15, 25, 41, . . .. This gives an = 2Fn − 1 (and
tn = tn−1 + tn−2 = Fn−1) for n > 0, which essentially



amounts to solving an instance of n − 1 disks as originally
defined for Beam Me Up Scotty, with one additional free
teleport for the largest disk (disk n). This results in Fn+2− 1
for an + tn when n > 0. This modification preserves the
asymptotic speed of Beam Me Up Scotty relative to the other
variations (it speedups it up by φ). Regardless, the asymptotic
ratio of the number of moves to the number of teleports is
2φ = 1 +

√
5.

VIII. ON THE SPEED OF TOWER OF HANOI

To appreciate of effect of an on the time needed to solve
a particular variant of the Tower of Hanoi, observe that it
will only take about 544 millenniums to solve Beam Me Up
Scotty with n = 64 disks, compared to the 585 billion years
for Tower of Hanoi with the same number of disks, a speedup
of more than a million! But the Move One Get Some Free
remains the fastest, with a speedup of more than four billions
when n = 64 and k = 2, thus taking about 146 years for
Move One Get One Free.

Finally, and for the sake of pointing out a variation with
an infinite slow down, consider the original Tower of Hanoi
except that every move must involve the middle peg. This
variation is mentioned in [3]. Let the name of it be Man in
the Middle. A solution is presented below:

ManInTheMiddle(n, x, y, z)
if n > 0

then ManInTheMiddle(n− 1, x, y, z)
Move(1, x, y)
ManInTheMiddle(n− 1, z, y, x)
Move(1, y, z)
ManInTheMiddle(n− 1, x, y, z)

The recurrence generated by the above algorithm is an =
3an−1 + 2, which by inspection admits the solution an =
3n − 1 (proof by induction), with an asymptotic relative time
of (3/2)n (more than 1014 billion years for n = 64 disks).

Table 1 lists all variations in decreasing order of their
asymptotic time relative to Hanoi (from slowest to fastest).

Man in Middle k-Decker Rubber Disk Hanoi
(3/2)n 2k 1 + 2−k 1

1023 234 · 1010 117 · 1010 585 · 109

k = 2 k = 0

Pivot Exploding Beam Me Up Get k − 1 Free
5/6 1/3 2φ√

5
(2/φ)−n 2−n(k−1)/k

488 · 109 195 · 109 544 · 103 146
k = 2

TABLE I
ASYMPTOTIC TIME RELATIVE TO HANOI, AND APPROXIMATE REAL TIME
IN YEARS NEEDED TO TRANSFER n = 64 DISKS, ASSUMING ONE SECOND

PER MOVE.

IX. FINAL REMARKS

We explore the Tower of Hanoi as a vehicle to convey
classical ideas of recurrences and proofs by induction in a
new way. The variations considered here are relatively simple

compared to the more research inclined type of problems,
and provide a framework to strengthen the understanding
of recurrences and mathematical induction via a repetitive
and systematic treatment of the subject, while pointing out
how to avoid the pitfalls. We summarize below some of the
goals/highlights of the approach:
• Strengthen the general understanding of recurrences and

proofs by induction.
• Provide a mechanism that teaches how to establish recur-

rences and think about them (and eventually solve them).
• Describe a systematic way to handle recurrences that is

reasonable for introductory discrete mathematics.
• Suggest ways to enrich the standard learning environment

e.g. by asking for programming variations to a classically
known recursive algorithm.

• Construct proofs by induction from the expressions ob-
tained for solutions to recurrences, and/or by solving a
recurrence in different ways and equating the results.

• Highlight the pitfalls that are typically encountered in re-
currences (boundary conditions) and proofs by induction
(base cases), e.g. by making a clear post-treatment of the
base cases in light of the inductive step.

• Create opportunities to have fun with the endless varia-
tions of the Tower of Hanoi while learning the concepts.
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