Women in Machine Learning Workshop 12<sup>th</sup> of December 2011

Ina Fiterau, Carnegie Mellon University Artur Dubrawski, Carnegie Mellon University

# EXPLAINING DATASETS THROUGH HIGH-ACCURACY REGIONS

Work under review at the SIAM Data Mining Conference

1

#### OUTLINE

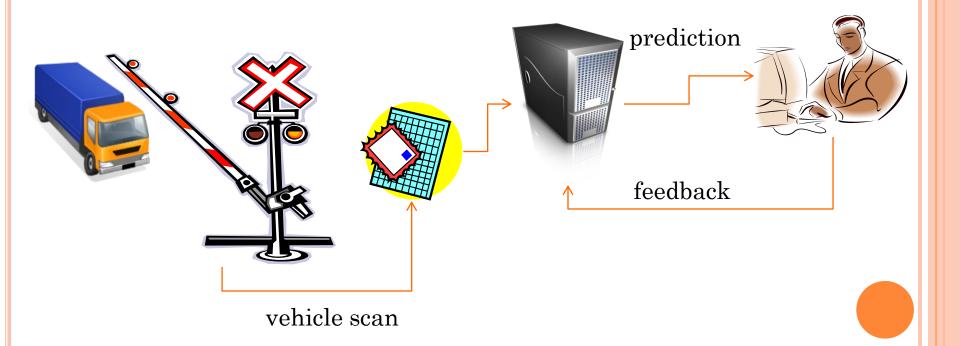
Motivation of need for interpretability

Explanation-Oriented Partitioning (EOP)

Evaluation of EOP

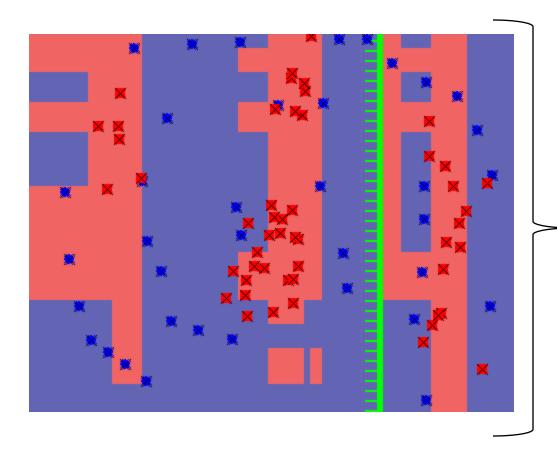
# EXAMPLE APPLICATION: NUCLEAR THREAT DETECTION

- Border control: vehicles are scanned
- Human in the loop interpreting results



## BOOSTED DECISION STUMPS

• Accurate, but hard to interpret

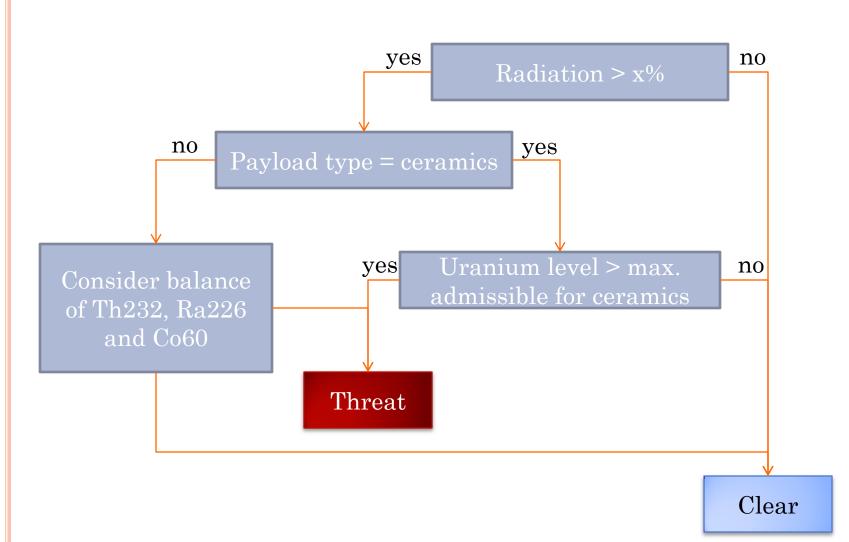




How is the prediction derived from the input?

Image obtained with the Adaboost applet.

#### Decision Tree – More Interpretable



#### **MOTIVATION**

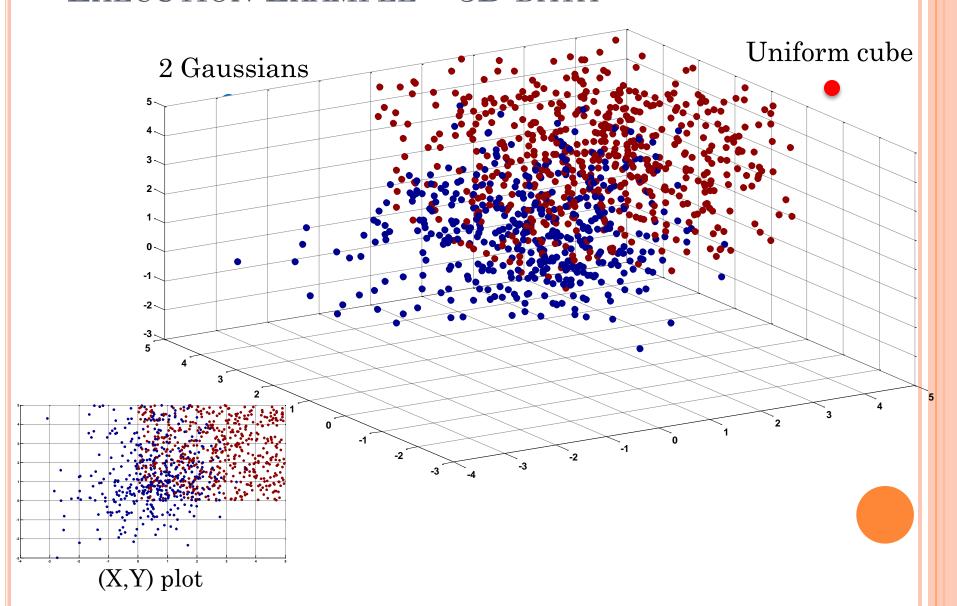
Many users are willing to trade accuracy to better understand the system-yielded results

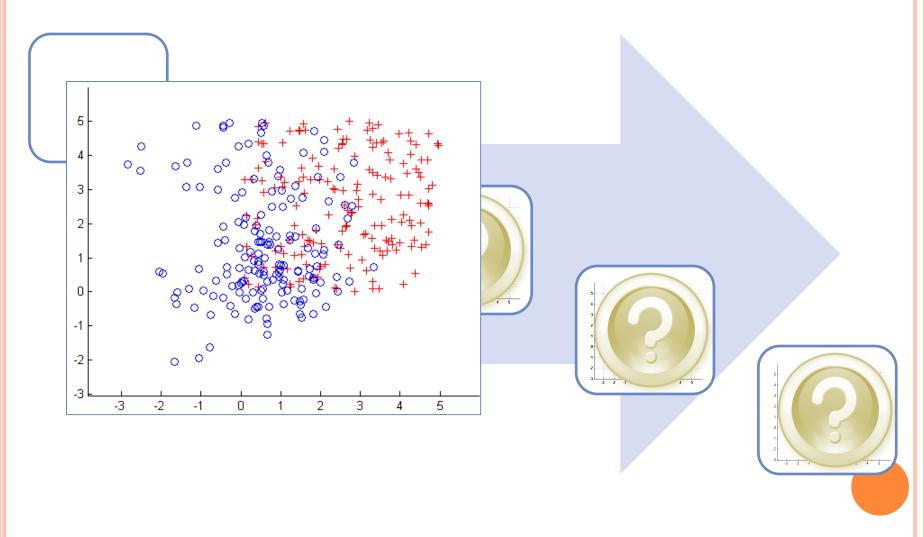
Need: simple, interpretable model

Need: explanatory prediction process

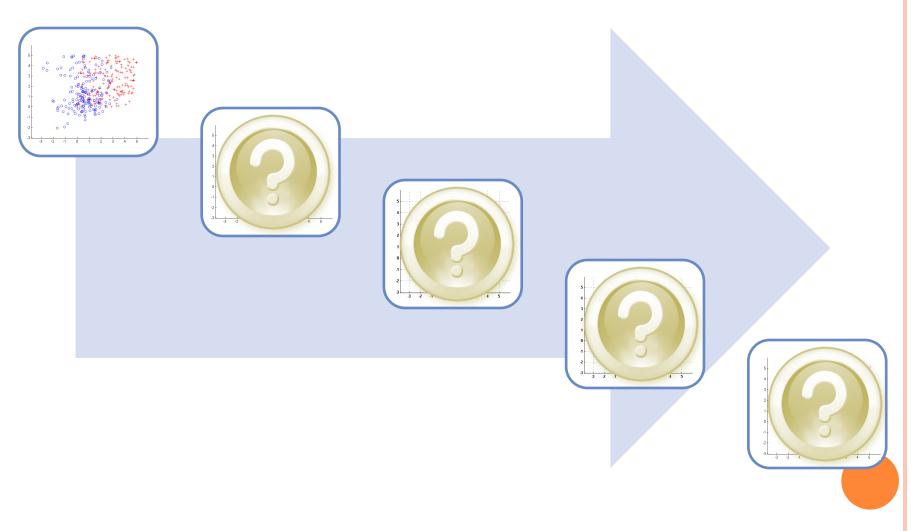
# EXPLANATION-ORIENTED PARTITIONING (EOP)

# EXPLANATION-ORIENTED PARTITIONING (EOP) EXECUTION EXAMPLE – 3D DATA

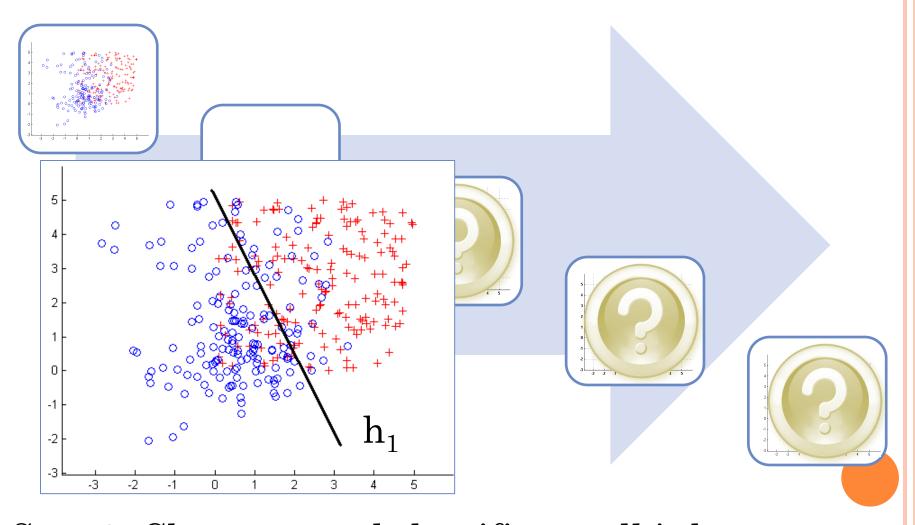




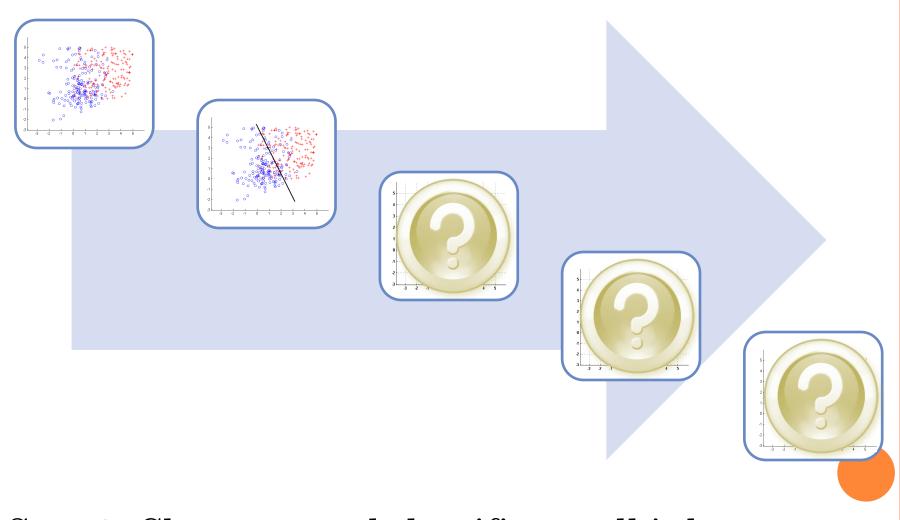
Step 1: Select a projection -  $(X_1, X_2)$ 



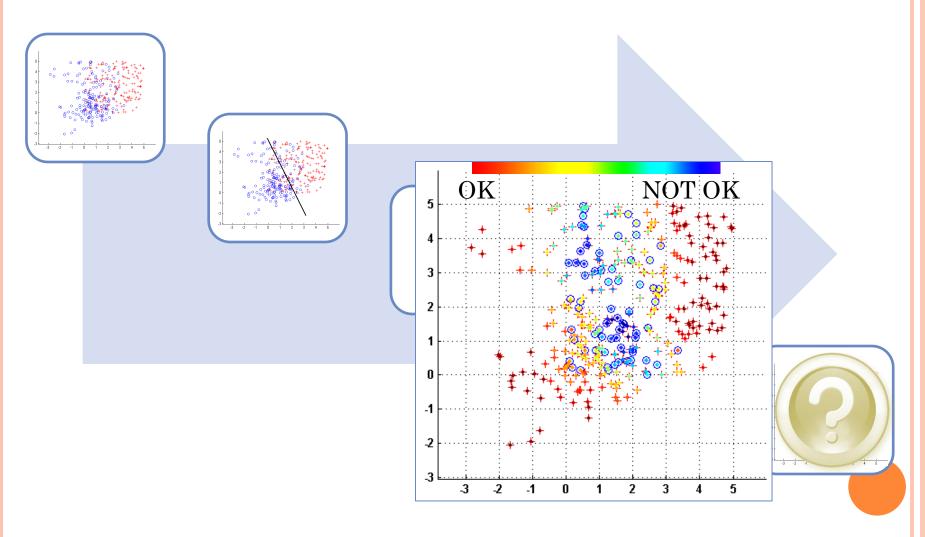
Step 1: Select a projection -  $(X_1, X_2)$ 



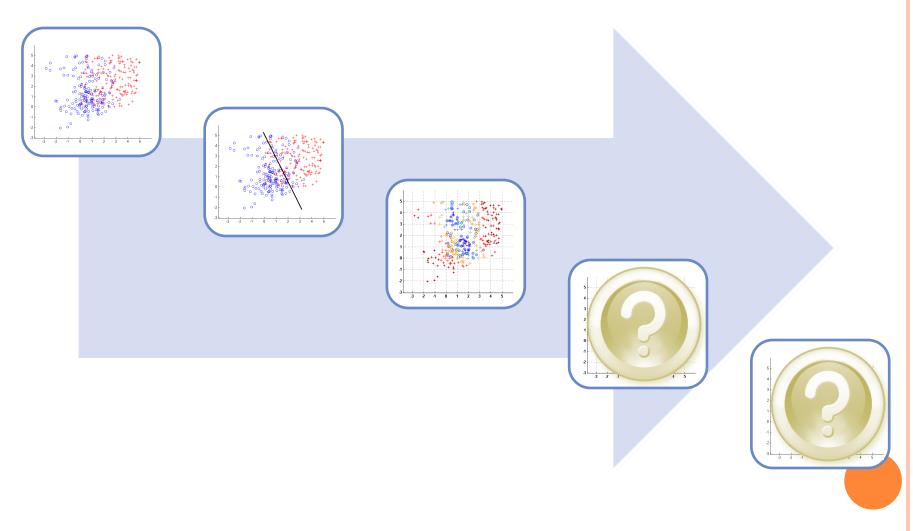
Step 2: Choose a good classifier - call it h<sub>1</sub>



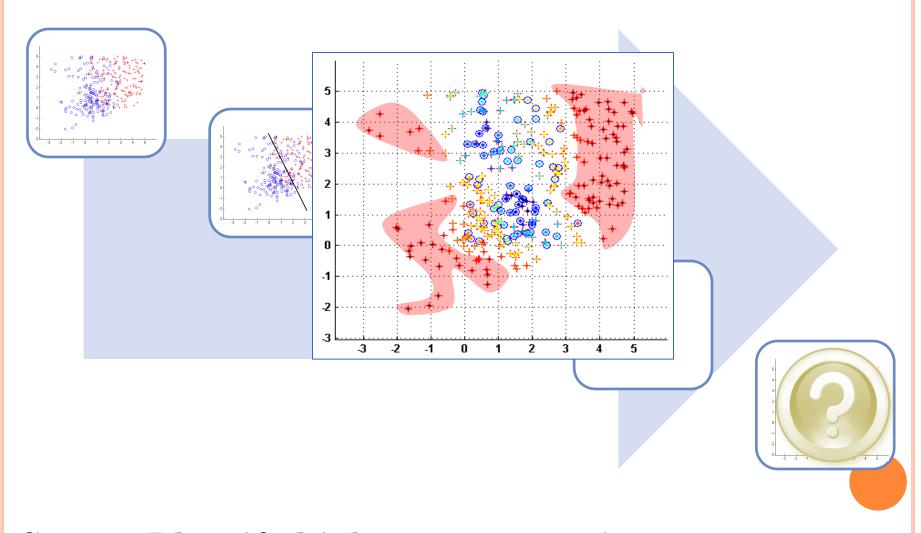
Step 2: Choose a good classifier - call it  $h_1$ 



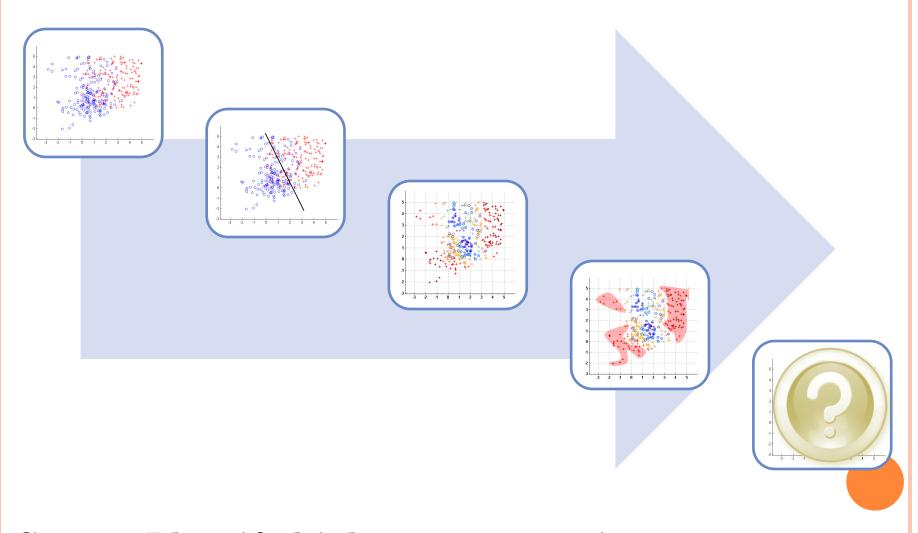
Step 3: Estimate accuracy of h<sub>1</sub> at each point



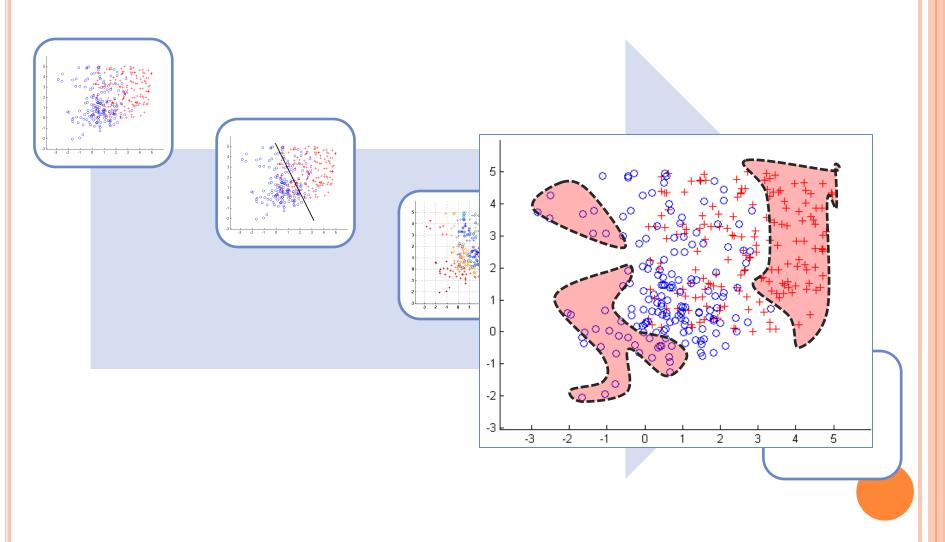
Step 3: Estimate accuracy of h<sub>1</sub> for each point



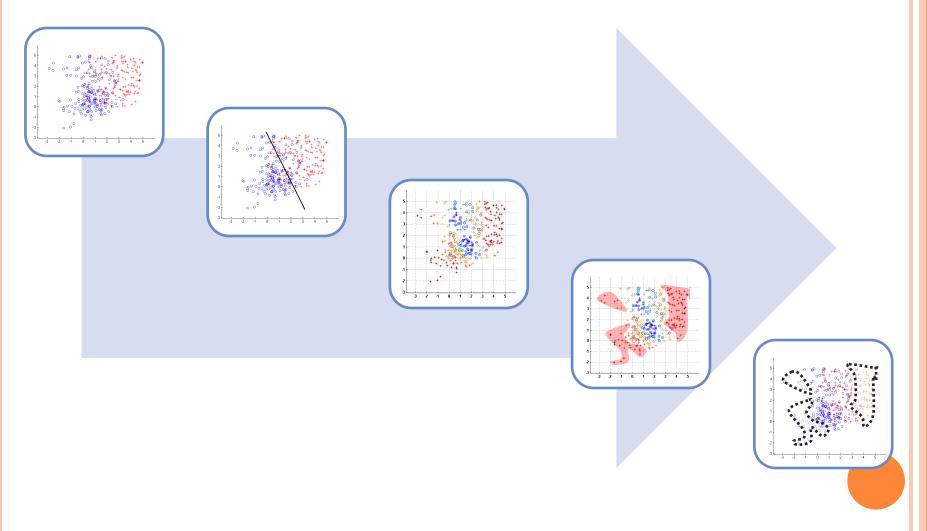
Step 4: Identify high accuracy regions



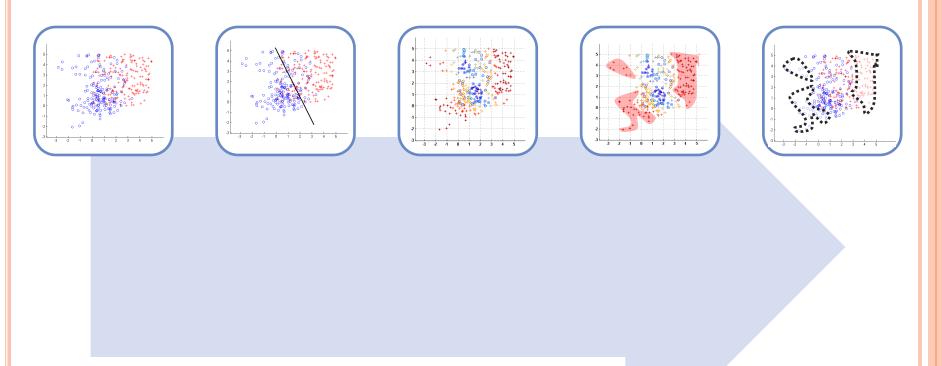
Step 4: Identify high accuracy regions



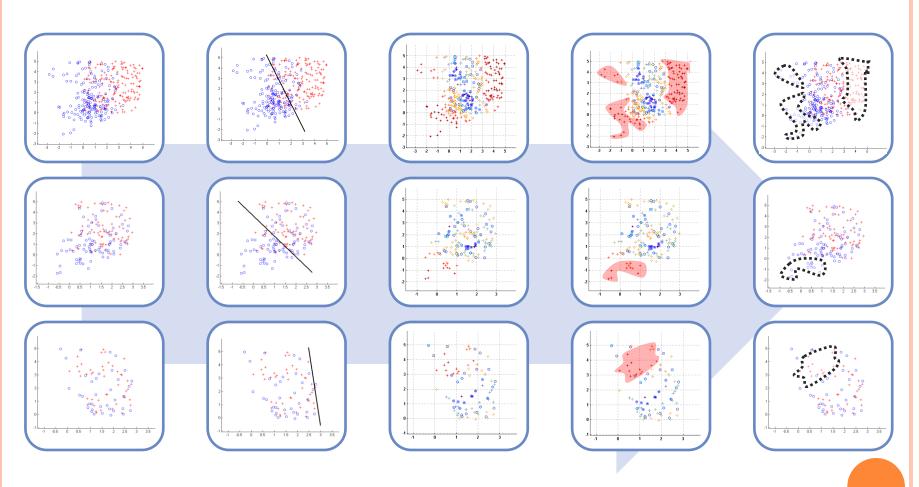
Step 5:Training points - removed from consideration



Step 5:Training points - removed from consideration

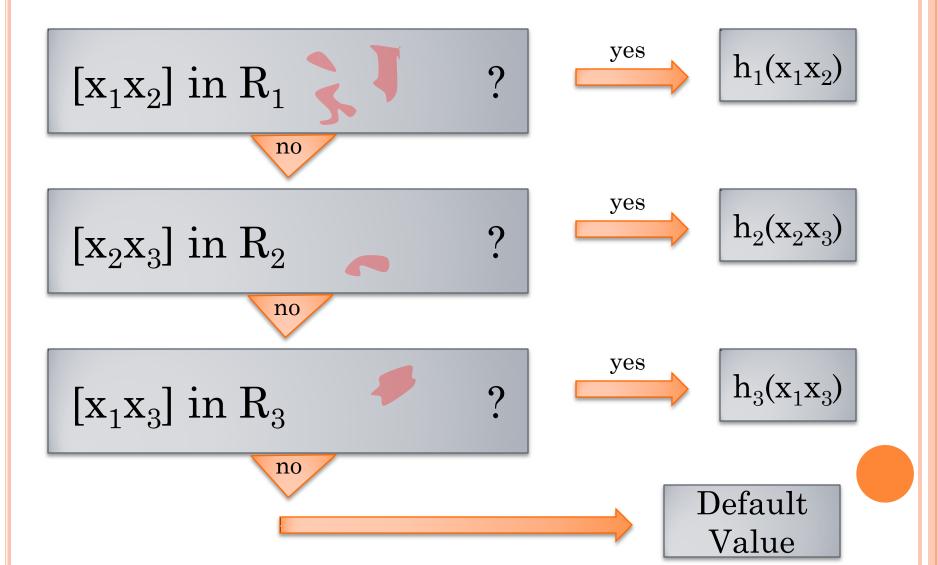


# Finished first iteration



Iterate until all data is accounted for or error cannot be decreased

# Learned Model – Processing Query [x<sub>1</sub>x<sub>2</sub>x<sub>3</sub>]

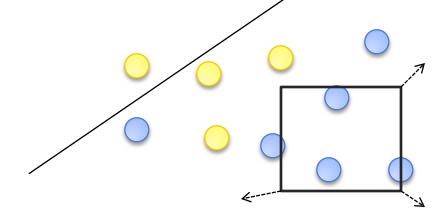


# PARAMETRIC REGIONS OF HIGH CONFIDENCE (BOUNDING POLYHEDRA)

• Enclose points in simple convex shapes (multiple per iteration)

Grow contour while train error is  $\leq \varepsilon$ 

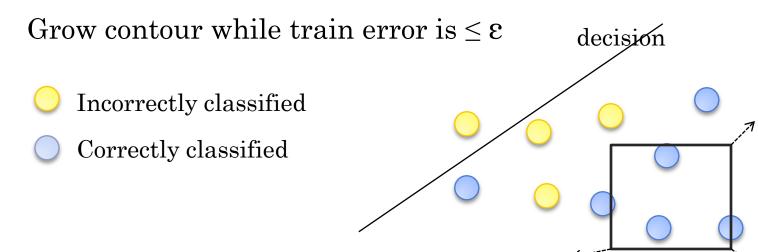
- Incorrectly classified
- Correctly classified



decision

# PARAMETRIC REGIONS OF HIGH CONFIDENCE (BOUNDING POLYHEDRA)

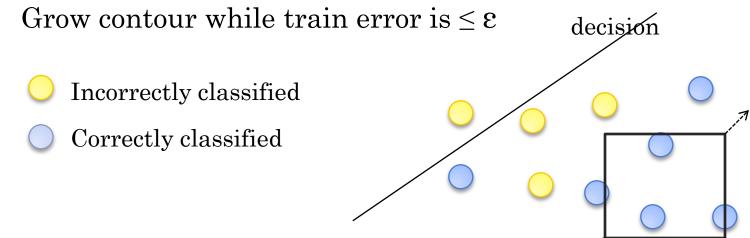
• Enclose points in simple convex shapes (multiple per iteration)



- Calibration on hold out set remove shapes that:
  - do not contain calibration points
  - over which the classifier is not accurate

# PARAMETRIC REGIONS OF HIGH CONFIDENCE (BOUNDING POLYHEDRA)

• Enclose points in simple convex shapes (multiple per iteration)



- Calibration on hold out set remove shapes that:
  - do not contain calibration points
  - over which the classifier is not accurate
- Intuitive, visually appealing hyper-rectangles/spheres

#### OUTLINE

Motivation of need for interpretability

• Explanation-Oriented Partitioning (EOP)

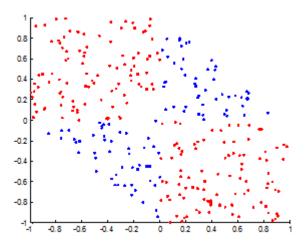
• Evaluation of EOP

Summary

# BENEFITS OF EOP

# - AVOIDING NEEDLESS COMPLEXITY -

Typical XOR dataset



## BENEFITS OF EOP

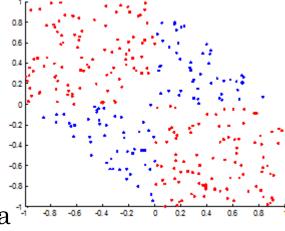
## - AVOIDING NEEDLESS COMPLEXITY -

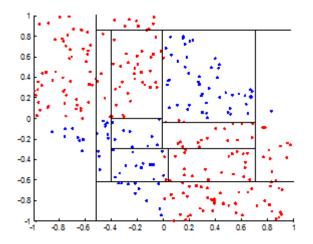
Typical XOR dataset

#### **CART**

- is accurate
- takes many iterations
- does not uncover or

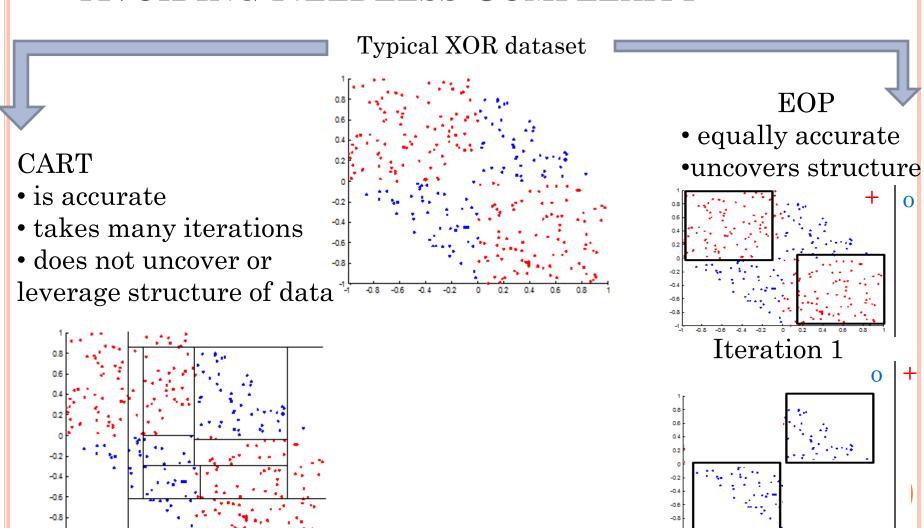
leverage structure of data





### BENEFITS OF EOP

- AVOIDING NEEDLESS COMPLEXITY -



Iteration 2

#### Comparison To Boosting

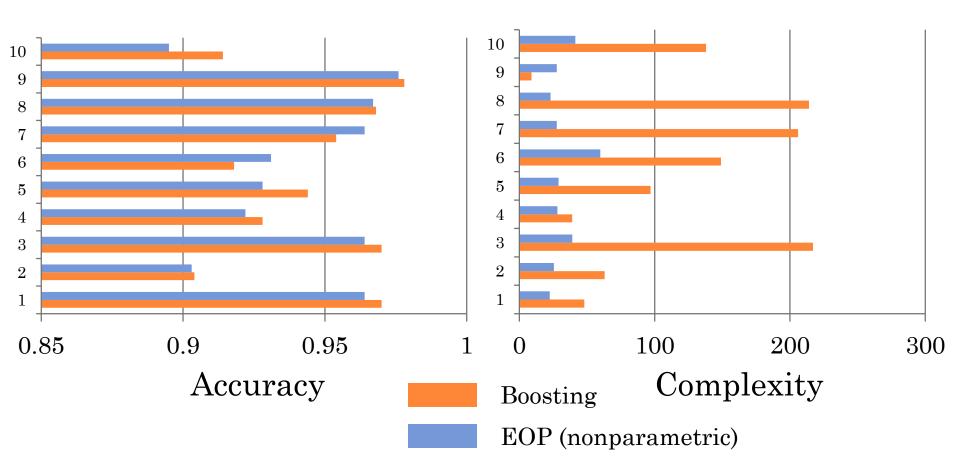
- What is the price of understandability?
- Why boosting?
  - It is an [arguably] good black-box classifier
  - Learns an *ensemble* using any type of classifier
  - Iteratively targets data misclassified earlier
- Criterion: Complexity of the resulting model
  - = number of vector operations to make a prediction

#### Comparison to Boosting - Setup

- Problem: Binary classification
- o 10D Gaussians/uniform cubes for each class
- Statistical significance: repeat experiment with several datasets and compute paired t-test p-values
- Results obtained through 5-fold cross validation

#### EOP VS ADABOOST - SVM BASE CLASSIFIERS

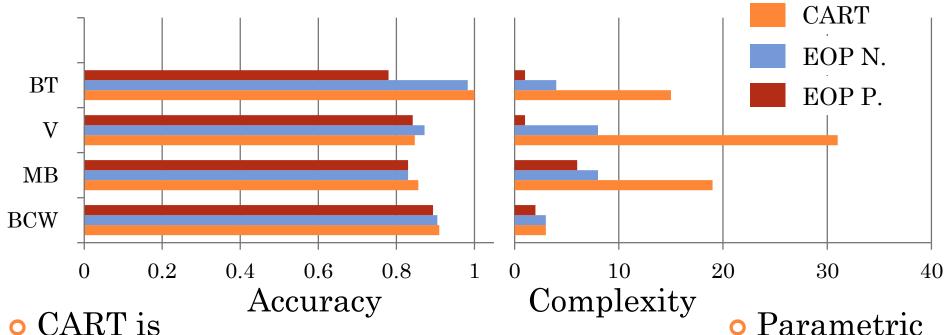
- EOP is often less accurate, but not significantly
- the reduction of complexity is statistically significant



Accuracy p-value: 0.832

Complexity p-value: 0.003

# EOP (STUMPS AS BASE CLASSIFIERS) VS CART DATA FROM THE UCI REPOSITORY

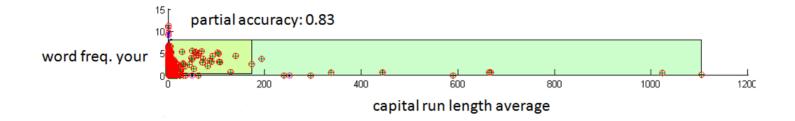


• CART is the most accurate

| Dataset       | # of Features | # of Points |
|---------------|---------------|-------------|
| Breast Tissue | 10            | 1006        |
| Vowel         | 9             | 990         |
| MiniBOONE     | 10            | 5000        |
| Breast Cancer | 10            | 596         |

ParametricEOP yieldsthe simplestmodels

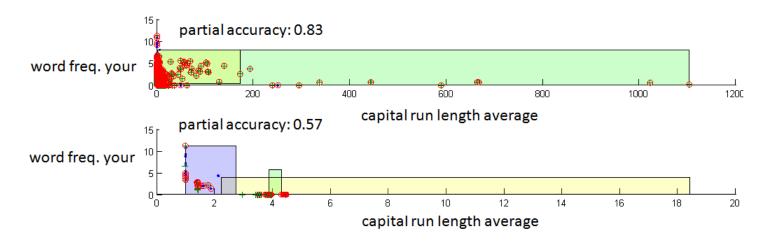
#### EXPLAINING REAL DATA - SPAMBASE



#### o 1st Iteration

- classier labels everything as spam
- high confidence regions do enclose mostly spam and
  - Incidence of the word 'your' is low
  - Length of text in capital letters is high

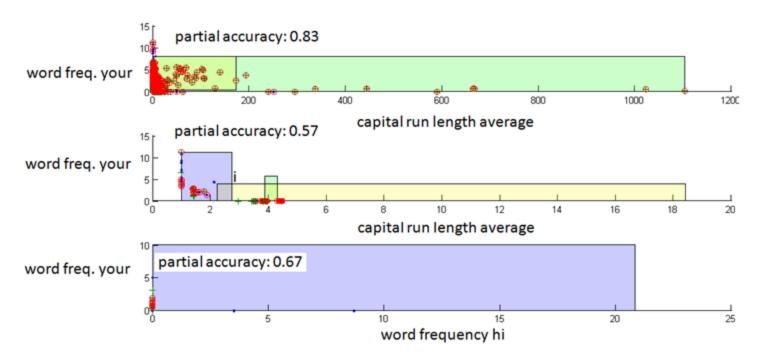
#### EXPLAINING REAL DATA - SPAMBASE



## ○ 2<sup>nd</sup> Iteration

- the threshold for the incidence of `your' is lowered
- the required incidence of capitals is increased
- the square region on the left also encloses examples that will be marked as `not spam'

#### EXPLAINING REAL DATA - SPAMBASE



#### • 3rd Iteration

- Classifier marks everything as spam
- Frequency of 'your' and 'hi' determine the regions

#### SUMMARY

- EOP maintains classification accuracy but uses less complex models when compared to Boosting
- EOP with decision stumps finds *less complex models* than CART at the price of a small decrease in accuracy
- EOP gives interpretable high accuracy regions
- We are currently testing EOP in a range of practical application scenarios

# THANK YOU

# EXTRA RESULTS

## EXPLAINING REAL DATA - FUEL

