Women in Machine Learning Workshop 12th of December 2011

Ina Fiterau, Carnegie Mellon University Artur Dubrawski, Carnegie Mellon University

EXPLAINING DATASETS THROUGH HIGH-ACCURACY REGIONS

Work under review at the SIAM Data Mining Conference

1

OUTLINE

Motivation of need for interpretability

Explanation-Oriented Partitioning (EOP)

Evaluation of EOP

EXAMPLE APPLICATION: NUCLEAR THREAT DETECTION

- Border control: vehicles are scanned
- Human in the loop interpreting results

BOOSTED DECISION STUMPS

• Accurate, but hard to interpret

How is the prediction derived from the input?

Image obtained with the Adaboost applet.

Decision Tree – More Interpretable

MOTIVATION

Many users are willing to trade accuracy to better understand the system-yielded results

Need: simple, interpretable model

Need: explanatory prediction process

EXPLANATION-ORIENTED PARTITIONING (EOP)

EXPLANATION-ORIENTED PARTITIONING (EOP) EXECUTION EXAMPLE – 3D DATA

Step 1: Select a projection - (X_1, X_2)

Step 1: Select a projection - (X_1, X_2)

Step 2: Choose a good classifier - call it h₁

Step 2: Choose a good classifier - call it h_1

Step 3: Estimate accuracy of h₁ at each point

Step 3: Estimate accuracy of h₁ for each point

Step 4: Identify high accuracy regions

Step 4: Identify high accuracy regions

Step 5:Training points - removed from consideration

Step 5:Training points - removed from consideration

Finished first iteration

Iterate until all data is accounted for or error cannot be decreased

Learned Model – Processing Query [x₁x₂x₃]

PARAMETRIC REGIONS OF HIGH CONFIDENCE (BOUNDING POLYHEDRA)

• Enclose points in simple convex shapes (multiple per iteration)

Grow contour while train error is $\leq \varepsilon$

- Incorrectly classified
- Correctly classified

decision

PARAMETRIC REGIONS OF HIGH CONFIDENCE (BOUNDING POLYHEDRA)

• Enclose points in simple convex shapes (multiple per iteration)

- Calibration on hold out set remove shapes that:
 - do not contain calibration points
 - over which the classifier is not accurate

PARAMETRIC REGIONS OF HIGH CONFIDENCE (BOUNDING POLYHEDRA)

• Enclose points in simple convex shapes (multiple per iteration)

- Calibration on hold out set remove shapes that:
 - do not contain calibration points
 - over which the classifier is not accurate
- Intuitive, visually appealing hyper-rectangles/spheres

OUTLINE

Motivation of need for interpretability

• Explanation-Oriented Partitioning (EOP)

• Evaluation of EOP

Summary

BENEFITS OF EOP

- AVOIDING NEEDLESS COMPLEXITY -

Typical XOR dataset

BENEFITS OF EOP

- AVOIDING NEEDLESS COMPLEXITY -

Typical XOR dataset

CART

- is accurate
- takes many iterations
- does not uncover or

leverage structure of data

BENEFITS OF EOP

- AVOIDING NEEDLESS COMPLEXITY -

Iteration 2

Comparison To Boosting

- What is the price of understandability?
- Why boosting?
 - It is an [arguably] good black-box classifier
 - Learns an *ensemble* using any type of classifier
 - Iteratively targets data misclassified earlier
- Criterion: Complexity of the resulting model
 - = number of vector operations to make a prediction

Comparison to Boosting - Setup

- Problem: Binary classification
- o 10D Gaussians/uniform cubes for each class
- Statistical significance: repeat experiment with several datasets and compute paired t-test p-values
- Results obtained through 5-fold cross validation

EOP VS ADABOOST - SVM BASE CLASSIFIERS

- EOP is often less accurate, but not significantly
- the reduction of complexity is statistically significant

Accuracy p-value: 0.832

Complexity p-value: 0.003

EOP (STUMPS AS BASE CLASSIFIERS) VS CART DATA FROM THE UCI REPOSITORY

• CART is the most accurate

Dataset	# of Features	# of Points
Breast Tissue	10	1006
Vowel	9	990
MiniBOONE	10	5000
Breast Cancer	10	596

ParametricEOP yieldsthe simplestmodels

EXPLAINING REAL DATA - SPAMBASE

o 1st Iteration

- classier labels everything as spam
- high confidence regions do enclose mostly spam and
 - Incidence of the word 'your' is low
 - Length of text in capital letters is high

EXPLAINING REAL DATA - SPAMBASE

○ 2nd Iteration

- the threshold for the incidence of `your' is lowered
- the required incidence of capitals is increased
- the square region on the left also encloses examples that will be marked as `not spam'

EXPLAINING REAL DATA - SPAMBASE

• 3rd Iteration

- Classifier marks everything as spam
- Frequency of 'your' and 'hi' determine the regions

SUMMARY

- EOP maintains classification accuracy but uses less complex models when compared to Boosting
- EOP with decision stumps finds *less complex models* than CART at the price of a small decrease in accuracy
- EOP gives interpretable high accuracy regions
- We are currently testing EOP in a range of practical application scenarios

THANK YOU

EXTRA RESULTS

EXPLAINING REAL DATA - FUEL

