

Using expert review to calibrate semi-automated adjudication of vital sign alerts in Step Down Units

Madalina Fiterau (<u>mfiterau@cs.cmu.edu</u>)

Donghan Wang (<u>donghanw@cs.cmu.edu</u>)

Artur Dubrawski (<u>awd@cs.cmu.edu</u>)

Gilles Clermont (cler@pitt.edu)

Marilyn Hravnak (mhra@pitt.edu)

Michael R. Pinsky (pinsky@pitt.edu)

Society of Critical Care Medicine Annual Congress

January 2016

Disclosures

- Funded by awards:
 - National Science Foundation
 - awards 0911032 and 1320347
 - National Institutes of Health
 - award R01NR013912

No commercial conflicts of interest

Background

- Patients are monitored using non-invasive vital sign (VS) data
- Alerts issued when a VS exceeds predefined thresholds
- Many alerts are artifacts, due to threshold-based issuance
- Artifacts cause alarm fatigue
- Machine Learning has proven useful in classifying clinical data
- Training data requires laborious expert annotation

Objective

Reduce expert annotation effort through semiautomatic adjudication of VS alerts as real or artifacts, while maintaining high accuracy.

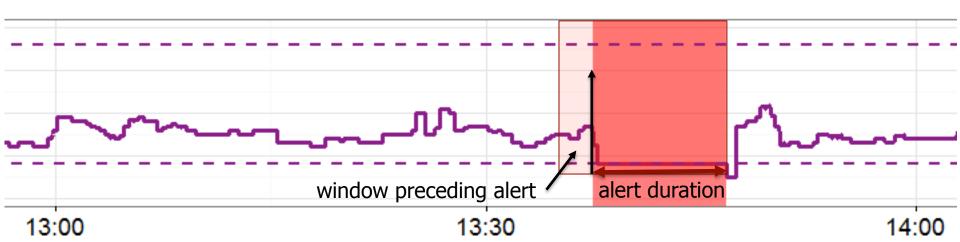
Data Description

- Heart Rate<40 or >140
- Respiratory Rate<8 or >36
 - Systolic Blood Pressure<80 or >200
- Diastolic Blood Pressure>110
- SPO₂<85%

Alerts

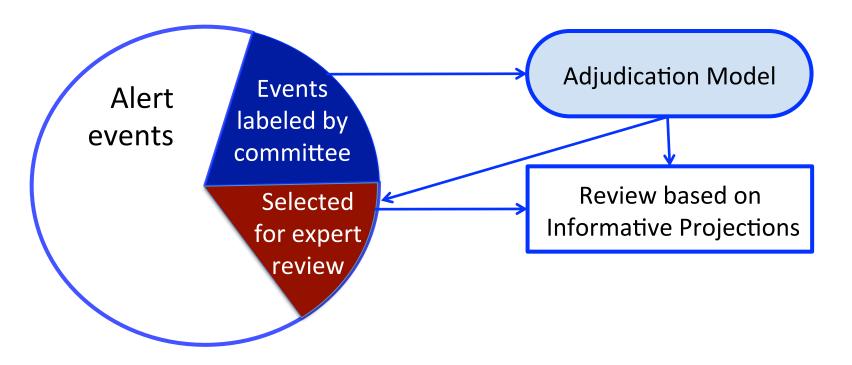
some are artifacts,

not true alerts



Features computed from time series include common statistics of each VS: mean, stdev, min, max, range of values, duty cycle ...

Expert Review System

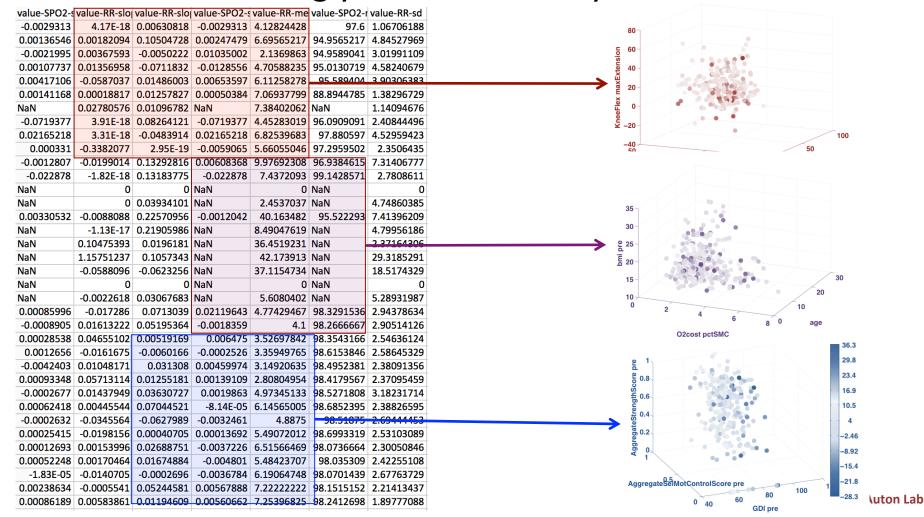


Artifact adjudication models

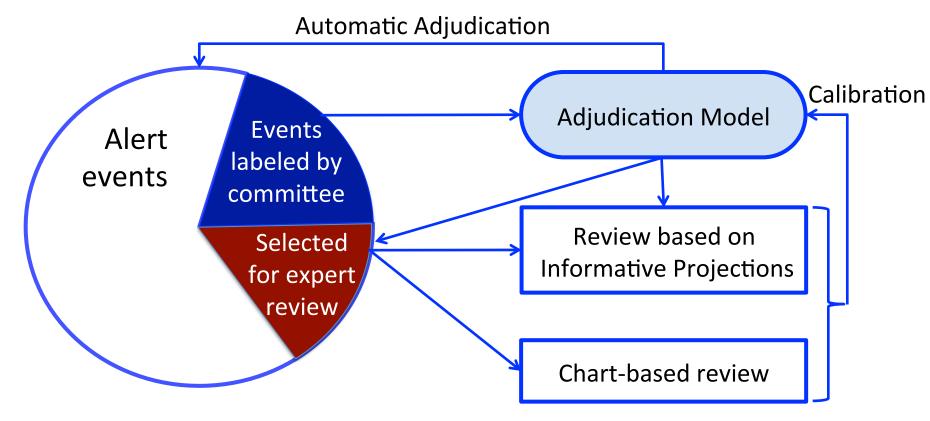
- SPO₂ model trained on 91 committee-labeled events
- RR model trained on 194 committee-labeled events

Informative Projections

 Extract simple projections of data in which alerts appear as either convincingly correct or easily dismissible



Expert Review System



Artifact adjudication models

- SPO₂ model trained on 91 committee-labeled events
- RR model trained on 194 committee-labeled events

Review based on projections

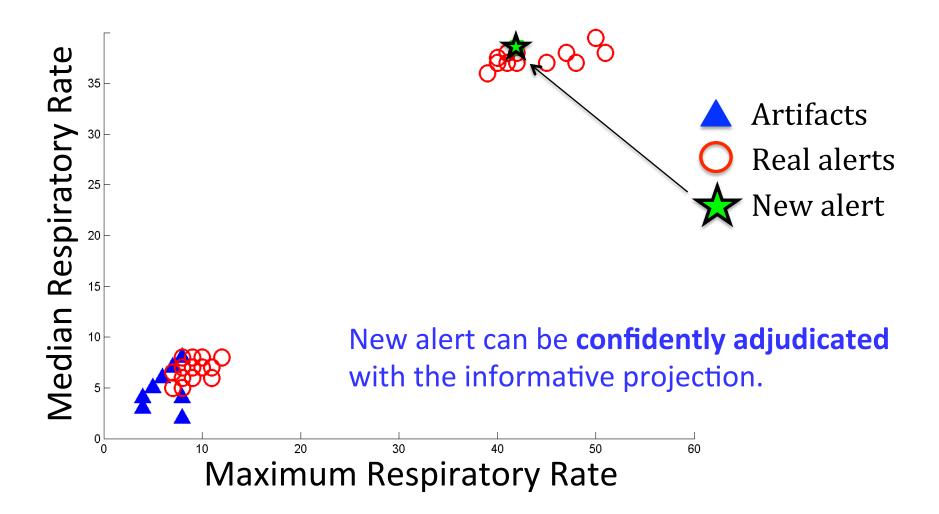
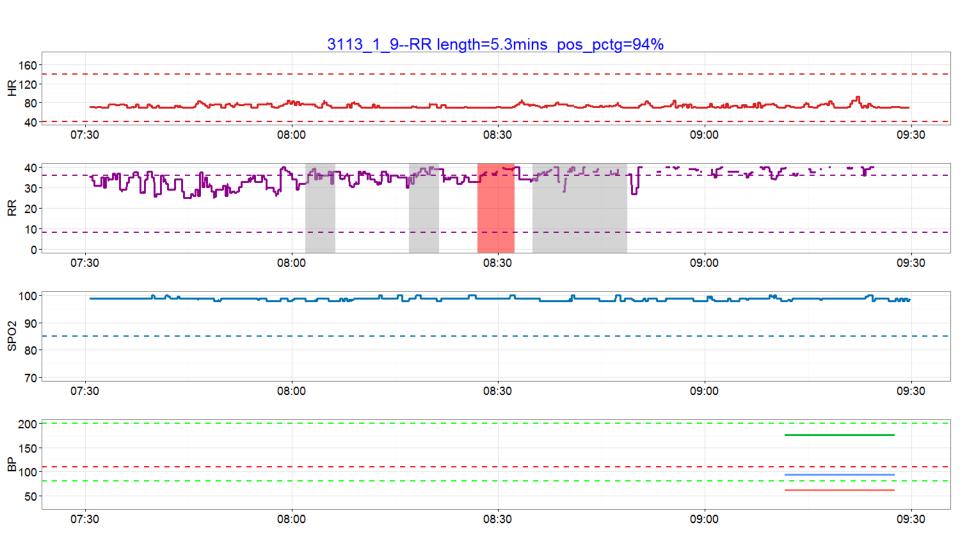
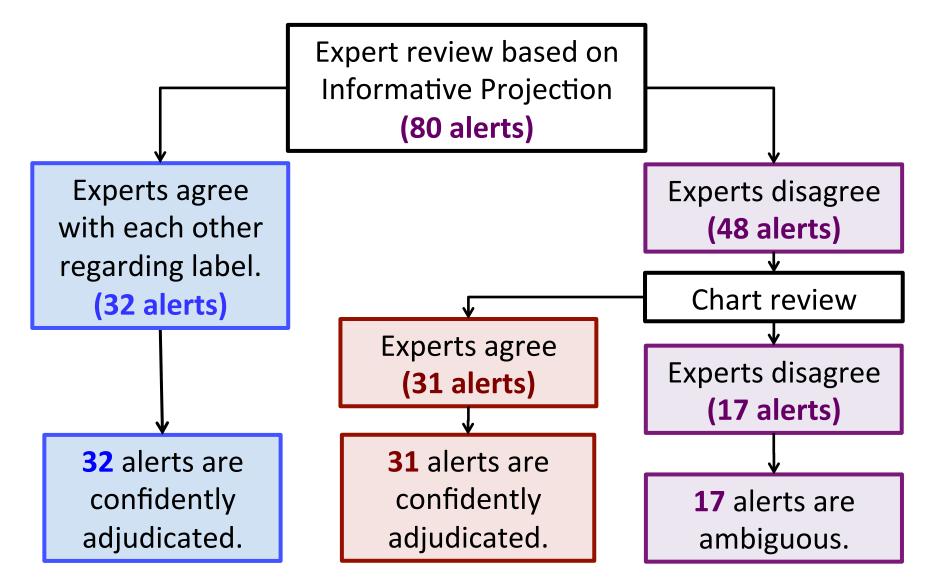


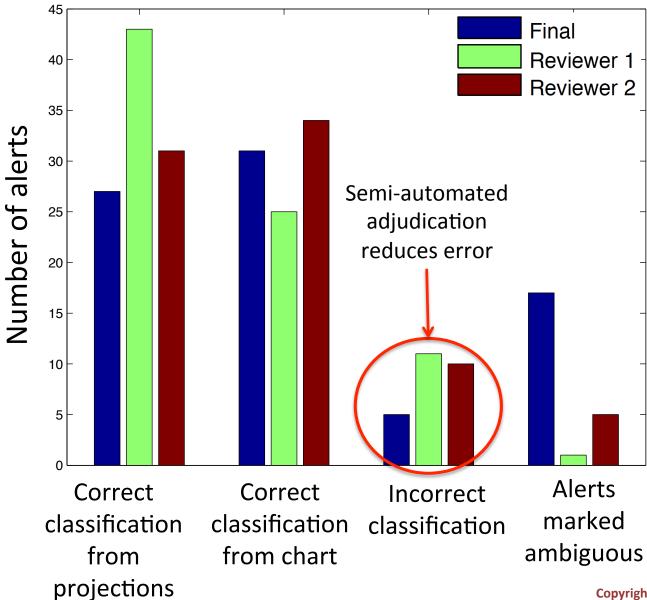
Chart-based review



Study Results



Adjudication error



Conclusions

- Half of alerts that can be classified are handled automatically
- 3 ways ML reduces expert labeling effort
 - Use of ML models for semi-automatic adjudication
 - Active sample selection for expert review
 - Threshold adjustment maximizes confident adjudication
- 1/5 of alerts could not be classified by system or reviewers
- Semi-automated adjudication model filters out artifactual alerts,
 helping to reduce alarm fatigue