

Deep Neural **Decision Forests**

Peter Kontschieder, Microsoft Research Madalina Fiterau, CMU/Stanford (presenter) Antonio Criminisi, Microsoft Research Samuel Rota-Bulò, Fondazione Bruno Kessler

Deep Learning Performance

- Data complexity captured by representations
- Representations gradually become more sophisticated

ILSVRC top-5 error on ImageNet

Deep Learning + Accurate Classifier

- Leverage representation learning via stacked conv. layers
- End-to-end deep learning architecture

Decision tree 'layers'

Back-propagation Trees

Trees updated on-the-fly to allow data shift across submodels

Key: differentiable global loss

Back-propagation Trees

Structure adapted to allow back propagation

Back-propagation Trees

Soft routing of samples

- Class distributions in leaf nodes
 - optimal given a routing

Log loss Objective

Modeling Node Splits

• Hierarchical routing along path Φ_{ℓ} to leaf ℓ

$$\Phi \ell_4 = \{n_1, n_2, n_5\}$$

$$\mu_{\ell_4}(x;\Theta) = \sigma(\theta_1^T x) (1 - \sigma(\theta_2^T x)) (1 - \sigma(\theta_5^T x))$$

Image by Samuel Rota-Bulò

Objective function

Per sample likelihood term

$$\mathbb{P}[y|\boldsymbol{x},\boldsymbol{\pi},\Theta] = \sum_{\ell \in \mathcal{L}} \mu_{\ell}(\boldsymbol{x};\Theta)\pi_{y}^{\ell}$$

Weighted sum over set of all leaves L

Overall objective function

$$Q(\mathcal{T}; \Theta, \Pi) = -\frac{1}{|\mathcal{T}|} \sum_{(\boldsymbol{x}, y) \in \mathcal{T}} \log \left(\sum_{\ell \in \mathcal{L}} \mu_{\ell}(\boldsymbol{x}; \Theta) \pi_{y}^{\ell} \right)$$

Gradient for split parameter

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\theta}_{m}} Q(\mathcal{T}; \boldsymbol{\Theta}, \boldsymbol{\Pi}) &= -\frac{1}{|\mathcal{T}|} \sum_{(\boldsymbol{x}, y) \in \mathcal{T}} \boldsymbol{x} \frac{\sum_{\ell \in \mathcal{L}_{m}} \left[\mathbb{1}_{\ell \swarrow m} - \sigma(\boldsymbol{\theta}_{m}^{\intercal} \boldsymbol{x}) \right] \mu_{\ell}(\boldsymbol{x}; \boldsymbol{\Theta}) \pi_{y}^{\ell}}{\sum_{\ell' \in \mathcal{L}} \mu_{\ell'}(\boldsymbol{x}; \boldsymbol{\Theta}) \pi_{y}^{\ell'}} \\ &= -\frac{1}{|\mathcal{T}|} \sum_{(\boldsymbol{x}, y) \in \mathcal{T}} \boldsymbol{x} \frac{\left(1 - \sigma(\boldsymbol{\theta}_{m}^{\intercal} \boldsymbol{x}) \right) \left[\sum_{\ell \in \mathcal{L}_{m}^{\checkmark}} \mu_{\ell}(\boldsymbol{x}; \boldsymbol{\Theta}) \pi_{y}^{\ell} \right] - \sigma(\boldsymbol{\theta}_{m}^{\intercal} \boldsymbol{x}) \left[\sum_{\ell \in \mathcal{L}_{m}^{\checkmark}} \mu_{\ell}(\boldsymbol{x}; \boldsymbol{\Theta}) \pi_{y}^{\ell} \right]}{\sum_{\ell' \in \mathcal{L}} \mu_{\ell'}(\boldsymbol{x}; \boldsymbol{\Theta}) \pi_{y}^{\ell'}} \end{split}$$

$$\begin{split} \text{Result after forward} \\ \text{pass in leaves} \end{split}$$

Bottom-up sweep, collecting left- and right-subtree contributions

Consider Fixed Structure

 Θ = RandomUniform([-0.7,0.7])

Initialize splits randomly


```
X
  = RandomUniform([-0.7, 0.7])
M = ForwardPropagation(\Theta, X)
                                      Sample
                                      Assignment
                                                 Forward Propagation
                                      to Leaves
```



```
\Theta = RandomUniform([-0.7,0.7])
```

 $M = ForwardPropagation(\Theta, X)$

 Π = Uniform(Labels)

Initialize leaf distributions uniformly

 Θ = RandomUniform([-0.7,0.7])

 $M = ForwardPropagation(\Theta, X)$

 Π = Uniform(Labels)

 Π = UpdatePosterior(Θ , Π , M)

$$\pi_c^{\ell} \leftarrow \frac{1}{Z^{\ell}} \sum_{i=1}^{|\mathcal{T}|} \frac{\mathbb{1}_{y_i = c} \mu_{\ell}(\boldsymbol{x}_i; \Theta) \pi_c^{\ell}}{\sum_{\ell' \in \mathcal{L}} \mu_{\ell'}(\boldsymbol{x}_i; \Theta) \pi_y^{\ell'}}$$

Adapted from [Rota Bulò & Kontschieder, CVPR'14]

Leaf Distribution Optimization


```
\Theta = RandomUniform([-0.7,0.7])
```

$$M = ForwardPropagation(\Theta, X)$$

$$\Pi$$
 = Uniform(Labels)

$$\Pi$$
 = UpdatePosterior(Θ , Π , M)

$$\Theta$$
 = UpdateSplittingWeights(Θ , Π , X)

Back-propagation


```
\Theta = RandomUniform([-0.7,0.7])
```

 $M = ForwardPropagation(\Theta, X)$

 Π = Uniform(Labels)

 Π = UpdatePosterior(Θ , Π , M)

 Θ = UpdateSplittingWeights(Θ , Π , X) Repeat for a number of Epochs

Sparse splits

- Subspace selection per split node
- Allows for high-dimensional input space

Obtain uncorrelated trees

Flexible Tree Structure

Split nodes with highest entropy at each epoch

Data Assignment to Trees

- Trees are given different parts of the input space
- Helps keep trees uncorrelated
- For image data, we train trees on different patches

Results Summary

	RF % Error	ADF % Error	BPF % Error	# Train	# Test	Classes	Feature s	Tree input features	Depth	# Trees
G50C	18.91 ± 1.33	18.71 ± 1.27	17.4 ± 1.52	50	500	2	50	10 (random)	5	50
Letter	4.75 ± 0.10	3.52 ± 0.12	2.92 ± 0.17	16000	4000	26	16	8 (random)	10	70
USPS	5.96 ± 0.21	5.59 ± 0.16	5.01 ± 0.24	7291	2007	10	256	10x10 patches	10	100
MNIST	3.21 ± 0.07	2.71 ± 0.1	2.8 ± 0.12	60000	10000	10	784	15x15 patches	10	80
Char7k	17.76 ± 0.13	16.67 ± 0.21	16.04 ± 0.2	66707	7400	62	62	10 (random)	12	200

20

Deep Neural Decision Forests

- Network outputs become features used by the BPF
- End-to-end deep learning architecture

Image by Samuel Rota-Bulò

ImageNet Experiment

- 100 million samples,
- 100,000 synsets (classes)
- Modified GoogLeNet¹, replaced Softmax with BPF
- Softmax layers replaced with BPF layers
- Top-5 error reduced from 10.07% to 7.84%.

Description	Top 1 Error	Top 5 Error
1 model, 1 crop	27.8147%	7.84%
1 model, 10 crops	26.9058%	7.08%
7 models, 1 crop	24.1270%	6.38%

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. *Going deeper with convolutions.* CoRR, abs/1409.4842, 2014.

Observation: Learning Curve

Observation: Learning Leaf Predictors

Visualization of learning process

4-class toy example, 8 leaves

$$\pi_c^{\ell} \leftarrow \frac{1}{Z^{\ell}} \sum_{i=1}^{|\mathcal{T}|} \frac{\mathbb{1}_{y_i = c} \mu_{\ell}(\boldsymbol{x}_i; \Theta) \pi_c^{\ell}}{\sum_{\ell' \in \mathcal{L}} \mu_{\ell'}(\boldsymbol{x}_i; \Theta) \pi_y^{\ell'}}$$

Adapted from [Rota Bulò & Kontschieder, CVPR'14]

Observations: Sigmoid outputs

Observation: similarity routing

mfiterau@cs.stanford.edu

Thanks!

Collaborators:

Peter Kontschieder, Microsoft Research Antonio Criminisi, Microsoft Research Samuel Rota-Bulò, Fondazione Bruno Kessler

