

Archetyping Artifacts in Monitored Noninvasive Vital Signs Data

Madalina Fiterau, MS ¹
Artur Dubrawski, PhD ²

Karen Chen, MS²

Marilyn Hravnak RN, PhD³

Gilles Clermont MD⁴

Michael R. Pinsky MD ⁴

Machine Learning Department¹, Auton Lab, Robotics Institute², Carnegie Mellon University Schools of Nursing ³ and Medicine ⁴ University of Pittsburgh

Pittsburgh, PA USA

Disclosures

Acknowledgement: this work has been partially funded by

- The National Science Foundation, awards 0911032, 1320347
- NIH National Institute of Nursing Research RO1NR013912
 "Predicting Patient Instability Noninvasively for Nursing Care"

Disclaimer: no Commercial Conflict of Interest

 No private funding as used for this research and this work is not commercially biased

Introduction

- False alerts in monitored patients cause alarm fatigue in clinical staff and can adversely impact medical outcomes
- We used an informative clustering approach to identify human interpretable archetypes of false alerts
- Automatic detection used as a preliminary step to a corrective action plan
- The validity of the identified artifactual patterns was confirmed by expert clinicians

Methods: Data Acquisition

- Prospective longitudinal study recruited admissions over 8 weeks in a 24 bed trauma stepdown unit (SDU)
- Noninvasive vital sign (VS) monitoring:
 - Heart Rate (HR) from 5-lead ECG
 - Respiratory Rate (RR) from ECG bioimpedance
 - Systolic (SBP) and Diastolic (DBP) Blood Pressure (oscillometric)
 - Peripheral arterial oxygen saturation (SpO₂) by finger plethysmography
- Collected at 1/20 Hz frequency

Methods: Data Processing

- VS data analyzed beyond local instability threshold values:
 - HR<40 or >140; RR<8 or >36;
 - SBP <80 or >200; DBP>110, SpO₂<85%
 - Each alert associated with a category indicating the leading abnormal VS
- 1582 abnormality episodes of 4 types: HR, RR, SpO₂, BP
- Adjudication by committee of 4 expert clinicians:
 - 1115 real alerts, 318 artifacts
 - 149 could not be adjudicated due to expert disagreement

Methods: Data Processing

- Features computed, for each VS signal, during span of each alert, and a short window of 4 minutes preceding alert onset
- Features include common statistics of each VS: mean, standard deviation, minimum, maximum, gradients, min and max of first order differences, duty cycle etc.
- Artifacts were clustered on low-dimensional projections for easy interpretation
- Automatic system runs an optimization over a set of nearestneighbor measures to identify an optimal set of low-d clusters
- Patterns were validated by expert clinicians

Methods: Projection Recovery

- Aim: Find a few simple projections of data in which alerts appear as cohesive clusters; find areas of a greater data density in low-d projections
- Challenge: There are many candidate projections to choose from
 - If we are considering pairs of the n features, there are n(n-1)/2 projections
- Solution: Machine Learning algorithm called RIPR: Regression-based Informative Projection Recovery [1,2]
 - RIPR selects a small set of projections in such that all alerts are covered
 - Each alert requires only one projection to be clustered
 - Low-dimensional projections allow easy interpretability
 - [1] M. Fiterau, A. Dubrawski, A Unified View of Informative Projection Retrieval, ICMLA 2013
 - [2] M. Fiterau, A. Dubrawski, Informative Projection Retrieval for Classification, NIPS 2012

RESULTS Clinician Interpretation of Discovered Archetypes

RR AlertRR Artifact

RR Alert

RR Artifact

Results: SPO₂ Archetypes

Results: SPO₂ Archetypes

Conclusion

- Informative clustering techniques support automated interpretation of artifacts in VS monitoring data streams
- Notable outcome: even though the system was not given labels, the discovered clusters (archetypes) illustrate crucial differences between true alerts and artifacts
- The archetypes of automated clustering can be used to improve alert adjudication accuracy, precision, and recall
- Archetypes have the potential to reduce annotation effort and to be useful in guiding corrective actions