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* False alerts in monitored patients cause alarm fatigue in
clinical staff and can adversely impact medical outcomes

* We used an informative clustering approach to identify
human interpretable archetypes of false alerts

* Automatic detection used as a preliminary step to a
corrective action plan

* The validity of the identified artifactual patterns was
confirmed by expert clinicians
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* Prospective longitudinal study recruited admissions over 8
weeks in a 24 bed trauma stepdown unit (SDU)

* Noninvasive vital sign (VS) monitoring:
* Heart Rate (HR) from 5-lead ECG
 Respiratory Rate (RR) from ECG bioimpedance

e Systolic (SBP) and Diastolic (DBP) Blood Pressure
(oscillometric)

* Peripheral arterial oxygen saturation (SpO,) by finger
plethysmography
 Collected at 1/20 Hz frequency
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e VS data analyzed beyond local instability threshold values:
* HR<40 or >140; RR<8 or >36;
* SBP <80 or >200; DBP>110, Sp0,<85%

e Each alert associated with a category indicating the
leading abnormal VS

e 1582 abnormality episodes of 4 types: HR, RR, SpO,, BP
 Adjudication by committee of 4 expert clinicians:

e 1115 real alerts, 318 artifacts

e 149 could not be adjudicated due to expert disagreement
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* Features computed, for each VS signal, during span of each alert,
and a short window of 4 minutes preceding alert onset

* Features include common statistics of each VS: mean, standard
deviation, minimum, maximum, gradients, min and max of first
order differences, duty cycle etc.

* Artifacts were clustered on low-dimensional projections for easy
interpretation

* Automatic system runs an optimization over a set of nearest-
neighbor measures to identify an optimal set of low-d clusters

e Patterns were validated by expert clinicians
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« Aim: Find a few simple projections of data in which alerts appear as cohesive
clusters; find areas of a greater data density in low-d projections

* Challenge: There are many candidate projections to choose from
* If we are considering pairs of the n features, there are n(n-1)/2 projections

e Solution: Machine Learning algorithm called RIPR: Regression-based Informative
Projection Recovery [1.2]

* RIPR selects a small set of projections in such that all alerts are covered
e Each alert requires only one projection to be clustered

 Low-dimensional projections allow easy interpretability

[1] M. Fiterau, A. Dubrawski, A Unified View of Informative Projection Retrieval, ICMLA 2013
[2] M. Fiterau, A. Dubrawski, Informative Projection Retrieval for Classification, NIPS 2012
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RESULTS
Clinician Interpretation of
Discovered Archetypes
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Conclusion

Informative clustering techniques support automated
interpretation of artifacts in VS monitoring data streams

Notable outcome: even though the system was not given labels,
the discovered clusters (archetypes) illustrate crucial differences
between true alerts and artifacts

The archetypes of automated clustering can be used to improve
alert adjudication accuracy, precision, and recall

Archetypes have the potential to reduce annotation effort and
to be useful in guiding corrective actions
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