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Motivation Data Description

Objectives: Approach: * Prospective longitudinal study recruited admissions over 8 weeks in a 24 bed trauma
« Noninvasive vital sign (VS) data collected * Regression-based Informative stepdown unit all with noninvasive VS monitoring:

in a Step-Down Unit (SDU) with alerts issued Projection Recovery (RIPR) * Respiratory Rate (RR) from ECG bioimpedance

when a VS exceeds predefined thresholds facilitates expert annotation » Systolic (SBP) and Diastolic (DBP) Blood Pressure (oscillometric)
* Many alerts are artifacts, causing alarm fatigue * Requires fewer annotations to * Peripheral arterial oxygen saturation (SpO,) by finger plethysmography

obtain an accurate classifier

* Results presented in a human-
understandable form, low-
dimensional projections

* VS data analyzed beyond local instability threshold values:
* HR<40 or >140; RR<8 or >36; SBP <80 or >200; DBP>110, Sp0,<85%
 Each alert associated with a category indicating the leading abnormal VS
* 812 alerts of 3 types: RR, SpO,, BP

50 features computed, for each VS sighal independently, during span of each alert,
and a short window (4 minutes) preceding alert onset

 Features include common statistics of each VS: mean, standard deviation, minimum,
maximum, and range of values

* Need to dismiss these artifacts

* Training classifiers for automatic artifact
adjudication requires expert annotation

 We aim to reduce annotation effort

Outcome: Performing active learning reduces the number of alerts that need to be
annotated by experts to train the artifact adjudication model. Our framework requires
48% of labels to train an accurate model, while a random forest classifier requires 89%.

Informative Projection Retrieval

* IPR Problem: Find a few simple projections of data in which alerts appear as either
convincingly correct or easily dismissible
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* Difficulty: Selecting the best set of projections and determining point assignment

 Technique: Machine Learning algorithm called RIPR: Regression-based Informative

Projection Recovery [*] Query by
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* RIPR selects a manageably small number of projections 46% 48%

that jointly explain multiple alerts
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Active Learning Framework

* Challenge: Very few existing labels, difficult to tell which projections are useful

Blood Pressure Alert Adjudication

We used ActiveRIPR to predict BP alerts, using the expert-labeled pool of alerts.
Leave-one-out cross validation was used due to the small amount of data available.
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* Solution: use active learning for existing models using various sample selection criteria Active RIPR with the Information Gain

Criterion, appears to be the most effective
sampling method among tested alternatives.
It outperforms other full dimensional
classifiers using uncertainty sampling.

-- uncertainty sampling, query by committee, information gain, conditional entropy --
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Annotation Examples
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