

Active Learning for Informative Projection Retrieval

Madalina Fiterau

mfiterau@cs.cmu.edu

Artur Dubrawski

awd@cs.cmu.edu

Motivation

Objectives:

- Noninvasive vital sign (VS) data collected in a Step-Down Unit (SDU) with alerts issued when a VS exceeds predefined thresholds
- Many alerts are artifacts, causing alarm fatigue
- Need to dismiss these artifacts
- Training classifiers for automatic artifact adjudication requires expert annotation
- We aim to reduce annotation effort

Approach:

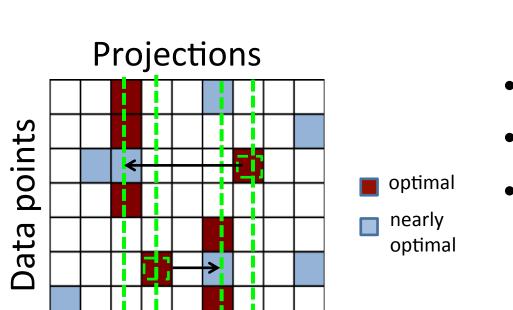
- Regression-based Informative Projection Recovery (RIPR)
- Requires fewer annotations to obtain an accurate classifier
- understandable form, lowdimensional projections

Outcome: Performing active learning reduces the number of alerts that need to be annotated by experts to train the artifact adjudication model. Our framework requires 48% of labels to train an accurate model, while a random forest classifier requires 89%.

- facilitates expert annotation
- Results presented in a human-

Informative Projection Retrieval

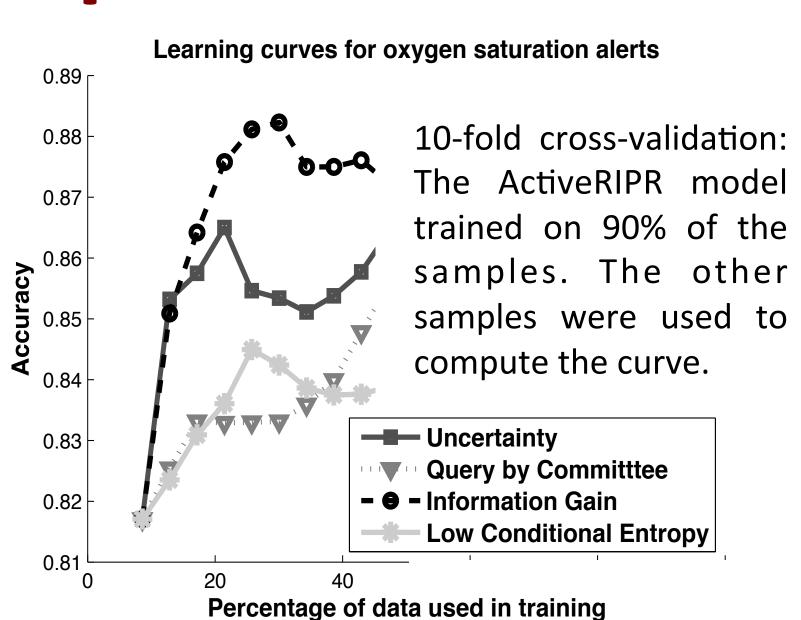
- IPR Problem: Find a few simple projections of data in which alerts appear as either convincingly correct or easily dismissible
- Difficulty: Selecting the best set of projections and determining point assignment
- Technique: Machine Learning algorithm called RIPR: Regression-based Informative Projection Recovery [*]



- RIPR selects a manageably small number of projections that jointly explain multiple alerts
- Each alert requires only one projection to be explained
- Low-dimensional projections allow easy interpretability
- RIPR enables automated classification

[*] M. Fiterau, A. Dubrawski, A Unified View of Informative

Experiments

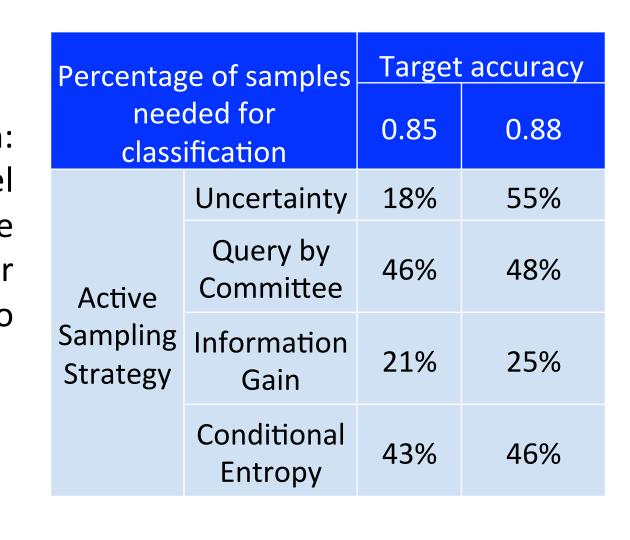


We used ActiveRIPR to predict SpO₂ alerts, treating the expert-labeled data as the pool of samples available for active learning.

Data Description

- Prospective longitudinal study recruited admissions over 8 weeks in a 24 bed trauma stepdown unit all with noninvasive VS monitoring:
 - Respiratory Rate (RR) from ECG bioimpedance
 - Systolic (SBP) and Diastolic (DBP) Blood Pressure (oscillometric)
 - Peripheral arterial oxygen saturation (SpO₂) by finger plethysmography
- VS data analyzed beyond local instability threshold values:
 - HR<40 or >140; RR<8 or >36; SBP <80 or >200; DBP>110, SpO₂<85%
 - Each alert associated with a category indicating the leading abnormal VS
 - 812 alerts of 3 types: RR, SpO₂, BP
- 50 features computed, for each VS signal independently, during span of each alert, and a short window (4 minutes) preceding alert onset
- Features include common statistics of each VS: mean, standard deviation, minimum, maximum, and range of values

Oxygen Saturation Alert Adjudication

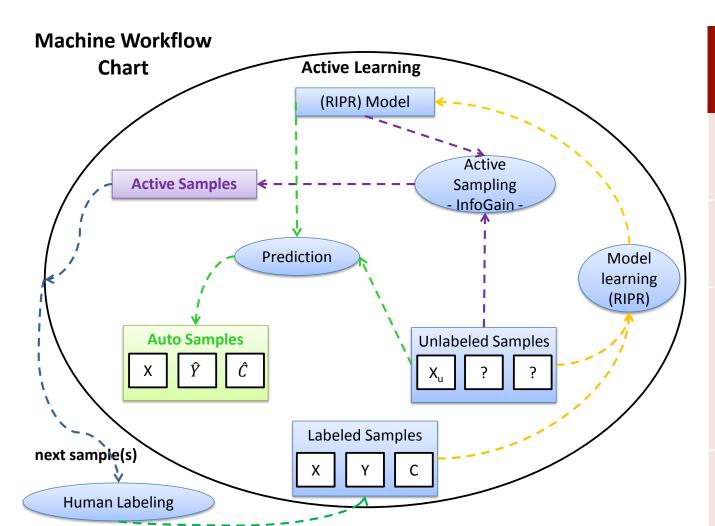


Very good performance in isolating SpO2 artifact, equivalent to what can be attained with 50% more annotated training data if the Active Learning protocol had not been used.

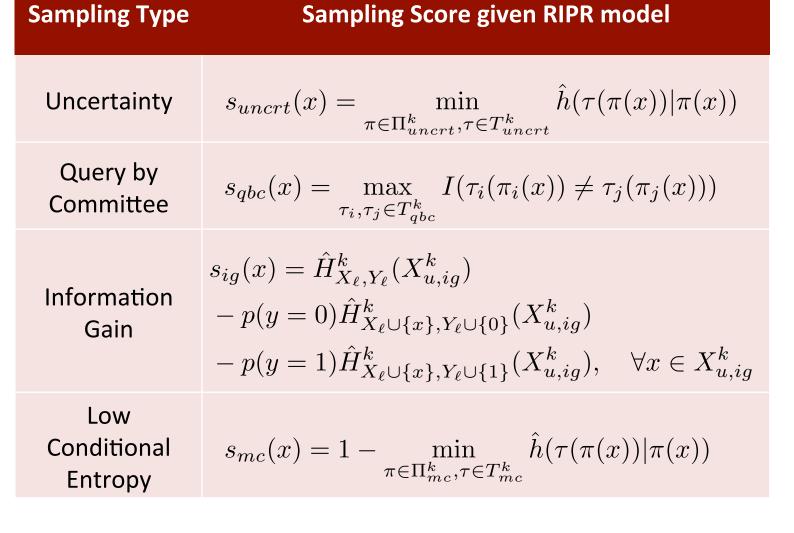
Active Learning Framework

of alerts

- Challenge: Very few existing labels, difficult to tell which projections are useful
- Solution: use active learning for existing models using various sample selection criteria -- uncertainty sampling, query by committee, information gain, conditional entropy --

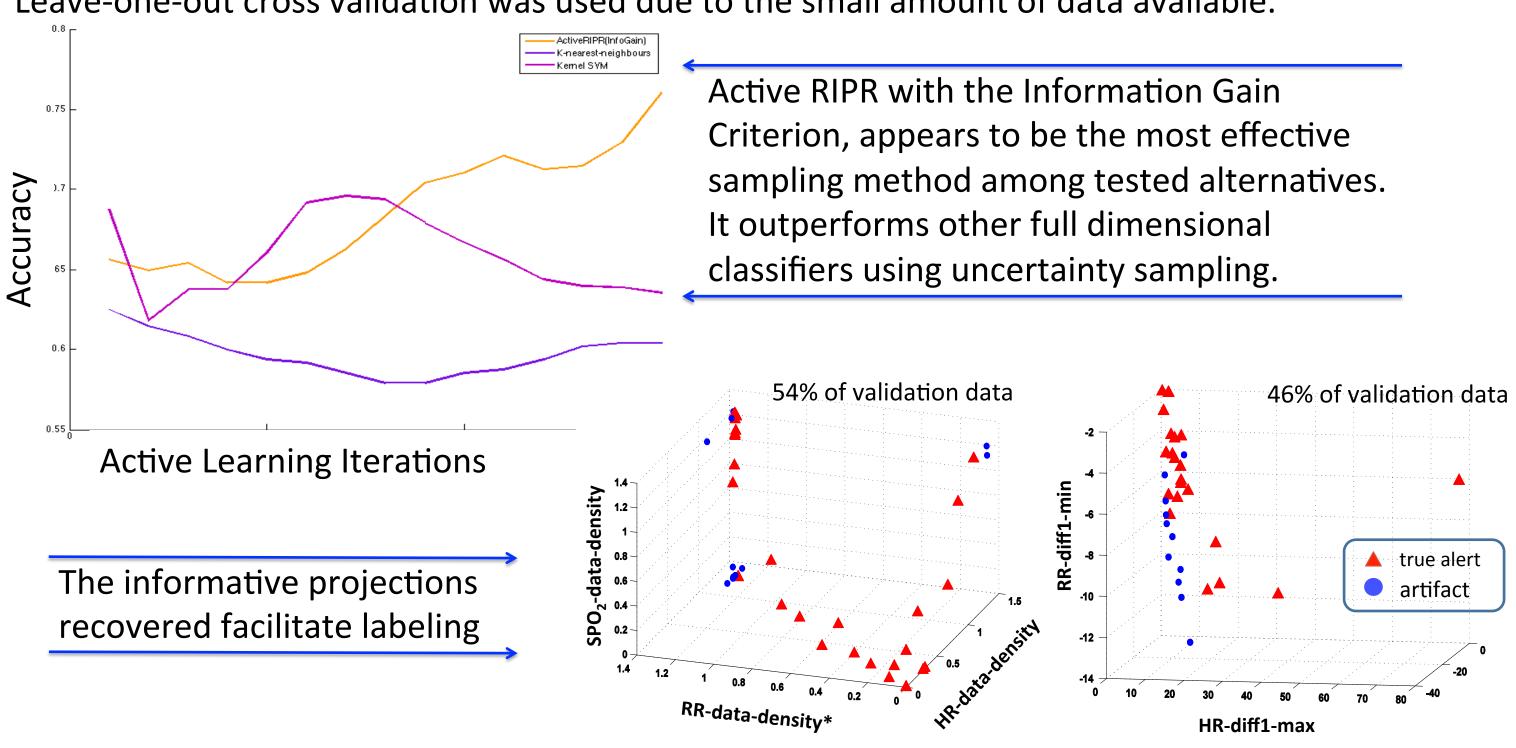


Projection Retrieval, ICMLA 2013



Blood Pressure Alert Adjudication

We used ActiveRIPR to predict BP alerts, using the expert-labeled pool of alerts. Leave-one-out cross validation was used due to the small amount of data available.



Annotation Examples

