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Context:

Robust health monitoring systems would identify artifactual alerts (due
to equipment malfunction or misapplication of sensors) and distinguish
them from true alerts signifying actual patient’s instability

This capability is important in reducing alert fatigue in clinical personnel

Our approach:

We prototyped a protocol to collect reliable training data for
development of such robust algorithms

It uses Active Machine Learning (AML) for multi-tier alert annotation
elicitation at the minimal effort from a team of expert clinicians
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Methodology

Framework:
 Machine Learning (ML) is a powerful methodology which has

been successfully applied to handle complexities of bedside data

* |t can be used to e.g. discriminate true patient instability from
artifact in hemodynamic monitoring data

* ML relies on a library of expert-annotated examples to establish
ground truth

* Collecting expert-annotations can be a burden on expert
clinicians

Specific Aim:

* Develop a protocol for collecting expert annotations that
minimizes clinicians’ effort while providing informative training
data for ML algorithms

 Methodology: Active Machine Learning (AMR)
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Methodology (contniued)

* The data, collected from noninvasive monitoring system for
ECG-derived heart rate (HR) respiratory rate (RR), pulse oximetry
(Sp0,), systolic and diastolic blood pressure (BP).

e Data contains 1,582 alert periods defined as exceedences over
pre-set stability thresholds (HR<40 or >140, RR<8 or >36, systolic
BP <80 or >200, diastolic BP>110, Sp0O,<85%).

* AML algorithm selects a batch of alerts which, when adjudicated
by experts, would provide the most useful information to the
alert interpretation algorithm.

* Reviewers working individually score these alerts on a scale
from -3 (artifact) to 3 (true alert) to reflect confidence of
assessment.

e Alerts yielding substantial disagreement or low confidence are
pushed to a committee review where consensus can be reached.

~_* The alerts that cannot be agreed upon are put in a “freezer” and
CarneciNRE M58 N the alert adjudication:model-building.
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Schematic diagram of the multi-tier protocol
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Results

 We collected 1,941 annotations from 7 expert clinician reviewers on
450 unique alerts (HR: 60, BP: 80, RR: 80, SpO,: 230).

* Ofthose, 26 (32.5%) BP, 115 (50%) SpO,, and almost none of HR and
RR alerts, were escalated to the 2" tier review.

° The re5u|ts ShOW that Kappa scores for alerts grouped by tier
the consensus for alerts —T
initially conflicted —
. . o o 0.2
improved significantly
as a result of the 2" tier
committee review.
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* Weighted pairwise
Kappa statistic increases

A: alerts adjudicated at 1°t tier

frO m —O, 19 to O 29 for 0.27 B1: aledrts escalated to the committee,
(2" tier) before the review
B P, and frO m -0.10 to 1 B2: after committee (2Ind tier) review
0.28 for SpO, alerts. " Via o
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Results (continued)

Preliminary artifact adjudication model
built using these annotations shown:
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* Very strong ability to identify RR alerts
and artifacts (dense dash line in the ROC
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True Positive Rate{Sensitivity)

diagrams) o
* Ability to very confidently isolate more ~ o.».!
than 47% of true BP alerts and more P O eramorssipstan

than 45% of BP artifacts T

* Very good performance in isolating
SpO, artifact, equivalent to what can be
attained with 50% more annotated
training data if the Active Machine
Learning protocol has not been used.
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Conclusion

« We implemented a multi-tier framework to elicit ground truth
from multiple reviewers to support development of a prototype
of the automated artifact adjudication system.

* The initial results show that precious human expertize can be
utilized efficiently and without loss of performance of the
resulting models of instability.

* The proposed annotation framework can yield accurate alert
adjudication systems while minimizing effort of human experts
required to produce ground truth evidence, even if very large
libraries of reference data are available.
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