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Detecting Artifacts in Clinical Data through Projection Retrieval

Abstract

We outline a novel approach to distinguish
correct alerts from artifacts in multivariate
vital signs data collected at the bedside of
critical care patients. The framework se-
lects informative low-dimensional projections
of data that allow easy identification and in-
terpretation of artifacts by humans. The re-
sults enable designing reliable decision rules
that can be used to identify and ignore false
alerts on-the-fly. The proposed approach
aims at reducing the tedious effort of expert
clinicians who must annotate training data
to support development of decision support
systems. Through our method, the expert in-
tervention is reduced to simply validating the
outcome produced by an automated system
using a small part of the available data. The
bulk of the data can then be labeled automat-
ically. The framework we present makes the
decision process transparent and comprehen-
sible to aid the expert validation. The projec-
tions jointly form a solution to the learning
task. The method works under the assump-
tion that each projection addresses a different
subset of the feature space. The purpose is to
determine which of the subsets of data corre-
spond to genuine clinical alerts and which are
artifacts due to particuliarities of the moni-
toring devices or data acquisition processes.
We show how artifacts can be isolated using a
small amount of labeled samples and present
our system’s utility in identifying patterns in
data that are informative to clinicians.

1. Introduction

Clinical monotoring systems are designed to process
multiple sources of information about the current
health condition of a patient and issue an alert when-
ever a change of status, typically an onset of some form

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

of instability, requires attention of medical personnel.
In practice, a substantial fraction of these alerts are
not truly reflective of the important health events, but
instead they are triggered by malfunctions or innacur-
racies of the monitoring equipment. Accidentally de-
tached ECG electrode, transient readings from a dis-
located blood oxygenation probe, or many other such
problems of minor significance, may and in practice of-
ten do yield instability alerts. Frequency of such false
detections may cause the ”alert fatigue” syndrome, of-
ten observed among medical personnel, particularly in
critical care departments. The syndrome may have
adverse effects on the quality of care and patient out-
comes, if it leads to lowering sensitivity of personnel to
alerts and, therefore, to increased risk of missing real
crises. In order to maintain and enhance effectiveness
of care, it is important to realiably identify and ex-
plain the nonconsequential artifacts. In this paper, we
outline a novel approach to distinguish correct alerts
from artifacts in multivariate vital signs data collected
at the bedside of critical care patients. It selects infor-
mative low-dimensional projections of data that allow
easy identification and interpretation of artifacts by
humans. The results enable designing reliable decision
rules that can be used to identify and ignore false alerts
on-the-fly. They can also reduce data review and an-
notation efforts by expert clinicians, enhancing their
focus on their primary mission of patient care.

The outlined problem can be generalized to any sys-
tem designed to provide decision support to human
users. Typically, this involves automating tasks such
as grouping or classification while offering the experts
insight into how the learning task was solved and how
the model is applied to new data. An ideal scenario for
a multitude of practical applications is the following:
a domain expert provides the system with preliminary
training data for some learning task; the system learns
a model for the task (which uses only simple projec-
tions); the user provides queries (test points); for a
given query point, the system selects the projection
that is expected to be the most informative for this
point; the system displays the outcome as well as a
representation of how the task was performed within
the selected projection.

The problem of recovering simple projections for classi-
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fication has been formalized in (Fiterau & Dubrawski,
2012). The RECIP algorithm proposed there uses
point estimators for conditional entropy and recov-
ers a set of low-dimensional projections which classify
queries using non-parametric discriminators in an al-
ternate fashion - each query point is classified using
one of the projections in the retrieved set. The tech-
nique used in this paper is a generalization of RECIP
which is applicable to both classification and cluster-
ing. The framework, described in Section 3, called Re-
gression for Informative Projection Retrieval (RIPR)
can retrieve projections for any task which can be ex-
pessed in terms of a consistent loss function. RIPR
is designed to work with any type of learner suitable
to the particular task. For the application discussed
in this paper, we consider linear classifiers (SVM) and
nonparametric clustering models (K-means). A classi-
fier or a clustering model is trained for every recovered
projection and used for the subset of data assigned to
that projection.

The topic of this paper is the application of RIPR
to artifact isolation. We illustrate the projections re-
covered for the task of discriminating artifacts from
genuine clinical alerts. Since the types of alerts we
focus on are triggered by excessive values of one of
the vital signals at a time, we build separate artifact
deiscrimination models for alerts on respiratory rate,
blood pressure, and oxygen saturation. We evaluate
the perfomance of these models at annotating unla-
beled data. We also show, through case studies, how
the models can help physicians identify outliers and
abnormalities in the vital signals. Finally, we outline
an active learning procedure meant to reduce the effort
of clinicians in adjudicating vital sign data as normal,
artifact, or genuine alarm.

2. Related Work

The use of dimensionality reduction techniques is a
common preprocessing step in applications where the
use of simplified classification models is preferable.
Methods that learn linear combinations of features,
such as Linear Discriminant Analysis, are not ideal for
the task considered here, since we prefer to rely on
the dimensions available in the original feature space.
Feature selection methods, such as the lasso, are suit-
able for identifying sets of relevant features, but do not
consider interactions between them. Our work fits the
areas of class dependent feature selection and context
specific classification, highly connected to the concept
of Transductive Learning (Gammerman et al., 1998).
Other context-sensitive methods are Lazy and Data-
Dependent Decision Trees, (Friedman et al., 1996)

and (Marchand & Sokolova, 2005) respectively. (Ting
et al., 2011) introduce the Feating submodel selection,
which performs attribute splits followed by fitting local
predictors. (Obozinski et al., 2010) present a subspace
selection method in the context of multitask learning.

Unlike most of those approaches, RECIP is designed
to retrieve subsets of the feature space designed for use
in a way that is complementary to the basic task at
hand while providing query-specific information.

3. Informative Projection Retrieval

This section describes the formulation of the Infor-
mative Projection Retrieval (IPR) problem, then de-
scribes an algorithmic framework generalized from the
RECIP procedure in (Fiterau & Dubrawski, 2012).

The algorithm solves IPR when the learning task can
be expressed in terms of a loss function and there exists
a consistent point-estimator for the risk. The deriva-
tions in Section 3.1 follow the setup for the RECIP
procedure, the main improvement being the formal-
ization of the problem for learning tasks other than
classification and the capability to include learners of
any given class while RECIP only considered nonpara-
metric classifiers. Section 3.3 shows how divergence
estimators are used to customize the framework for
classifcation and regression tasks.

3.1. Projection Recovery Formulation

Let us assume we are given a dataset X =
{x1 . . . xn} ∈ Xn where each sample xi ∈ X ⊆ Rm
and a learning task on the space X with output in a
space Y such as classification or regression. The task
solver for the learning task is selected from from a
solver class T = {f : X → Y}, were the risk for the
solver class T is defined in terms of the loss ` as

R(τ,X ) = EX `(x, τ) ∀τ ∈ T .

We define the optimal solver for the task as

τ∗
def
= arg min

τ∈T
R(τ,X )

We will use the notation τ{X} to indicate the task
solver from class T which is obtained by minimizing
the empirical risk over the training set X.

τ{X}
def
= arg min

τ∈T
R̂(T , X) = arg min

τ∈T

1

n

n∑
i=1

`(xi, τ)

We formalize the type of model that our IPR frame-
work will construct. Class M contains models that
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have a set Π of projections of maximum dimension d,
a set τ of task solvers and a selection function g:

M = { Π = {π; π ∈ Π, dim(π) ≤ d},
τ = {τ ; τi ∈ T , τi : πi(X )→ Y ∀i = 1 . . . |Π|},

g ∈ {f : X → {1 . . . |Π|}} } .

The set Π contains all the axis-aligned projections.
However, the subset Π ⊆ Π contained by M contains
only projections that have at most d features. The pa-
rameter d is dictated by the application requirements.
Values of 2 or 3 are expected since they permit users
to view the projections. The selection function g picks
the adequate projection π and its corresponding task
solver τ to handle a given query x.

Based on this model, we derive a composite solver
which combines the benefits of the solvers operating on
the low-dimensional projections. The loss of this solver
can be expressed in terms of the component losses.

τM(x) = τi(πi(x)) where g(x) = i

`(x, τM) = `(πg(x)(x), τg(x))

where g(x) represents the index of the solver for point
x is handled and πi(x) is the projection of x onto
πi. Optimizing over the Informative Projection Model
class M, the IPR problem for learning task T can be
formulated as a minimization of the expected loss:

M∗ = arg min
M

EX `(πg(x)(x), τg(x)) (1)

Since we are dealing with an unsupervised problem in
terms of the selection function, there are limitations
on its learnability. One example in which recovery is
successful is a dataset containing regulatory features:

∀x∃xj with xj ∈ A , τ∗(x1 . . . xm) = τ∗A(xi1 . . . xid)

In the example above, for a given point x, j is the
regulatory feature. The interpretation is that for all
points x whose jth feature is in the set A, the targeted
task can be optimally performed by the task solver
τ∗A by considering only features {i1 . . . id} of x. The
task solver τ∗A is only trained over samples for which
xj ∈ A.

3.2. Projection Recovery Framework (RIPR)

The starting point of the algorithm is writing the em-
pirical version of (1) as a combinatorial problem over
multiple projections. The algorithm is designed un-
der the assumption of the existence of low-dimensional
embeddings that enable capturing accurate models for
the target task. In conformance with this assumption,
every sample point xi can be dealt with by just one

projection πj , in other words g(xi) = j. We model
this mapping as a binary matrix B:

Bij = I[g(xi) = j].

We write the minimizers of the risk and empirical risk:

M∗ = arg min
M

EX
|Π|∑
j=1

I[g(x) = j]`(πj(x), τj)

M̂∗ = arg min
M

1

n

n∑
i=1

|Π|∑
j=1

I[g(xi) = j]`(πj(xi), τj)

Assume now that we can consistently estimate the loss
of a tasks learner τ at each available sample, that is

∃ˆ̀ s.t. ∀x ∈ X τ ∈ T ˆ̀(x, τ)
n→∞→ `(x, τ) (2)

Plugging (2) into the minimization yields the final
form used to obtain the estimated model:

M̂ = arg min
M

n∑
i=1

|Π|∑
j=1

I[g(xi) = j]ˆ̀(πj(xi), τi)

= arg min
M,|Π|<|Π|

n∑
i=1

|Π|∑
j=1

BijLij , Lij = ˆ̀(πj(xi), τi)

The loss estimators Lij are computed for every point
on every subspace of up to the user-specified size d. B
is learned through a regularized regression procedure
that penalizes the number of projections Π used in the
model. This translates to an `0 penalty on the number
of non-zero columns inB, relaxed to `1. The `0 penalty
is written as I[B·,j 6= 0], while its relaxation is ||B||1,1.

B̂ = arg min
B

||L∗ − L�B||22 + λ

d∗∑
j=1

I[B·,j 6= 0]

where d∗ is the number of d-dimensional projections,

L∗i
def
= minj Lij , the operator � isojections of size ≤ d

defined as

� : Rn,d
∗
× Rn,d

∗
→ Rn, (L�B)i =

d∗∑
j=1

LijBij

The optimization procedure is described in detail in
(Fiterau & Dubrawski, 2012), the key difference to its
use here being that we are computing the loss matrix
L differently. The technique resembles the adaptive
lasso, which gradually reduces the number of non-zero
columns in B until a small and stable set of projections
is converged upon. As illustrated in 1, the procedure
uses the multiplier δ to gradually bias projection se-
lection towards projections that not only perform well
but also suit a large number of data points.
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Algorithm 1 RIPR Framework

δ = [1 . . . 1]
repeat
B = arg minB ||L∗ − L�B||22+

λ1

∑d∗

j=1 ||B.,j ||`1 + λ2|Bδ|`1
subject to
||Bk,.||`1 = 1 k = 1 . . . n

δk = ||B.,j ||`1 j = 1 . . . d∗ (update muliplier)
δ = (||δ||`1 − δ)/||δ||`1

until δ converges
Π = {πi; |B.,i|`1 > 0 ∀i = 1 . . . d∗}
return Π

3.3. Losses for Classification and Clustering

Next, we show how to formulate IPR for different
tasks. The aim is to find projections that are in-
formative for a task given no knowledge of the ac-
tual class of solvers that will be used. For instance,
we might be given a high dimensional classification
problem for which to find a set of low-dimensional
projections without considering the classifier - linear,
kernel-based or nonparametric - that will ultimately
be trained. Therefore, we incline to use nonparamet-
ric loss functions. The performance of the method will
depend on the estimator’s rate of convergence.

3.3.1. Classification

The IPR problem for classification is the topic of the
previous work in (Fiterau & Dubrawski, 2012). We
state some results obtained in the paper.

Proposition 3.1. Given a variable X ∈ X and a bi-
nary variable Y , X sampled from the mixture model

f(x) = p(y = 0)f0(x)+p(y = 1)f1(x) = p0f0(x)+p1f1(x) ,

H(Y |X) = −p0 log p0−p1 log p1−DKL(f0||f)−DKL(f1||f).

The conditional entropy over the points assigned to
projection πj is then shown to be estimated as follows:

Ĥ(Y |π(X); {x|g(x) = j}) ∝ 1

n

n∑
i=1

I[g(xi) = j]ˆ̀(xi, τ
k
πj

)

ˆ̀(xi, τ
k
πj

) =
( (n− 1)νk(πj(xi), πj(Xy(xi) \ xi))

nνk(πj(xi), πj(X¬y(xi)))

)(1−α)|πj |

Above, the notation π(X) is used to represent the pro-
jection of vector X onto π. Also, we will use Xγ to
represent the subset of the sample for which the label
is γ. The notation X \ x refers to the sample ob-
tained when removing point x from X. The function
νk(x,X) represents the kth distance from point x to

its k-nearest-neighbor from the sample X. τkπj
is the

k-nn classifier on projection πj .

This result is obtained by using the Tsallis α-
divergence estimator introduced in (Poczos & Schnei-
der, 2011) and yields an estimator for the loss when
the target task is binary classification. α is a constant
set to a value close to 1 (such as 0.95) and |πj | is the
dimensionality of the subspace πj .

3.3.2. Clustering

Unlike classification and regression, most types of clus-
tering make it problematic to devise an objective that
can be evaluated at every point, mainly because an
overview of the data is needed for clustering, rather
than local information. Distribution-based as well as
centroid-based clustering fit a model on the entire set
of points. This is an issue for the IPR problem because
it is not known which data should be used for the set of
submodels. To bypass this problem, we first learn the
projections and the points corresponding to them us-
ing density-based clustering, which admits a local loss
estimator. We then learn a clustering model (solver)
on each projection using only the assigned points.

Density-based clustering uses areas of higher density
than the remainder to group points. To achieve IPR
for clustering, we consider the negative divergence, in
the neighborhood of each sample, between the distri-
bution from which the sample X is drawn and a uni-
form distribution on X . Let U be a sample of size n
drawn uniformly from X . Again, we use the nearest-
neighbor estimator converging to the KL divergence.
τ clui is some clustering technique such as K-means.

R̂clu(πi(x), τ clui ) → −KL(πi(X)‖|πi(U))

ˆ̀
clu(πi(x), τ clui ) ≈

(d(πi(x), πi(X))

d(πi(x), U)

)|πi|(1−α)

4. Artifact Detection with RIPR

4.1. Vital Sign Monitoring Data

A prospective longitudinal study recruited admissions
across 8 weeks to a 24 bed trauma and vascular surgery
stepdown unit. Noninvasive vital sign (VS) mon-
itoring consisted of 5-lead electrocardiogram to de-
termine heart rate (HR) and respiratory rate (RR;
bioimpedance), noninvasive blood pressure (oscillo-
metric) to determine systolic (SBP) and diastolic
(DBP) blood pressure, and peripheral arterial oxygen
saturation by finger plethysmography (SpO2). Non-
invasive continuous monitoring data were downloaded
from bedside monitors and analyzed for vital signs be-
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yond local instability criteria: HR<40 or >140, RR<8
or >36, systolic BP <80 or >200, diastolic BP>110,
SpO2<85%. VS time plots of patients whose vital sign
parameters crossed the instability thresholds for any
reason were visually assessed to judge them as wave-
form patterns consistent with physiologically plausible
instability, or as physiologically implausible and there-
fore artifactual.

Each alert is associated with a category indicating the
type of the chronologically first vital signal that ex-
ceeds its control limits. As a result, an alert with la-
beled as ‘respiratory rate’may also include other vitals
outside of the bounds that have escalated shortly after
the exceedence or respiratory rate is recognized. We
extracted a number of features to characterize each
of the 813 alert events found in our data. The fea-
tures are computed for each vital signal independently
during the duration of each alert and a short window
(of 4 minutes) preceding its onset. The list of fea-
tures includes common statistics of each vital signal
such as mean, standard deviation, minimum, maxi-
mum and range of values. It also includes features that
are thought to be relevant (by domain experts) in dis-
criminating between artifacts and true alerts. There
are a total of 147 features derived from all vital signs
as follows:

• The data density, which is the normalized count of
signal readings during the alert period, a low value
indicates the temporal sparseness of the data, a
value of zero simply means there was no data cap-
tured in that period;

• The minimum and maximum of the first order dif-
ference of vital signal value during alert window.
Extreme values indicate a sharp increase/decrease
of the signal value;

• The difference of means of vital sign values for the
4 minute window before and after the alert;

• The value of the slope as the result of fitting lin-
ear regression to the vital values versus the time
index;

4.2. Artifact Classification Models

We now show the classification models obtained to dis-
tinguish between artifacts and alerts corresponding to
different vitals. We considered alerts associated with
different vitals as separate classification tasks. Out of
the 813 alert samples, 181 have been identified by ex-
pert clinicians as artifacts. Aside from the 813 labeled
samples, there is a large amount of data that remains
unlabeled. The goal now is to train a separate model

for each alert type such that other potential artifacts
can be detected in the unlabeled data. Since the clas-
sification results will be reviewed by domain experts,
we rely on the RIPR framework to extract simple and
intuitive projections which will make it easy for clini-
cians to validate the results.

4.2.1. Respiratory Rate Alerts

The majority of alerts in our data are associated with
the respiratory rate (RR). There are 362 such cases
and a significant proportion of these (132 samples)
are actually artifacts. Figure 1 shows the set of 2-
dimensional projections retrieved by RIPR for the true
alarm vs. artifact classification task. All the data
points are represented in the plot as dots - the true
alerts are shown in blue while the artifacts are shown
in red. Recall that each point is only classified using
one projection. To illustrate this, we plotted the data
assigned for each projection with red circles (for arti-
facts) and blue triangles (for true alerts). The plots
show a good separation between artifacts and true
alerts, which was one of our objectives. Also, the pro-
jections retrieved use data density features for the RR,
SPO2 and HR signals as well as the minimum value
for the respiratory rate. The use of these features is
consistent with human intuition about what may con-
stitute a respiratory rate artifact. For instance, a lot of
missing data often signifies that the probe was removed
from the patient for a period of time. The same can be
said about minimum values for a vital - the measuring
device could have been disconnected or misplaced.

4.2.2. Blood Pressure Alerts

We apply the same procedure for alerts related to
blood pressure (BP) signals. There are 96 labeled ex-
amples of such alerts out of which 24 are artifacts. The
2-D projections are displayed in Figure 2. This time,
though the features used are known to be informative,
the class separation is not very clear. This is visible es-
pecially in the top right corner of the first plot, where
we can observe a substantial overlap between artifacts
and true alerts.

Since in this case using two-dimensional projections
appears insufficient to provide a convincing model, we
also identified informative 3-dimensional projections.
Figure 3 shows the model resulting from this proce-
dure. Only the alerts assigned to the specific projec-
tion were shown, in order to avoid overloading the fig-
ure. It is noticeable that the addition of the third di-
mension greatly improves the class separation. Again,
the sparsity of data readings is an important feature,
though this time the data density of three different
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Figure 1. 2-D projections for RR alerts.The artifacts are in
blue (circles) and the true alerts are in red (triangles).

vitals needs to be considered for the subset of data
presented in the first projection of Figure 3. The sec-
ond 3-D projection uses the maximum and minimum
values of HR and RR to classify artifacts and there

exists a hyperplane separating the two classes.

Figure 2. 2-D projections for BP alerts. The artifacts are
in blue (circles) and the true alerts are in red (triangles).

4.2.3. Oxygen Saturation Alerts

The alerts based on blood oxygen saturation (SPO2)
are more difficult to classify. The training set for these
consists of 259 samples out of which only 24 are labeled
as artifacts. Figure 4 shows the 2-dimensional projec-
tions recovered for this problem. As there is substan-
tial class overlap, we also trained 3-D models, shown
in Figure 5. Both 3-D projections of the model use
data sparsity features to isolate artifacts, though we
must note that the separation is still somewhat noisy.

The remaining alarms are associated with the heart
rate. Only one of these is actually an artifact. Predic-
tive accuracy of the presented RIPR models is sum-
marized in Table 1. The results are obtained through
leave-one-out cross-validation.
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Figure 3. 3-D projections for BP alerts. The artifacts are
in blue (circles) and the true alerts are in red (triangles).

0

0.5

1

1.5

00.20.40.60.811.21.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

value−HR−data−−den

value−RR−data−−den

 

va
lu

e−
S

P
O

2−
d

at
a−

−d
en

0 10 20 30 40 50 60 70 80
−40

−20

0

−14

−12

−10

−8

−6

−4

−2

 

value−HR−diff1−−minvalue−HR−diff1−−max

 

va
lu

e−
R

R
−d

if
f1

−−
m

in

4.3. Case Studies

4.3.1. Outlier Detection

A good indication of the invalidity of a RR alert is the
lack of HR data. So a simple decision rule - as stated
by the clinicians - would be just to see whether there
is HR data, if there is HR data, then the RR alert is
an artifact, otherwise, it could be real. In classifying
RR-based alerts, the algorithm correctly picked HR
data density as the most important dimension. The
top right of the second graph of Figure 1 contains two
blue circles representing samples that would be classi-

Table 1. Classification Accuracy of RIPR models.
Precission and recall in recovering the genuine alerts.

Type RR BP BP SPO2 SPO2
2D 2D 3D 2D 3D

Acc. 0.978 0.833 0.886 0.911 0.912
Prec. 0.979 0.858 0.896 0.929 0.918
Rec. 0.991 0.93 0.958 0.945 0.996

Figure 4. 2-D projections for SPO2 alerts. The artifacts
are in blue (circles) and the true alerts are in red.

fied as non artifact according to the projection. Both
of them have continuous stream of data, but the RR
signals are irregular. This is a different type of arti-
fact. Because there are very few this type of artifact,
and the algorithm is designed to retrieve a small set of
projections, they end up being misclassified. The vital
signs corresponding to these two samples are presented
in Figure 6 below. Further investigation showed that
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Figure 5. 3-D projections for BP alerts. The artifacts are
in blue (circles) and the true alerts are in red (triangles).
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variance of the signal values provides a reliable way to
detect these outliers. Thus, expert attention was fo-
cused on this more problematic type of artifact rather
than on the type which represents the majority of cases
and is relatively easy to handle automatically.

Figure 6. Vital signs of RR artifact outliers

4.3.2. Finding Errors in Data

On the other hand, some samples were classified by
the system as artifacts while the domain experts con-
sidered them true alerts. On closer inspection, they
seemed to exhibit artifact-like features - with little or

no recorded values in the HR signal. When we drilled
down to look at the data, we found that the samples
were actually labeled incorrectly in the training set.
Therefore, the RIPR approach can also be useful in
detecting inconsistencies due to human error.

5. Conclusions

This paper outlines the use of a machine learning algo-
rithm to support annotation of clinical data. We have
shown the models that our RIPR framework produces
for automatic data labeling and how the retrieved low-
dimensional projections make it possible for domain
experts to quickly validate the assigned labels. We
also illustrated how RIPR models can be used to find
special cases and incomplete or invalid data. Thus, the
proposed framework promises to be useful to clinicians
by partially automating annotation of medical data in
a hman understandable and intuitive manner.
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