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Abstract

Decision-support systems enable human
users to handle tasks such as classification
or clustering. Often, this expert interven-
tion involves simply the validation of an out-
come produced by an automated system. In
such cases, the decision process must be made
transparent and comprehensible. We formu-
late the projection retrieval problem as an
optimization using a divergence-based objec-
tive specific to the learning task. The frame-
work presented in the paper uses consistent
divergence estimators to extract a set of low-
dimensional projections which jointly form a
solution to the learning task. The method
works under the assumption that each pro-
jection addresses a different subspace of the
feature space and that it is possible to learn a
function selecting the appropriate projection
for a given test point. Experiments show that
the method recovers the underlying struc-
ture of the data and provides low-dimensional
views that aid expert assessment.

1. Introduction

In the domain of operations research, systems are de-
signed to provide decision support to human users.
Typically, this involves automating tasks such as
grouping or classification while offering the experts in-
sight into how the learning task was solved and how
the model is applied to new data. An ideal scenario for
a multitude of practical applications is the following: a
domain expert provides the system with training data
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for some learning task; the system learns a model for
the task which uses only simple projections; a user
provides queries (test points); for a given query point,
the system selects the projection that is expected to
be the best-performing for the query point; the system
displays the outcome as well as a representation of how
the task was performed within the selected projection.

The problem of recovering simple projections for the
classification task has been formalized in (Fiterau &
Dubrawski, 2012). The RECIP algorithm proposed by
the authors uses point estimators for conditional en-
tropy and recovers a set of low-dimensional projections
which classify queries using non-parametric discrimi-
nators in an alternate fashion - each query point is clas-
sified based on one of the projections in the retrieved
set depending on the characteristics of the point.

The current paper extends the concept to
semi/unsupervised learning tasks by expressing
the Informative Projection Retrieval (IPR) problem
using a more generic formalization applicable to any
learning task for which there exists a consistent loss
function. The loss for the semi-supervised classifi-
cation and clustering tasks we are exemplifying in
this paper are based on local divergence estimators.
We provide an evaluation of the different divergence-
based objectives in terms of the recovery of underlying
structure in data and by quantifying the perfomance
of the resulting models for their respective tasks.

We also augment the system in the direction of pro-
viding the users with an overview of projection ‘agree-
ment’. Specifically, we compare each of the recovered
projections with all existing projections of same di-
mensionality in the model in order to identify consen-
sus, disagreement or alternative explanations. To this
purpose we also use divergence-based metrics - their
properties and significance are dicussed in Section 4.
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2. Related Work

The use of dimensionality reduction techniques is a
common preprocessing step in applications where the
use of simplified classification models is preferable.
Methods that learn linear combinations of features,
such as Linear Discriminant Analysis, are not ideal
for the task considered here, since we prefer to rely
on the dimensions available in the original feature
space. Feature selection methods, such as e.g. lasso,
are suitable for identifying sets of relevant features,
but do not consider interactions between them. Our
work fits the areas of class dependent feature selection
and context specific classification, highly connected
to the concept of Transductive Learning (Gammer-
man et al., 1998). Other context-sensitive methods
are Lazy and Data-Dependent Decision Trees, (Fried-
man et al., 1996) and (Marchand & Sokolova, 2005)
respectively. (Ting et al., 2011) introduce the Feat-
ing submodel selection relies on simple attribute splits
followed by fitting local predictors. (Obozinski et al.,
2010) present a subspace selection method in the con-
text of multitask learning. There are also numer-
ous methods that clustering in low-dimensional sub-
spaces (Agrawal et al., 1998; Kriegel et al., 2005). The
work in (Bohm et al., 2004) uses the concept of lo-
cal subspace preferences, which captures the direc-
tions of high point density. Divergence-based meth-
ods were previously used for clustering. The work
by (Banerjee et al., 2005) use Bregman Divergence to
unify centroid-based approaches. Clustering based on
divergence metrics is also used in (Slonim et al., 2005;
Liu et al., 2012). Additionally, divergences have been
used for other machine learning tasks such as segmen-
tation (Vemuri et al., 2011). Spectral clustering ob-
tains low-dimensional projections, however, it relies on
a similarity matrix (Dhillon et al., 2004).

Unlike most of those approaches, our method is de-
signed to retrieve subsets of the feature space designed
for use in a way that is complementary to the basic
task at hand (classification or clustering) while pro-
viding query-specific information.

3. Informative Projection Retrieval

This section describes the formulation of the Infor-
mative Projection Retrieval (IPR) problem, then de-
scribes an algorithmic framework generalized from the
RECIP procedure in (Fiterau & Dubrawski, 2012).

The algorithm solves IPR when the learning task can
be expressed in terms of a loss function and there exists
a consistent point-estimator for the risk. The deriva-
tions in Section 3.1 follow the setup for the RECIP

procedure, the main improvement being the formal-
ization of the problem for learning tasks other than
classification and the capability to include learners of
any given class while RECIP only considered nonpara-
metric classifiers. Section 3.3 shows how divergence
estimators fit into this framework.

3.1. Formalization of Projection Retrieval

Let us assume we are given a dataset X =
{z1...2z,} € X™ where each sample z;, € X C R™
and a learning task on the space X with output in a
space ) such as classification or regression. The task
solver for the learning task is selected from a solver
class T = {f: X — YV}, were the risk for the solver
class T is defined in terms of the loss /¢ as

R(r,X) =Exl(z,7) VT eET.

We define the optimal solver for the task as

e argmin R(r, X)
TET
We will use the notation 7(x) to indicate the task
solver from class 7 which is obtained by minimizing
the empirical risk over the training set X.

e 5 1 ¢
! = argmin R(T, X) = arg min — Zf(wi, T)
TET reT N i—1

We formalize the type of model that our IPR frame-
work will construct. Class M contains models that
have a set II of projections of maximum dimension d,
a set T of task solvers and a selection function g:

M={ = {m welldim(r)<d},

t={rneT, n:mX) =Y Vi=1.. |1},
ge{f:x—=A{1...]0}} }

The set IT contains all the axis-aligned projections.
However, the subset IT C IT contained by M contains
only projections that have at most d features. The pa-
rameter d is dictated by the application requirements
- values of 2 or 3 are expected since they permit users
to view the projections. The selection function g picks
the adequate projection 7 and its corresponding task
solver 7 to handle a given query =x.

Based on this model, we derive a composite solver
which combines the benefits of the solvers operating on
the low-dimensional projections. The loss of this solver
can be expressed in terms of the component losses.

Tm(x) = 7i(mi(x))  where g(z) =1
U@, M) = U g(a) (2), Ty(a))
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where g(z) represents the index of the solver for point
z is handled and m;(z) is the projection of z onto
;. Optimizing over the Informative Projection Model
class M, the IPR problem for learning task 7 can be
formulated as a minimization of the expected loss:

M* = argj\inin Ex (T2 (), Tg()) (1)

Since we are dealing with an unsupervized problem in
terms of the selection function, there are limitations
on its learnability. One example in which recovery is
successful is a dataset containing regulatory features:

Vodz?d st with 2/ € A, 7%(2t .. 2™) = 75 (2™ ... 2")

In the example above, for a given point z, j is the
regulatory feature. The interpretation is that for all
points x whose jth feature is in the set A, the targeted
task can be optimally performed by the task solver 73
by considering only features {iy...i4} of x. The task
solver 74 is only trained over samples for which 27 € A.

3.2. Projection Recovery Framework (RIPR)

The starting point of the algorithm is writing the em-
pirical version of (1) as a combinatorial problem over
multiple projections. The algorithm is designed un-
der the assumption of the existence of low-dimensional
embeddings that enable capturing accurate models for
the target task. In conformance with this assumption,
every sample point x; can be dealt with by just one
projection 7;, in other words g(z;) = j. We model
this mapping as a binary matrix B:

Bij = I[g(x;) = j].

We write the minimizers of the risk and empirical risk:

11|
M* = argj\l/rrllinEXZ Ig(x) = jll(m;(x), 75)
n |II]
M* = argj\znin % Z Z I[g(x;) = jle(mj(xq), )

Assume now that we can consistently estimate the loss
of a tasks learner 7 at each available sample, that is

Jst. VYreX teT g(x,T) ne Lz, 7) (2)

Plugging (2) into the minimization yields the final
form used to obtain the estimated model:

= argmin ZZB”L” s Lij :g(’ﬂ'j(fﬂi),’]'i)

ML} 2 5

The loss estimators L;; are computed for every point
on every subspace of up to the user-specified size d. B
is learned through a regularized regression procedure
that penalizes the number of projections IT used in the
model. This translates to an £y penalty on the number
of non-zero columns in B, relaxed to ¢1. The ¢y penalty
is written as I[B. j # 0], while its relaxation is ||B||1,1.

"
B =argmin||[L* =L B||3+AY I[B.; #0]
B

j=1

where d* is the number of projections of size up to d,

d . S .
Ly ef min; L;;, the operator ® isojections of size < d

defined as
&
®:R* xR 5 R", (LG B); = ZLijBij
j=1

The optimization procedure is described in detail in
(Fiterau & Dubrawski, 2012), the key difference to its
use here being that we are computing the loss matrix
L differently. The technique resembles the adaptive
lasso, which gradually reduces the number of non-zero
columns in B until a small and stable set of projections
is converged upon. As illustrated in 1, the procedure
uses the multiplier ¢ to gradually bias projection se-
lection towards projections that not only perform well
but also suit a large number of data points.

Algorithm 1 RIPR Framework
o=11...1]
repeat
B = argming ||L* — L ® B||3+
M 5o 1B lles + Ao Bl

subject to
||Bk’. |51=1 k=1...n
8; =11B.jl|e, j=1...d* (update muliplier)

6 = ([[6]le = 8)/15]les

until 6 converges
M= {m; |Bley >0 Vi=1...d"}
return II

3.3. Divergence-based Objectives

Next, we show how to formulate IPR for different
tasks. The aim is to find projections that are infor-
mative for a task given no knowledge of the actual
class of solvers that will be be used. For instance,
we might be given a high dimensional classification
problem for which to find a set of low-dimensional
projections without considering the classifier - linear,
kernel-based or nonparametric - that will ultimately
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be trained. Therefore, we incline to use nonparamet-
ric loss functions. The performance of the method will
depend on the estimator’s rate of convergence.

3.3.1. CLASSIFICATION

The IPR problem for classification is the topic of the
previous work in (Fiterau & Dubrawski, 2012), we
state some results obtained in the paper.

Proposition 3.1. Given a variable X € X and a bi-

data which penalizes points that are about equally-
distanced from the point-clouds of each class - call this
R(Xy,7F). We'll use the notation 7(X) to represent
the projections of a set of points X.

. B Vi1 (m(x), m(X4))\ A=a)lml
R(Xaﬂ{:) leszr( IZC/Z(T('(J))JT(X_;) )

Z (Vk_,_l(ﬂ'(x),W(X_)))(l—a)lﬂ\+

2 () n(Xy)

nary variable Y, X sampled from the mizture model Z . (I/k(ﬂ'(x), (X)) v(m(2), W(X+)))(lfa)|7r|
f(@) =ply = 0)fo(x)+p(y = 1) f1(z) = pofo(x)+p1fi(z) , Jex, vp(m(z), m(X4))" ve(w(z), (X))

H(Y|X) = —pologpo—p1logpr—Dxr(follf)—Drr(fillf)

The conditional entropy over the points assigned to
projection 7; is then shown to be estimated as follows:

H(Y |m(X); {z]g(x) CX*ZI zi) = (@i, 7))

(i, ) = ((” AR L) -l

nyk(ﬂ'j (.’I?Z'), j (Xﬂy(arl)»

Above, the notation 7(X) is used to represent the pro-
jection of vector X onto 7. Also, we will use X, to
represent the subset of the sample for which the label
is 7. The notation X \ x refers to the sample ob-
tained when removing point z from X. The function
vg(x, X) represents the kth distance from point z to
its k-nearest-neighbor from the sample X. ’7'7]:], is the
k-nn classifier on projection ;.

This result is obtained by wusing the Tsallis a-
divergence estimator introduced in (Poczos & Schnei-
der, 2011) and yields an estimator for the loss when
the target task is binary classification. « is a constant
set to a value close to 1 (such as 0.95) and |r;| is the
dimensionality of the subspace 7;.

3.3.2. SEMI-SUPERVISED CLASSIFICATION

We propose to extend the objective in 3.3.1 to semi-
supervised classification. Assume we are given a semi-
supervised learning problem with labeled samples X
and X_ and unlabeled samples X,,, where each sample
belongs to R™. The objective is to find a separator in
a low-dimensional sub-space of the features such that
the labeled samples are correctly classified and, at the
same time, the unlabeled data allows substantial sepa-
ration. That is, very few unlabeled data points remain
between the clusters representing different classes.

The score for a projection is computed by using the
same estimator for KL divergence between class dis-
tributions, to which we add a metric for unlabeled

It to be noted that, for all these learning tasks, the
typical convergence issues encountered with nearest-
neighbor estimators are bypassed because of the low-
dimensionality of the projections.

3.3.3. CLUSTERING

Unlike classification and regression, most types of clus-
tering make it problematic to devise an objective that
can be evaluated at every point, mainly because an
overview of the data is needed for clustering, rather
than local information. Distribution-based as well as
centroid-based clustering fit a model on the entire set
of points. This is an issue for the IPR problem because
it is not known which data should be used for the set of
submodels. To bypass this problem, we first learn the
projections and the points corresponding to them us-
ing density-based clustering - which admits a local loss
estimator. We then learn a clustering model (solver)
on each projection using only the assigned points.

Density-based clustering uses areas of higher density
than the remainder to group points. To achieve IPR
for clustering, we consider the negative divergence, in
the neighborhood of each sample, between the distri-
bution from which the sample X is drawn and a uni-
form distribution on X. Let be a sample of size n
drawn uniformly from X'. Again, we use the nearest-
neighbor estimator converging to the KL divergence.
7 is some clustering technique such as K-means.

—KL(m;(X)|||m:(U))

(d(m(az), (X)) ) [mil(1—a)
d(m(x), U)

~
Q
g
—
S
s,
—
5
N
ﬂ
Q
g
SN—

Much like the classification tasks, RIPR can be used
with any clustering algorithm. We here focus here on
K-means since it is a frequently-used method and, as
a non-parametric method, it is more in tune with the
non-parametric divergence estimators used to select
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the projections. Running RIPR with other clustering
algorithms is still work in progress.

3.4. Artificial Data Example

We now illustrate, on an artificial dataset, how RIPR
clustering with K-means can improve over runnning
K-means on all the features. The data we used has
20 features, and it contains three Gaussian clusters on
each of its informative projections. The informative
projections are {17,12}, and {10,20,1} and {4,6,9}.
Figure 1 shows, on the left side, the clustering obtained
by K-means, projected on the sets of informative fea-
tures. On the right side, we plotted the projections
as obtained by RIPR and the clustering of points in
each of them. Every cluster is colored differently, with
black points in RIPR plots representing the data not
assigned to that projection. The number of clusters is
picked by cross-validation for both k-means and RIPR.

Figure 1. Example Clustered Data for K-means (left) and
RIPR (right). The plots of the left show the clustering
obtained with K-means projected on the informative sets
of features. The plots on the right show the clustering
obtained by RIPR on the recovered sets of features.

The clustering obtained with K-means on all dimen-
sions looks very noisy when projected on the actual
informative features. The explanation is that the clus-
tering might look correct in the 20-dimensional space,
but when projected, it no longer makes sense. On
the other hand, RIPR recovers the underlying model

enabling the correct identification of the clusters. Nat-
urally, recovery is only possible as long as the number
of incoherent data (points that do not respect the low-
dimensional model) stays below a certain level. This
aspect is investigated in the next section.

4. Determining Projection Consensus

The set of projections recovered by the RIPR Frame-
work is comprehensive in terms of dealing with the
feature space. However, in certain cases, providing
the user with multiple views of the data is useful. We
propose an extension which analyzes, for each pro-
jection m; in the selected set, its consensus with the
other projections and identifies agreeing projections -
which support the separation induced by m;. Also, it
picks out projections that lead to highly incompatible
or contradictory decisions when compared to ;.

We rely on information theoretical concept to compute
projection agreement. We’ll compute two metrics be-
tween m; - a projection in the selected set - and =;
- any other axis-aligned. The first metric, called se-
lection divergence, evaluates how closely packed the
points classified with m; when projected onto m;:

SDivx (my, ;) = H(I[g(X) = i]|m;(X))

The notation I[g(X) = 4] is used to represent a label-
ing according to which of the samples have 7; assigned
as their appropriate projection. To estimate this quan-
tity, we can use the formulas presented in 3.3.1 for
conditional entropy.

A second metric, called clustering divergence, eval-
uates how the points labeled by projection m; are
distributed in projection 7;. We use the notation
Xig(x)=q to refer to the points labeled by m; and
Ti(mi(X[g(x)=i])) to refer to the vector of labels as-
signed by the task solver on ;.

K Divx (7, 75) = H(7i(m(Xg(x)=i) 75 (X[g(x)=i]))

Figure 2 shows these metrics computed for a 2-
dimensional projection 7 picked by RIPR compared
to all other 2-dimensional projections in that dataset.
SDivx(m, m;) is on the x-axis and SDivk (m,7;) is on
the Y axis. It is apparent that the projections that
have features in common with = (i.e. in agreement
with 7r) are shown as closer to it on the plot.
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Figure 2. Scatterplot of Projection Consensus metrics be-
tween the top projection mined by RIPR from an artificial

dataset
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5. Evaluation

This section illustrates the capabilities of the RIPR
framework in recovering the underlying patterns in
data and in training well-performing classification and
clustering systems. Before explaining the results, we
must make a note on computational complexity. While
it is true that the method requires computing the loss
for every combination of features, the point losses can
be computed independently of everything else. Thus,
the loss computation step is trivially parallel. In the
adaptive lasso procedure, we can gradually discount
non-informative projections, thus reducing the dimen-
sionality of the optimization problem. Though so far
we have tried the method on relatively small datasets,
the improvements we mentioned allow the increase of
the dimensionality by one order of magnitude.

We point out that, since RIPR is a generalization
of the RECIP algorithm presented in (Fiterau &
Dubrawski, 2012), RECIP is equivalent to RIPR when
the task considered is classification and the task solvers
are nearest-neighbor classifiers. We are not improving
the performance for this case, so comparing against
RECIP would not make much sense. However, we do
present the notable benefits of RIPR over RECIP: its
ability to solve other tasks than classification and to
use existing classifiers/clustering algorithms.

5.1. Experiments on Artificial Data

Clustering has been heavily researched, resulting in a
vast number of succesful techniques. We do not seek
to supplant these, but rather to facilitate their use in
a user-driven context. RIPR was developed such that
we may apply any existing clustering or classification
algorithm, maintaining its high performance while sat-

isfying the stringent requirements of working with only
1,2 or 3-dimensional models. In this section, we show
that, RIPR with K-means performs even better than
the standard K-means by leveraging structure in data.

Table 1. Mean distances to cluster centroids for artificial
data queries for RIPR and K-means. The RIPRO column
represents the distance to RIPR centroids on all dimen-
sions. P represents the true number of informative projec-
tions, while R is the number of incoherent points.

P R | Dist RIPR Dist RIPRO Dist K-means
2 0 50.94 9485.27 9424.34
2 100 387.19 10955.60 10824.42
2 200 625.50 12193.29 12077.29
2 400 1026.71 14689.88 14580.36
2 800 1848.42 19596.55 19519.62
3 0 81.42 21621.72 21324.13
3 100 573.62 23617.22 23236.56
3 200 914.30 25524.81 25174.39
3 400 1443.52 29177.94 28788.38
3 800 1443.52 29177.94 28788.38
5 0 252.36 59739.11 59061.49
5 100 990.57 63354.76 62101.09
5 200 1493.19 66310.79 65191.95
5 400 2326.89 72611.39 71433.86
5 800 2326.89 72611.39 71433.86

An immediate way to assess the performance of RIPR
for clustering is by attempting to recover patterns from
artificial data. We generated datasets with 20 features,
P informative projections and k clusters on each pro-
jection. Each projection allows the clustering of a sub-
set of the data (400 points). An example of how the
data looks like was shown in Figure 1. Not all the
points can be clustered - R of them are incoherent and
do not follow the model, increasing the problem com-
plexity. We trained RIPR and K-means models and
evaluated their performance in grouping query points.
K-means and RIPR parameters are obtained by cross-
validation. The evaluation metric is the sum of dis-
tances from the test points to their assigned centroids.
As shown in Table 1, the RIPR model distances are
much smaller compared to the K-means ones (last col-
umn). It is debatable whether this is due to an im-
proved clustering or simply because the dimensional-
ity is reduced. For this reason, we also computed the
distances from the test points to the centroids consid-
ering all dimensions, not just those used in the cluster-
ing. This value is presented in the RECIP0O column.
Clearly, it is very difficult for this value to be less than
the K-means sum of distances since K-means actively
optimizes this metric over all the features. It is also
a very pessimistic measure since the shape of RIPR
models, considered in all dimensions, is cylindrical.
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Table 2. RIPR clustering evaluation continued. This table
compares the logarithm of the volume for the RIPR model
and the K-means model. Also shown are the IP retrieval
precision and recall.

LogVol  LogVol | RIPR RIPR
P R RIPR Kmeans Prec. Rec.
2 0 62.75 66.07 1.00 1.00
2 100 63.48 67.23 1.00 1.00
2 200 63.49 67.23 1.00 1.00
2 400 63.58 66.88 1.00 1.00
2 800 63.65 67.04 1.00 1.00
3 0 70.92 74.62 1.00 1.00
3 100 71.76 75.04 1.00 1.00
3 200 71.93 75.39 1.00 1.00
3 400 71.99 75.06 1.00 1.00
3 800 71.99 75.06 1.00 1.00
5 0 81.11 85.40 1.00 1.00
5 100 82.30 85.68 0.98 1.00
5 200 82.46 85.70 0.98 1.00
5 400 82.57 85.71 1.00 1.00
5 800 82.57 85.71 0.98 0.98

We also considered a different metric of success - the
volume of the resulting clusters over all the features.
This comparison is fair because the volumes have the
same dimensionality. This is summarized in Table 2.
It is apparent that RIPR obtains slightly compacter
models than K-means, built based on only a fraction
of the features. It is to be noted that the total num-
ber of centroids is roughly the same for K-means and
RIPR, so the difference in volume is genuinely due to
an improvement in clustering.

We were also interested in whether subspace recov-
ery was possible, so we increased the number of inco-
herent points and informative projections until RIPR
ceased to provide perfect precision and recall. For our
datasets, RIPR had no problem recovering the cor-
rect models until the number of informative projec-
tions reached 5. Even past this point, we can still ex-
pect good retrieval rates, as aparent from Table 2. All
results on artificial data are averages over 10 datasets
coming from the same distribution.

Another aspect is the influence of the true number of
clusters and informative patterns on the performance
of RIPR as compared to that of K-means. Table 3
summarizes the results of these experiments. What
we observed was that, with the existence of more clus-
ters, both algorithms decreased the expected distance
to the centroid. However, as expected, for RIPR mod-
els the decrease was drastic. RIPR does consistently
better than k-means in terms of the volume, and, as
expected, there is a general tendency to increase the

Table 3. Variation of distances and volumes with the vari-
ation of the number of IPs (P) and the number of clusters
K in each projection.

Dist Dist Dist LVol LVol
P K | RIPR RIPRO KM RIPR KM
2 2 865 12,318 12,262  63.12 67.16
2 3 622 12,203 12,058 63.47 66.79
2 5 440 12,060 11,846 63.96 66.92
2 7 375 11,909 11,662 64.28 66.71
3 2| 1,344 25,704 25,422 T1.55 74.77
3 3 872 25472 25,087 71.84 75.46
3 5 648 25,247 24,711 7241 75.47
3 7 530 24,979 24,449 72.69 74.94
5 2| 2,683 66,801 65,084 82.08 85.79
5 3| 1,484 66,352 65,224 82.41 85.57
5 5| 1,066 65419 63,983 82.89 85.41
5 7 842 64,946 63,238 83.28 85.38
7 2| 4,621 127,558 125,451 89.01 92.68
7 3| 2,174 126,309 123,863 89.47 92.58
7 5| 1,480 124,436 121,442 89.90 92.33
7T 7| 1,238 123,151 120,123 90.11 92.36

Table 4. Clustering results on real-world datasets

uci Dist Dist Dist LVol  LogVol
RIPR RIPRO KM  RIPR KM

Seeds 16 174 107 7.68 9.70
Libras 9 620 265  -5.80 7.26
Boone 125 2,18¢4 1,15e4 240.00 248.15
Cell | 40,877 18,8¢5  8,leb  54.69 67.68
Conc. | 1,370 68,865 55,594  49.24 52.75

cluster volume as more and more informative projec-
tions are added. For a fixed P, RIPR is slightly more
sensitive in terms of the volume than k-means, which
is a natural consequence of it being more in tune with
the underlying model.

5.2. Experiments on Real Data

We verified that our findings also hold for real-world
data by running RIPR and K-means on datasets from
the UCI repository. We notice that the volume ob-
tained by RIPR clustering is consistently smaller and
the expected distances are several orders of magnitude
smaller than the ones obtained by K-means.

5.3. Examples of Recovered Subspaces

We ran RIPR clustering with k-means submodels on
two datasets from the UCI repository to demonstrate
how patterns in data can be mined with our approach.
Figure 3 shows the model recovered from the seeds
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dataset. The clustering that RIPR constructs uses the
size and shape of seeds to achieve their placement into
three categories, clearly separated in the figure. The
separation according to their aspect ratio is something
that one might intuitively expect.

Figure 3. Clusters mined from the Seeds dataset

width-of-kernel
w
o
L

25

16
B

13 12 10 area
perimeter

Figure 4 shows the two informative projections mined
from the Concrete dataset. Here, different concrete
mixtures are grouped by their content. While the first
projection generates clusters according to the high /low
contents of cement and high/low contents furnace
residue, the second projection singles out the mixtures
that have (1) no fly ash, (2) no furnace residue or (3)
equal amounts of each. The clusters seem to capture
what an experimenter might manually label.

6. Conclusions

The current paper presents the problem of Informative
Projection Retrieval and motivates its importance to
applications which require user intervention. The so-
lution we offer uses divergence estimation to obtain
informative projections while enabling existing algo-
rithms to provide models that are both intuitive and
achieve good performance. Our experiments on artifi-
cial data show that our method, Regression-based IPR
(RIPR), attains high values for precision and recall and
mines compact clusters. The real-data examples show
how our method maintains high performance while re-
covering compact and realistic models.
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