Carnegie Mellon University

ICMLA 2013

Informative Projection Recovery for Classification, Clustering and Regression

MADALINA FITERAU ARTUR DUBRAWSKI

Motivation

- 1. NEED COMPACT MODELS TO ENABLE ANALYSIS AND VISUALIZATION
- 2. LEVERAGING EXISTING STRUCTURE IN DATA → HIGH PERFORMANCE
- 3. COMPACT ENSEMBLES OF COMPLEMENTARY LOW-D SOLVERS

BORDER CONTROL

DIAGNOSTICS

VEHICLE CHECKS

Presentation Roadmap

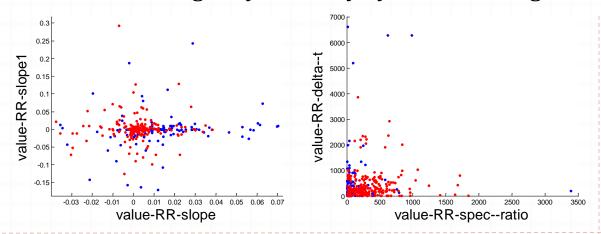
- Informative Projection Retrieval
- RIPR* Framework Overview
 - * Regression-based Informative Projection Retrieval
- The Optimization Procedure
- Applicability to Learning Tasks
- o Performance Evaluation
- Medical Application Case Study

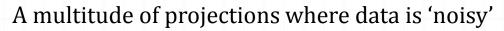
Informative Projection Retrieval (IPR)

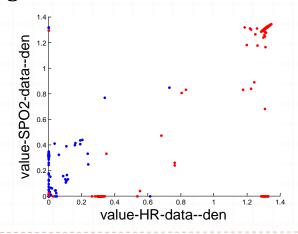
Projection Retrieval for a Learning Task

- problem of selecting low-d (2D, 3D) subspaces
- s.t. queries are resolved with high-confidence
- models perform the task with low expected risk example: features represent vital signs and derived features;

considering only the duty cycles of the signals might be sufficient





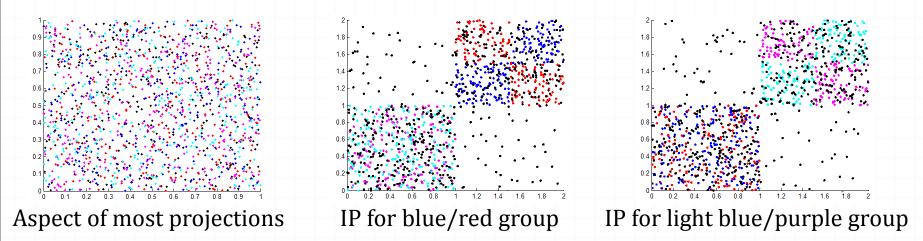


A small set where there is a clear separation

RIPR = Regression-based Informative Projection Retrieval*

*A generalization of our prior work in "Projection Retrieval for Classification", NIPS 2012

- Most of the features are redundant (non-informative)
- There exists one or several sets of features with structure
- The 'tidy' part of the set may span only part of the points
- Jointly, the sets of projections handle all data

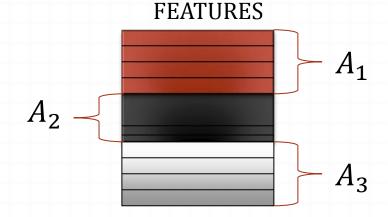


- Clinical Data several sub-models, corresponding to underlying conditions and patient characteristics
- Human-engineered datasets corrupted with artifacts which can be identified as low-dimensional patterns

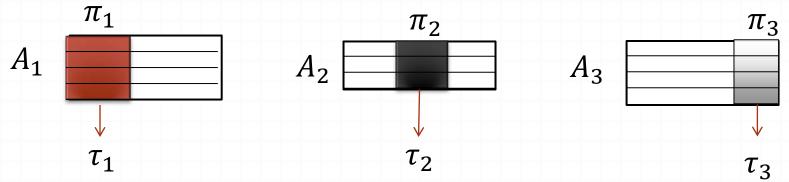
6

A Dual-Objective Training Process

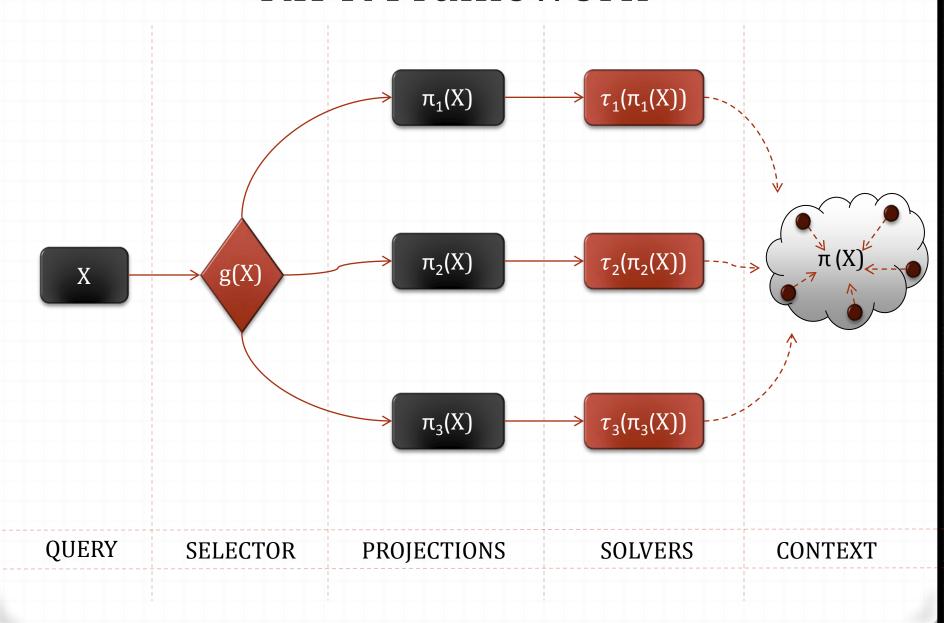
1. Data is split across informative projections



2. Each projection has a solver trained using only the data assigned to that projection



RIPR Framework



RIPR Model

Model components:

- Set of d-dimensional, axis-aligned sub-spaces of the original feature space P ϵ Π
- Each projection has an assigned solver of the task T; the solvers are selected from some solver class $\mathcal T$
- A selection function g, which yields, for a query point x, the projection/solver pair $(\pi_{g(x)}, \tau_{g(x)})$ for the point;
- $\ell(\tau_{g(x)}(\pi_{g(x)}), y)$ represents the model loss at point x

RIPR Objective Function

Model components:

- Set of d-dimensional, axis-aligned sub-spaces of the original feature space P ϵ Π
- ullet Each projection has an assigned solver of the task T; the solvers are selected from some solver class ${\cal T}$
- A selection function g, which yields, for a query point x, the projection/solver pair $(\pi_{g(x)}, \tau_{g(x)})$ for the point;
- $\ell(\tau_{g(x)}(\pi_{g(x)}), y)$ represents the model loss at point x

Minimization:

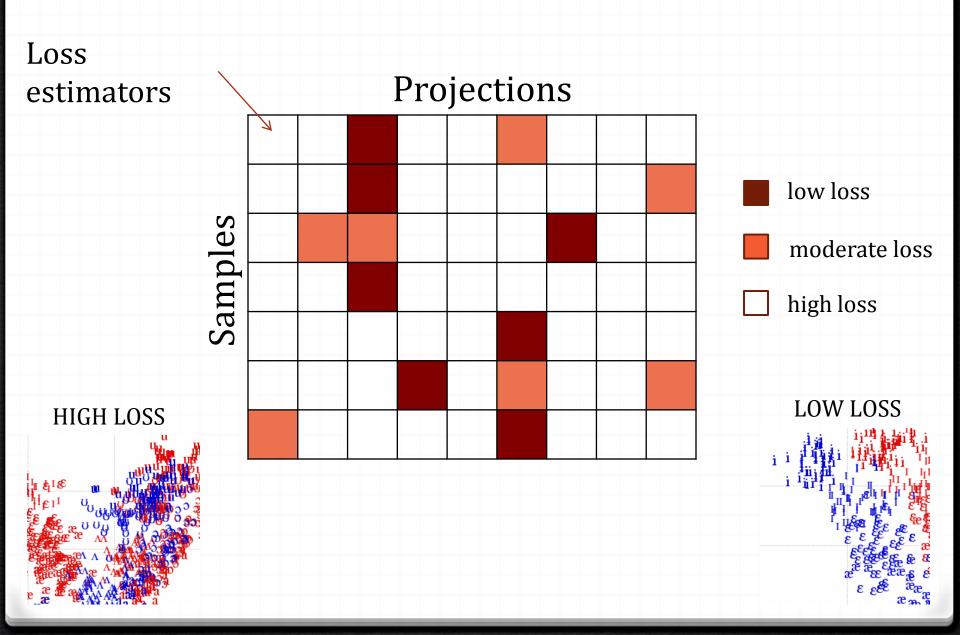
$$M^* = argmin_{M \in \mathcal{M}_d} \mathbb{E}_{\underline{\chi}} \ell(\tau_{g(x)}(\pi_{g(x)}), y)$$

Expected loss for task solver trained on projection assigned to point

Presentation Roadmap

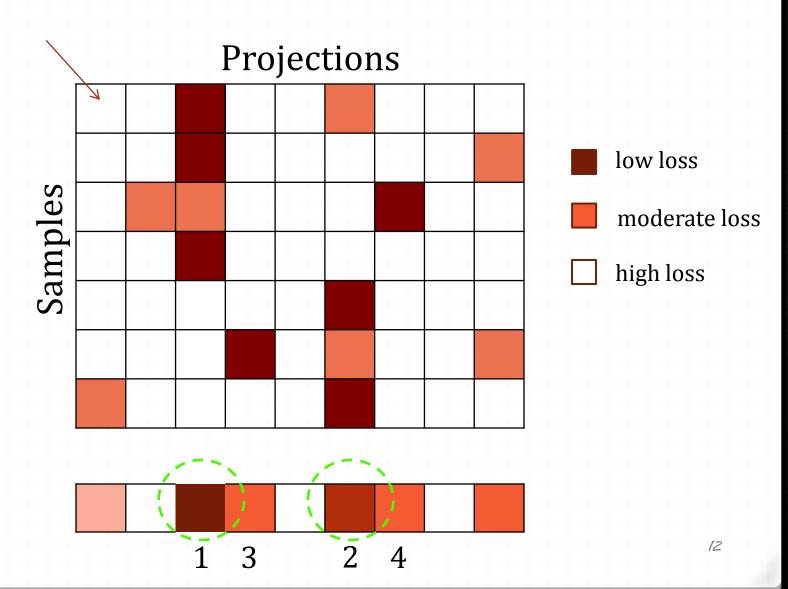
- Informative Projection Retrieval
- RIPR Framework Overview
- The Optimization Procedure
- Applicability to Learning Tasks
- Performance Evaluation
- Medical Application Case Study

Starting point: the loss matrix

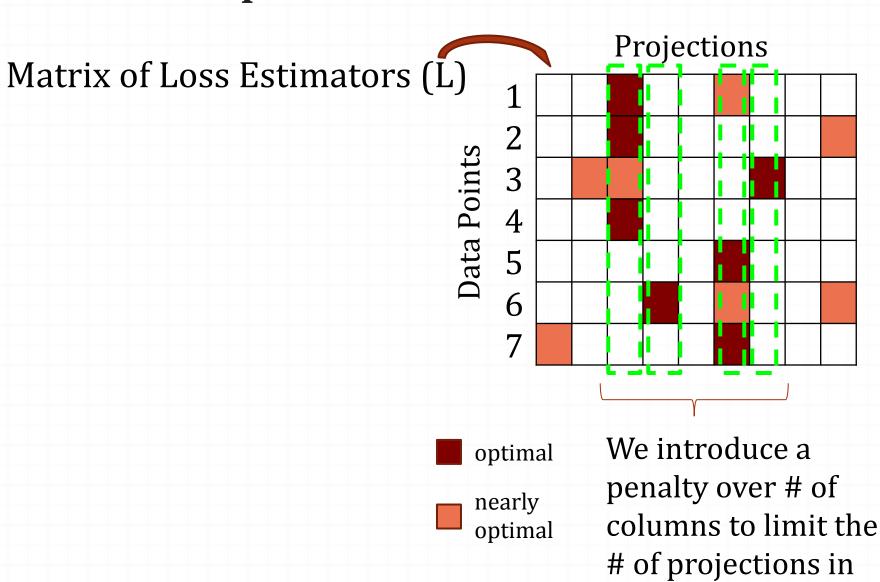


Starting point: the loss matrix

Loss estimators

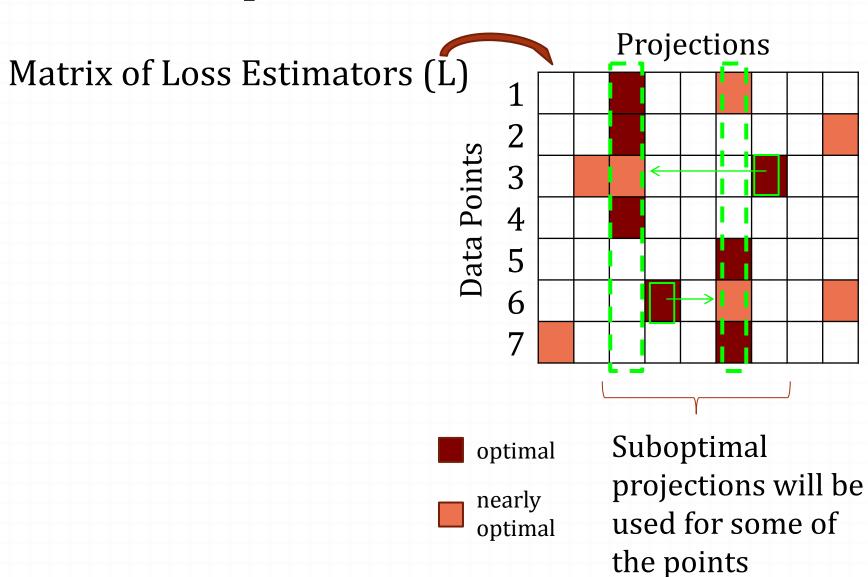


The Optimization Procedure



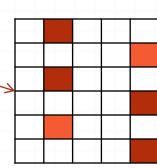
the model

The Optimization Procedure



Regression for Informative Projection Recovery (RIPR)

- RIPR learns a binary selection matrix B in a manner resembling the adaptive lasso
- Iterative procedure
 - Initialize selection matrix B
 - o Compute multiplier δ inversely proporting with projection popularity
 - $oldsymbol{0}$ Use penalty $|Bδ|_1$ → new B



The RIPR Algorithm

- 1. Compute loss matrix *L*, target T
- 2. Estimate selection matrix B

$$min_B \parallel T - L \otimes B \mathcal{I}_{|\Pi|,1} \parallel_2^2 + \lambda \sum_{k=1}^{|\Pi|} |B_k|_1$$

ITERATE UNTIL CONVERGENCE

3. Compute multiplier δ inversely proportional with utility

$$\delta_k = |B_k|_1, \qquad \delta = 1 - \delta/|\delta|_1$$

4. Obtain new selection matrix B penalizing $B\delta$

$$min_B \parallel T - L \otimes B \mathcal{I}_{|\Pi|,1} \parallel_2^2 + \lambda |B\delta|_1$$

where $L_{ij} \otimes B_{ij} = L_{ij} B_{ij}$

Applicability to Learning Tasks

We show how RIPR can solve the following tasks:

- Classification
- Semi-supervised classification
- Clustering
- Regression

The matrix of loss estimators is computed differently for each of these tasks.

The generality of the method does not stop here: RIPR can solve any learning task for which the risk can be decomposed using consistent loss estimators.

Loss Estimators: Classification

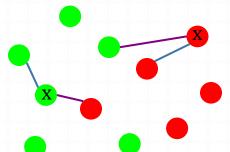
Neighbor-based estimator for conditional entropy*:

$$\widehat{H}(Y|X \in \mathcal{A}) \propto \frac{1}{n} \sum_{i=1}^{n} I[x_i \in \mathcal{A}] \left(\frac{n-1}{n} \left(\frac{\operatorname{dist}_{k+1}(x_i, X_{y_i})}{\operatorname{dist}_k(x_i, X_{\neg y_i})} \right)^{\dim(X)} \right)^{1-\alpha}$$

For a projection π , the estimator is $\widehat{H}(Y|\pi(X); g(X) \to \pi)$. The optimal model can be computed through the minimization:

$$\widehat{M} = argmin_{M \in \mathcal{M}_d} \sum_{\pi_j \in \Pi} \sum_{i=1}^n I[g(x_i) \to \pi_j] \left(\frac{dist_{k+1}(\pi_j(x_i), \pi_j(X_{y_i}))}{dist_k(\pi_j(x_i), \pi_j(X_{\neg y_i}))} \right)^{\dim(\pi_j)(1-\alpha)}$$

$$b_{ij} \text{-- selection matrix}$$



 L_{ii} -local entropy contributions

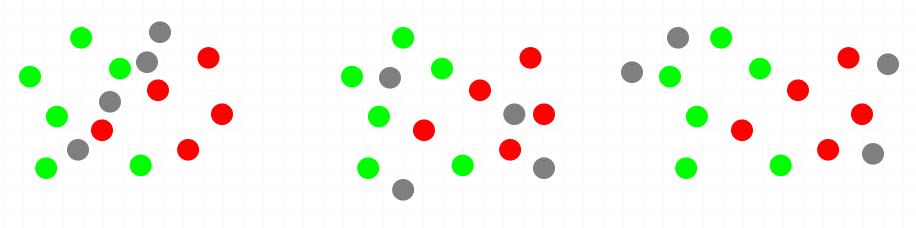
$$T_i = min_j L_{ij}$$

Loss Estimators: Semi-supervised Classification

- For labeled samples: same as for classification
- For unlabeled samples:
 - O Consider all possible label assignments
 - Assume the most 'confident' label (with smallest loss)

Equivalent to

Penalizing unlabeled samples proportional to how ambivalent they are to the label assigned



POOR DECENT GOOD

Loss Estimators: Semi-supervised Classification

- For labeled samples: same as for classification
- For unlabeled samples:
 - O Consider all possible label assignments
 - Assume the most 'confident' label (with smallest loss)
 Equivalent to
 - Penalizing unlabeled samples proportional to how ambivalent they are to the label assigned

$$R_{ssc}\left(X_{\in\mathcal{A}(\pi_{j})}\right) = \sum_{x_{i} \in labeled} \left(\frac{dist_{k+1}(\pi_{j}(x_{i}), \pi_{j}(X_{y_{i}}))}{dist_{k}(\pi_{j}(x_{i}), \pi_{j}(X_{\neg y_{i}}))}\right)^{\dim(\pi_{j})(1-\alpha)} +$$

$$\sum_{\substack{x_i \in unlabeled \\ x_i \in unlabeled}} min_{\gamma \in \mathcal{Y}} \left(\frac{dist_{k+1}(\pi_j(x_i), \pi_j(X_{\gamma}))}{dist_k(\pi_j(x_i), \pi_j(X_{\neg \gamma}))} \right)^{\dim(\pi_j)(1-\alpha)}$$

Entropy Estimators for Clustering

- Point-wise estimators are problematic for clustering
- An ensemble view of the data is typically required
- It is unknown which data should be assigned to which projection prior to clustering

Entropy Estimators for Clustering

- Point-wise estimators are problematic for clustering
- An ensemble view of the data is typically required
- It is unknown which data should be assigned to which projection prior to clustering
- We focus on density-based clustering
- The loss is lower for densely packed regions
- We eliminate dimensionality issues by considering negative KL divergence to uniform on the same space

Entropy Estimators for Clustering

- Point-wise estimators are problematic for clustering
- An ensemble view of the data is typically required
- It is unknown which data should be assigned to which projection prior to clustering
- We focus on density-based clustering
- The loss is lower for densely packed regions
- We eliminate dimensionality issues by considering negative KL divergence to uniform on the same space*

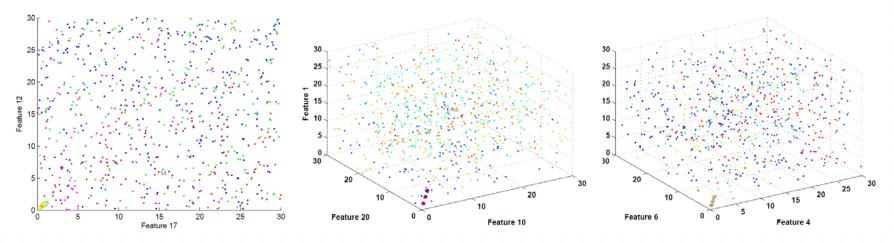
$$R_{clustering}\left(X_{\in\mathcal{A}(\pi_{j})}\right) = \rightarrow -KL(\pi_{j}(X), \pi_{j}(Unif))$$

$$\ell(\tau_{j}(\pi_{j}(x))) = \left(\frac{dist(\pi_{j}(x), \pi_{j}(X))}{dist(\pi_{j}(x), \pi_{j}(U))}\right)^{\dim(\pi_{j})(1-\alpha)}$$

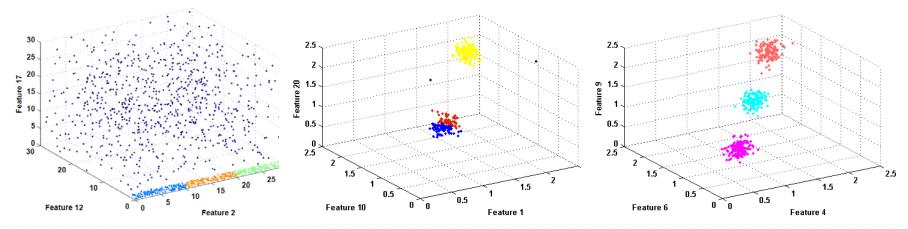
^{*} some scaling issues remain

Low-d Clustering: Why it Works

K-Means model projected on (known) informative features



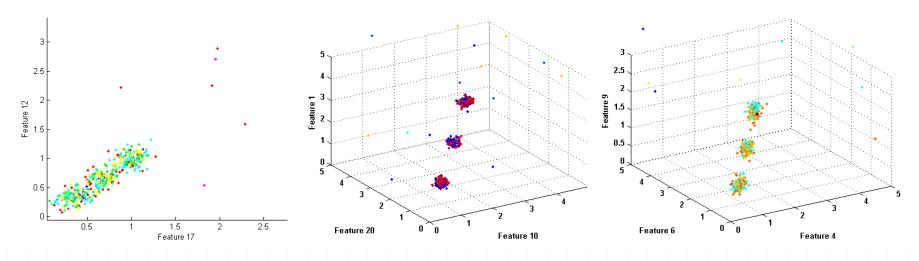
Representation of RIPR model – recovered projections and assigned data



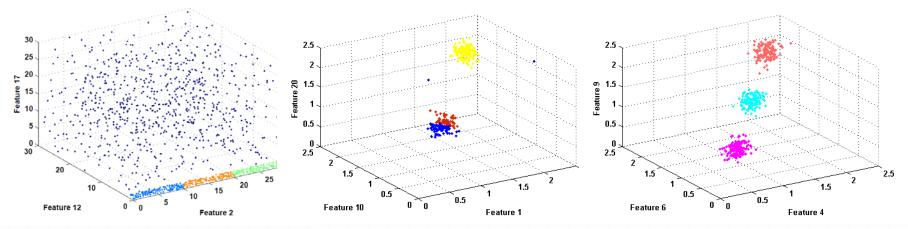
The hidden structure in data is clearly revealed by the RIPR model.

Low-d Clustering: Why it Works

K-Means model projected on (known) informative features



Representation of RIPR model – recovered projections and assigned data



Loss/Risk for common Learning Tasks

Learning Task	Loss/Risk
Classification *	Classification error approximated by conditional entropy $R_{cls}(\mathcal{X}) = \mathbb{E}_{\mathcal{X}}[y \neq h_{g(x)}(\pi_{g(x)}(x))] \approx \mathrm{H}(y \pi_{g(x)}(x))$
Semi-supervised classification	Conditional entropy for labeled samples plus best case entropy over label assignments for unlabeled samples $R_{ssc}(\mathcal{X}) = R_{cls}(\mathcal{X}) + min_{\gamma \in \mathcal{Y}} H_{x unlabeled}(\gamma \pi_{g(x)}(\mathbf{x}))$
Clustering	Negative divergence between distribution of data and a uniform distribution on the same sample space $R_{clustering} = -KL(\pi_{g(x)}(\mathbf{x}) uniform(\pi_{g(x)}(\mathcal{X}))$
Regression	Mean squared error $R_{reg}(\mathcal{X}) = \mathbb{E}_{\mathcal{X}}[(y - h_{g(x)}(\pi_{g(x)}(x)))^2]$

^{*} The object of prior work: "Projection Retrieval for Classification", NIPS 2012

Assigning a Projection to a Query

Problem: how to select the appropriate projection for a specific query q?

Solution: select the projection in P for which the estimated loss* at q is smallest.

$$(\hat{k}, \hat{y}) = argmin_{(k,y)} \hat{\ell}(\tau_k(\pi_k), y)$$

where $k \in \{1 \dots |P|\}$

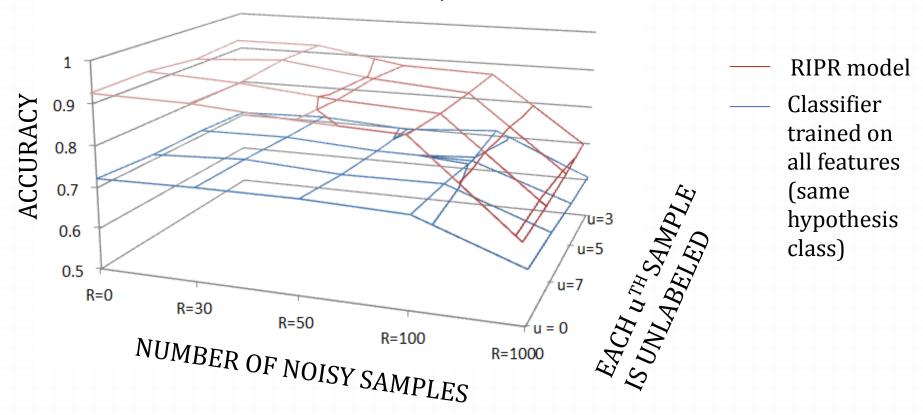
*For clustering, the loss estimator is computed considering the cluster assignments determined during learning.

Presentation Roadmap

- Informative Projection Retrieval
- RIPR Framework Overview
- The Optimization Procedure
- Applicability to Learning Tasks
- o Performance Evaluation
- o Medical Application Case Study

Semi-supervised classification - artificial data -

DATASET CONTAINS 3 INFORMATIVE PROJECTIONS, 3000 LABELED POINTS.



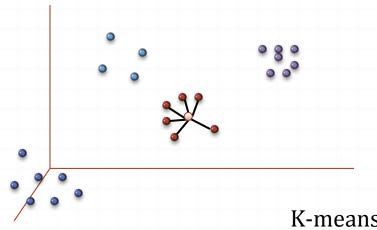
RIPR CORRECTLY RECOVERS THE PROJECTIONS FOR ALL SETINGS TESTED. LEVERAGING THIS STRUCTURE, RIPR ACHIEVES HIGHER ACCURACY.

Clustering

- evaluation metrics -

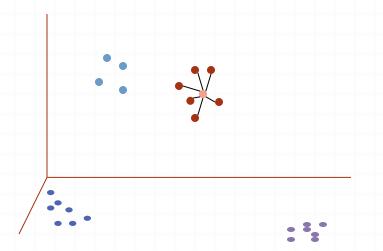
DISTORTION - mean distance to cluster centers

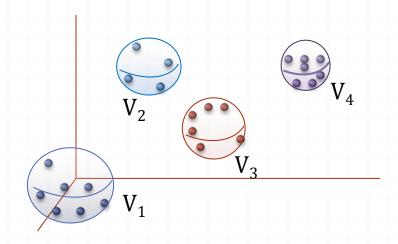
LOG CLUSTER VOLUME

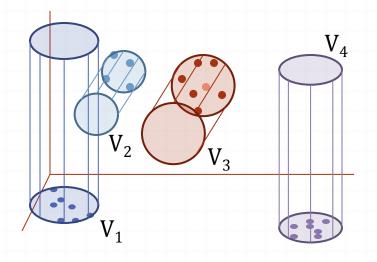


K-means Model

Ripped K-means Model





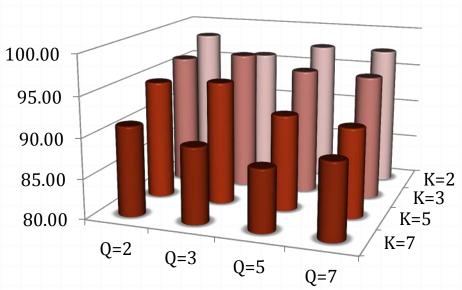


Clustering - artificial data -

Sett	ings	Dis	tortion	Log Volume			
Q	K	RIPR	Kmeans	RIPR	Kmeans		
2	2	865	12,318	27.41	29.17		
2	3	622	12,203	27.56	29.01		
2	5	440	12,060	27.78	29.06		
2	7	375	11,909	27.92	28.97		
3	2	1,344	25,704	31.08	32.47		
3	3	872	25,472	31.20	32.77		
3	5	648	25,247	31.45	32.78		
3	7	530	24,979	31.57	32.55		
5	2	2,683	66,801	35.65	37.26		
5	3	1,484	66,352	35.79	37.16		
5	5	1,065	65,419	36.00	37.09		
5	7	842	64,946	36.17	37.08		
7	2	4,621	127,558	38.66	40.25		
7	3	2,174	126,309	38.86	40.21		
7	5	1,480	124,436	39.05	40.10		
7	7	1,238	123,151	39.13	40.11		

Q = NUMBER OF INFORMATIVE PROJECTIONS K = NUMBER OF CLUSTERS ON EACH PROJECTION

PERCENTAGE REDUCTION IN SUM OF CLUSTER VOLUME



COMPRESSION IS REDUCED AS MORE CLUSTERS/PROJECTIONS ARE ADDED

RIPR MODELS ARE MORE COMPACT

NOTE: THE K-MEANS AND RIPR MODELS HAVE THE NUMBER OF CLUSTERS.

Clustering - UCI data -

SUM OF MEAN DISTANCES TO CLUSTER CENTERS AND LOG CLUSTER VOLUME

UCI Dataset	Mean Di	stortion	% Distortion Reduction	Cluster	lume of s on All nsions	% Volume Reduction
	RIPR	Kmeans		RIPR		
Seeds	16	16 107		3.33	4.21	86.83
Libras	9	265	98.54	-2.52	3.15	100.00
MiniBOON					_	
E	125	1,154,704	99.99	104.23	107.77	99.97
Cell	40,877	8,181,327	99.78	23.75	29.39	100.00
Concrete	1,370	55,594	98.01	21.39	22.91	97.01

LOWER IS BETTER. RIPR MODELS ALWAYS HAVE A SMALLER TOTAL VOLUME.

Regression - artificial data -

ACCURACY OF RIPPED SVM COMPARED TO ACCURACY OF STANDARD SVM

- THE NUMBER OF INFORMATIVE PROJECTIONS: 2-10
- PERCENTAGE OF NOISY SAMPLES: 0-50% (OUT OF 1600)

	IP#	2	3	5	7	10		2	3	5	7	10
		MS	E RIPI	PED-SV	/M	MSE SVM						
	0%	0.05	0.27	0.05	0.02	0.23		0.27	1.16	0.11	0.1	0.43
NOISY AMPLES	6.25%	0.42	1.26	0.34	1.45	0.52		0.8	1.02	0.6	2.99	0.94
	12.5%	0.5	0.86	0.8	0.33	0.99		0.97	1.27	0.29	0.68	1.44
	25%	0.63	1.47	1.34	1.61	0.11		0.4	1.26	1.64	1.71	0.08
S	50%	0.69	0.38	1.12	0.68	1.1		0.52	0.06	0.91	0.9	1.16

PRECISION AND RECALL OF THE RECOVERED PROJECTIONS

	RIPR Precision						RIPR Recall					
7	0%	1	1	0.4	0.43	0.3		0.67	1	0.67	1	1
_	6.25%	1	0.67	0.6	0.43	0.2		0.67	0.67	1	1	0.67
\mathbb{Z}	12.5%	1	1	0.6	0.43	0.3		0.67	1	1	1	1
S	25%	1	1	0.6	0.43	0.1		0.67	1	1	1	0.33
	50%	1	0.67	0.4	0.29	0.3		0.67	0.67	0.67	0.67	1

Case Study – Alert Classification

- importance of artifact adjudication -

- Intensive Care Unit vital sign monitoring system
- Alerts are raised when patient health status deteriorates
- One alert is issued every 90s

- A significant amount of alerts are artifacts
- Frequent alerts cause alarm fatigue in medical staff
- Quality of care diminished unless artifacts are identified

Case Study – Alert Classification - vital sign data processing -

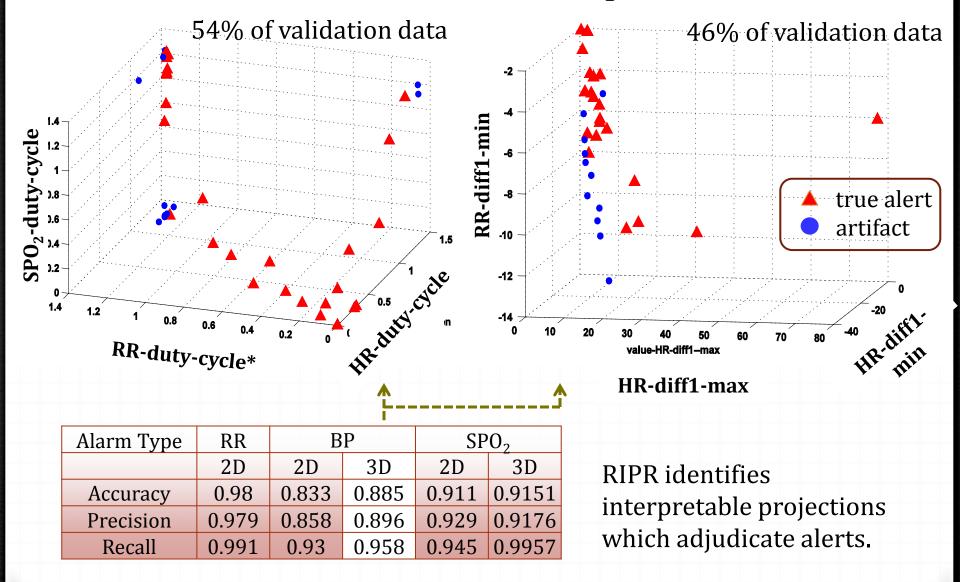
- Each alert is associated with the first abnormal vital sign
 - Heart Rate (HR), Respiratory Rate (RR)
 - Systolic (SBP) and Diastolic (DBP) Blood Pressure
 - Peripheral arterial oxygen saturation (SpO2)
- ø 812 of the samples were labeled by clinicians (~10%)
- Extracted temporal features and derived metrics
 - Vitals collected during the alert event
 - Data starting 4 minutes before alert onset
 - Moving window statistics
 - Metrics such as duty cycle
 - Data collected for each vital independently

Case Study – Alert Classification - performance -

Alarm Type	RR	В	P	SP	02
	2D	2D 3D		2D	3D
Accuracy	0.98	0.833	0.885	0.911	0.9151
Precision	0.979	0.858	0.896	0.929	0.9176
Recall	0.991	0.93	0.958	0.945	0.9957

Case Study – Alert Classification

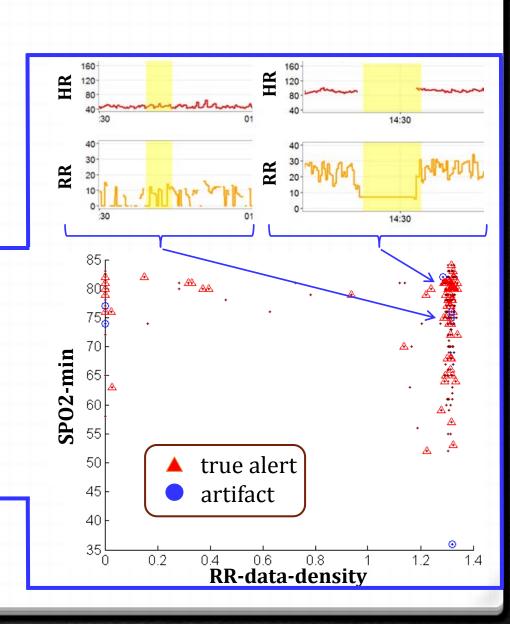
- RIPR model for blood pressure -



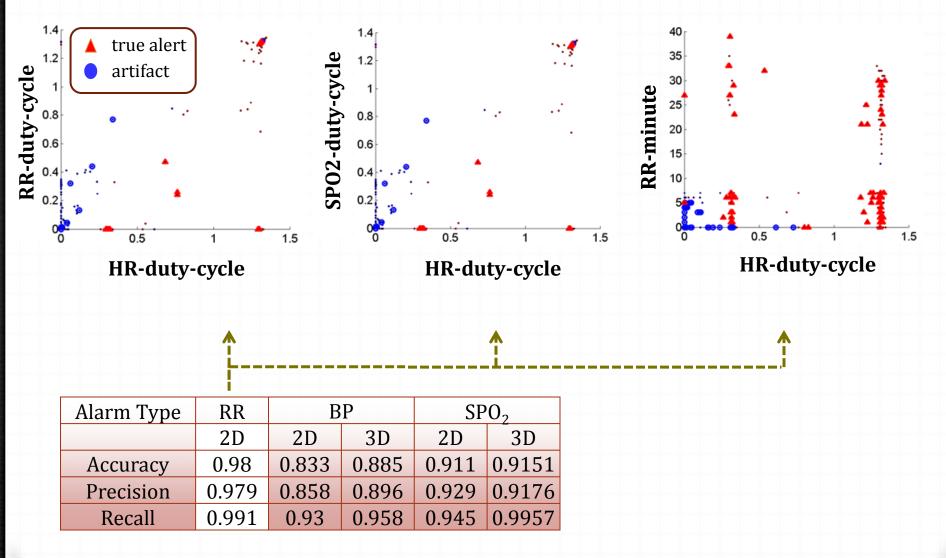
^{*}duty cycle = number of readings over time units: a low value indicates high sparseness

Case Study – Alert Classification - utility of RIPR models -

- The model selects HR duty cycle as the most important dimension in RR artifact classification, validating expect intuition
- Uncommon RR artifacts are classified as true alerts
- The RR signals are irregular
- Such cases can be identified through using variance of signal (new features added)
- RIPR model pointed out some mislabeled alerts

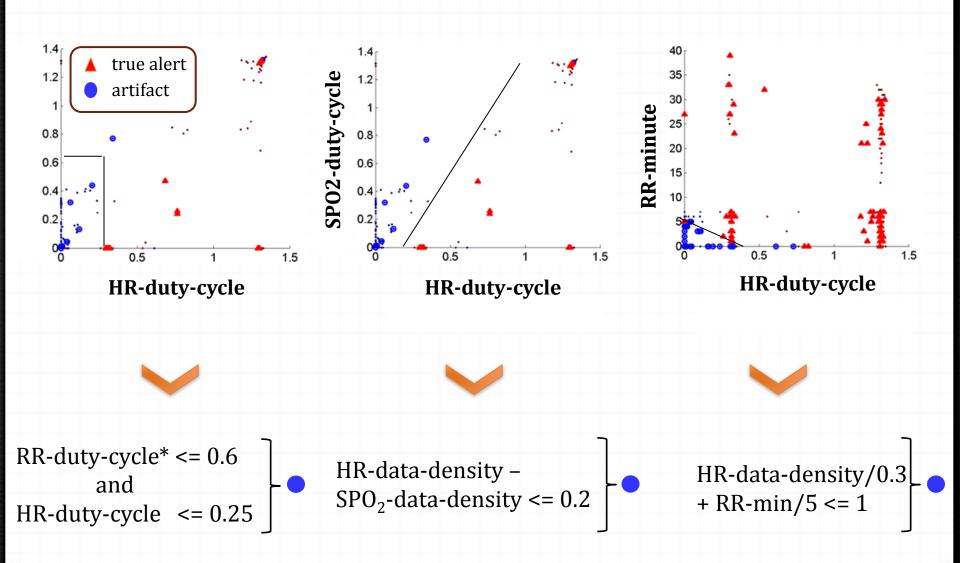


Case Study – Alert Classification - deriving rules -



^{*}data density = number of readings over time units: a low value indicates high sparseness

Case Study – Alert Classification - deriving rules -



Summary

- Informative Projection Retrieval is relevant to many applications requiring interaction with human users
- We generalized RIPR, our solution to the IPR problem, to a wide range of learning tasks (classification, regression, clustering)
- RIPR expresses loss though divergence estimators
 - O Semi-supervised models: penalize unlabeled data that cannot be confidently assigned to a class
 - O Clustering models: favor high data density
- RIPR models are compact and well-performing in practice
 - IPs accurately recovered
 - Often more accurate than classifiers trained on all features
- Overall, RIPR contributes to the improvement of the quality of care for ICU