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Objectives Approach

 Noninvasive vital sign (VS) data collected e Regression-based Informative
in a Step-Down Unit Projection Recovery (RIPR)

e Alerts issued when a VS exceeds predefined enables alert adjudication
thresholds e Highly multivariate analysis

 Many alerts are artifacts, causing alarm fatigue ¢ Results presented in a

e Need to dismiss these artifacts human-understandable form

Outcomes

Machine Learning improves alert adjudication accuracy, precision, and recall
Visualizable results
Models confirm clinicians’ insights regarding alerts

Clinicians can derive new alert adjudication rules from informative low-

dimensional projections of complex data
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Data Description

* Prospective longitudinal study recruited admissions over 8 weeks in a 24 bed
trauma stepdown unit all with noninvasive VS monitoring:

e Heart Rate (HR) from 5-lead ECG

e Respiratory Rate (RR) from ECG bioimpedance

e  Systolic (SBP) and Diastolic (DBP) Blood Pressure (oscillometric)

e Peripheral arterial oxygen saturation (SpO,) by finger plethysmography

e VS data analyzed beyond local instability threshold values:
e HR<40 or >140; RR<8 or >36; SBP <80 or >200; DBP>110, Sp0,<85%
e Each alert associated with a category indicating the leading abnormal VS
e 812 alerts of 3 types: RR, SpO,, BP

e Features computed, for each VS signal independently, during span of each
alert, and a short window (4 minutes) preceding alert onset

e  Features include common statistics of each VS: mean, standard deviation,
minimum, maximum, and range of values
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Approach: Finding Informative Projections of Data

e Aim: Find a few simple projections of data in which alerts appear as either
convincingly correct or easily dismissible

e Challenge: There are many candidate projections to choose from

e Solution: Machine Learning algorithm called RIPR: Regression-based Informative

Projection Recovery [*]

Projections
* RIPR selects a manageably small )

number of projections that jointly
explain multiple alerts

e Each alert requires only one
projection to be explained

<l -
] optimal

nearly
optimal

 Low-dimensional projections allow
easy interpretability

Data points

 RIPR also enables automated
adjudication (classification) of alerts 1 2 3 4

[*] M. Fiterau, A. Dubrawski, A Unified View of Informative Projection Retrieval, ICMLA 2013
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Cross-Validation Results Separate True From False Alerts

~ 54% of validation data M 46% of validation data
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Alarm Type  RR BP SPO, The retrieved few low-dimensional

2D 2D 3D 2D 3D

projections make it possible for

Accurac 0.98 0.833 0.885 0.911 0.9151 . . .
y domain experts to quickly validate

Precision  0.979 0.858  0.896 0.929 0.9176 _
Recall 0991 0093 0958 0945 09957 the assigned alert labels.

*data density = number of readings over time units: a low value indicates high sparseness .
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Confirmatory Results and Outlier Detection

* According to experts, lack of HR — -
signal indicates an RR artifact. The - | e P s
model validates expert intuition by o T
correctly selecting HR data density as b !
the most important dimension in RR & Z ol
artifact classification . | i T ,
e Example shown includes two alert 85 '
episodes that would be classified as sl e
non-artifacts. Both have continuous 53
streams of RR data, but the RR c
signals are irregular — an uncommon gL
artifact. Investigation has shown that o
instances like these can be identified |
using variance of signal i [ A tru.e aIertJ
451 @® artifact
e RIPR also highlight potentially a0
mislabeled alerts allowing clinicians B T B -y i
to reconsider their judgments RR-data-density
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Deriving Artifact Identification Rules (Example: SpO,)
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Conclusion: (1) RIPR models show high accuracy, precision, and recall or alert adjudication,
while presenting results in an easy to understand form; (2) Retrieved projections confirm
clinicians’ insights and highlight potential mislabelings; (3) Informative low-dimensional
projections make it easy for clinicians to derive new alert adjudication rules.
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