

Pinpoint Landing through Landscape
Matching and Terrain Evaluation

 Andrew Sheng

Ina Fiterau
 Department of Computer Science Machine Learning Department
 Carnegie-Mellon University Carnegie-Mellon University
 Pittsburgh, PA 15213 Pittsburgh, PA 15213
 asheng@andrew.cmu.edu mfiterau@cs.cmu.edu

Abstract

A critical part of a lunar surface mission is pinpoint landing. To land
in a pre-designated location, the craft must be aware of its position,
which this paper shows to be accomplishable through visual
registering. The proposed Landmark Recognition System
distinguishes lunar landmarks in images captured from orbit and
estimates the coordinates at which the images were taken. The
Surface Assessment Module chooses an unobstructed landing site
which ensures the successful accomplishment of surface operations.
Tests on photos from the Apollo missions and imagery taken by the
Lunar Reconnaissance Orbiter demonstrate the system's
effectiveness. Performance is highlighted through simulated
landings. Reinforcing landing through Landscape Analysis has the
potential to change the outlook of unmanned missions to charted
celestial bodies.

1 Introduction

Pinpoint landing is a prerequisite to any lunar surface mission. Not only must the
lander reach the moon unharmed, but it must also land as close as possible to a desired
location. Moreover, the exact landing site must be chosen so that surface operations,
such as rover egress, are easily performed – this is to be accomplished without human
input. Thus, two issues arise. First, the lander must have a good estimate of its present
position above the moon. Second, it is imperative that when close to the ground
(50-200 meters), the lander seeks a location with a smooth, even surface devoid of
rocks, craters and steep slopes.

The first problem is addressed through landscape matching, which achieves
localization by establishing correlations between the observed landscapes and known
lunar features. The reasoning is that only a very compact representation of the lunar
surface is required rather than vast amounts of imagery. Also, the sheer number and
diversity of lunar craters ensure that it is very unlikely two configurations will look

exactly alike. The latter issue, choosing a landing spot, is solved by evaluating the
terrain up close and determining which portions of it are unsuitable for landing. As
there are many ways to assess the suitability of a landing spot, several image
processing methods are used for this purpose.

The system discussed here contains three key components: a database to record lunar
surface features, a “Landmark Recognition System” (LRS) to determine lander
position, and a “Surface Assessment Module” (SAM) to determine a desirable landing
site.

The database of lunar features is organized into three parts: first, a set of
non-processed orbital lunar photos displaying the moon's large structures, such as the
Sea of Tranquility, from different angles; second, a KD-tree containing the position
and radius of lunar craters extracted from LIDAR data and inserted in order of size;
third, a series of low-altitude images gathered from various moon landing missions.

The Landmark Recognition System works in three stages. First, the LRS detects
craters in an image of the lunar surface. Next, it estimates the scale and relative
orientation of the moonscape based on the lander's attitude and altitude. Finally, it
uses a graph matching algorithm to search the database for lunar terrain resemb ling
the landscape beneath the lander. The LRS is shown to effectively distinguish
landmarks such as the Apollo landing sites from orbital images and achieve effective
localization using the known coordinates of the landmark.

The Surface Assessment Module is designed to pick a landing spot when the lander is
close to the lunar surface. To do so, the SAM employs three mechanisms. First, a
landing heat map generator uses a heuristic algorithm based on moving window filters
to seek smooth terrain. Secondly, a landing spot classifier uses features extracted from
pixel values trained on labeled segments of low-altitude images. The third is a surface
model builder that estimates the shape of the terrain based on shading and stereo
techniques. An estimation of the azimuth based on the shading is also derived at this
level. This is significant because the lander must settle in an east-west direction so
that the solar panels receive the maximum amount of sunlight.

The performance of the Landmark Detection System has been illustrated through
simulation.

2 Related work

Yang Cheng and Adnan Ansar propose a scheme that solves landmark identification,
lander velocity and position estimation [1]. They use ellipse fitting for crater
detection, geometric recognition to match craters detected in real time to a databa se
containing crater locations. To get a robust estimation of the lander position, the
authors use projections penalized by least mean squares error. A Kalman filter model
is used for velocity estimation. The paper explores the use of observable features to
obtain position and velocity information about the lander. A similar approach is
presented in [7].

Mourikis et al. [5] seek to make use of a mixed vision/inertial sensor system to
achieve precise landing on a planetary surface. Although this group does not explicitly
focus on crater detection, it does make use of an extended Kalman filter to process
visual data in order to determine present vehicle position. This exploration offers
useful insight into the possibility of tracking features between different images.

Johnson et al. [6] describe an algorithm for determining the present state of a
planetary lander in descent. Although this algorithm is dependent on inertial
measurements, it does offer information as to possible methods of localization.

The Autonomous Landing and Hazard Avoidance Technology (ALHAT) [8] program
encompasses research into technologies that allow landers to measure and analyze
topography of the landing site. Their technologies are tested with Monte Carlo
simulations and through Hardware-in-the-Loop testbeds.

3 Landmark Recogni tion System (LRS)

This section presents the Landmark Recognition System, a solution to the pinpoint
landing problem that uses correspondences between observed lunar terrain and a
database of features to estimate the position of the lander.

An overview of our system is displayed in Figure 1. Active components are displayed
in red rectangles, while data items are represented in blue. LIDAR (Light Detection
and Ranging) Data from the Lunar Reconnaissance Orbiter (LRO) and LCROSS
(Lunar CRater Observation and Sensing Satellite) impact images were used as inputs
to a Feature Compiler, which built a database of lunar features. This database is
updated as new information becomes available and a copy of it will be placed on the
lander to be accessed upon descent. The image capture happens as the lander nears the
target.

At high altitude, an image from the camera is sent to the crater detection module,
which extracts a list of observed lunar features characterized by their position relative
to each other and their size. The Landscape Matching algorithm finds
correspondences between the observed features and the landmarks stored in the
database. If the observed configuration of features is similar enough to a stored feature
configuration, the system can infer the position along the lunar orbit where the lander
was located at the time the image was captured.

As the Lander gets closer to the surface, the landmark data becomes less informative
and attention is shifted towards determining a safe landing location. The Surface
Assessment module accomplishes this by estimating the shape of the terrain based on
the imagery and creates a heatmap representing the estimated probability of
successfully landing at a given location.

Finally, either the position information or the landing heatmap, depending on the
altitude of the craft, are used to guide the movement of the lander. Specifically the
output of the Surface Assessment module will be considered when the lander is close
enough to the surface according to a predetermined threshold and any of the following
three conditions are true:

 according to landscape matching, the lander is in the correct area

 according to landscape matching, the lander is in an incorrect area, but
nothing can be done to change it so the least that can be done is to attempt safe
landing anywhere

 landscape matching can no longer provide useful information because of the
proximity to the lunar surface

The homing system makes the high-level decisions concerning the subsequent target
positioning of the lander.

Figure 1: Overview of Landmark Recognition System

3 .1 Av a i la b le luna r da ta

LIDAR data necessary to create the lunar feature database is available from the LRO
and the Clementine project. Although the Clementine data is more evenly spaced, the
LRO data comes in an already-interpolated form, therefore the latter was used in
feature extraction. The Lunar Reconnaissance Orbiter (LRO) has the most detailed
imagery of the lunar surface, with a resolution of 100m/pixel. Images from this set
were used in testing the crater identification and landmark matching modules.

Close-ups of the lunar surface were required to train and test the surface assessment
module. The LCROSS probe is virtually the only source to get such images short of
the Apollo photos. Most of the Apollo photos were not taken during descent, and the
available ones matching this criterion are not sufficiently detailed to make training a
classifier feasible. Training data was therefore limited to LCROSS photos.

One of the challenges of this project was selecting, from the vast amount of
moon-related information available, the subset that is the most relevant for the
intended task and processing it into usable form.

3 .2 Fea ture extra c t io n f rom LID AR da ta

The LIDAR data that is used as ground truth needs to be processed so that it can be
represented as a tree of features rather than a bi-dimensional array of heights. This
task is performed by the Feature Compiler.

The Feature Compiler takes as input a matrix containing altitude data from a given
region of the moon‟s surface and outputs a list of longitude and latitude coordinates
and a radius for each detected features. The compiler scans along the latitudinal and
longitudinal axes looking for local minima in terms of height – valleys. Once these are
detected, second degree curves – parabolas and ellipses – are fitted to the surrounding
points to obtain the size of the feature. The fitting error of a curve represents the mean
squared difference between the actual height at each point and the estimated height at
that point according to the curve. The final set of features is obtained by selecting the

fitted curve with the minimum fitting error from a region along an axis and cross
validating with the features obtained along the other axis.

LIDAR data from the regions around the Apollo landing sites has been processed by
the Feature Compiler and used as ground truth in testing the Landscape Matching
algorithm. An example of features extracted from the interpolated LIDAR data in the
region of the Apollo 11 landing site can be seen in Appendix A.

3 .3 Cra ter Detec t io n

In order to compare the landscape “seen” by the lander to the features in the existing
database, it is necessary to detect the craters in an observed lunar landscape. This is
the purpose of the Crater Detection module, which receives as input an image of the
moon‟s surface as seen from above, the altitude at which this image was taken, the
attitude of the Lander and the resolution of the camera. The module transforms the
image, and finds indented circular patterns that represent craters.

To start with, the image is initially flattened to eliminate the curvature of the moon.
Missing values due to the uneven data density distribution along the axes are
interpolated. The crater fitting is accomplished by merging the outputs of several
image processing procedures, since it was observed that not one method is superior to
the rest for all test samples.

The basic algorithm for the first two methods is the same: edge detection followed by
a Hough transform to find circles. The third method, developed for cell recognition
[4], performs unsupervised segmentation by finding circular patterns through
aggregation, not through Hough transform. It must be noted that standard edge
detection methods such as canny, sobel or prewitt fail for lunar images because,
despite the existing contrast obvious to the human eye, the image gradients are
smooth. Using a lower threshold for the gradient does not work either, because in this
case most accidental variations in contrast are incorrectly considered edges.

The first method detects crater edges by scanning each line and detecting the starting
and ending points of a sequence that has descending values and then ascending values .
The tolerance parameter this procedure receives represents the percentage of points
that can be out of order. This method is also designed to allow for overlapping circles,
which the subsequent procedures will cross-validate. The second method is based on
comparing the color histogram in neighboring regions of the image to detect edges.

 Both of these procedures take as a parameter a range – minimum and maximum
values for the radius of the circle. Craters of various sizes are detected by running the
procedures multiple times for different ranges. For a given range, the output of the
procedures is combined by taking the union of the detected sets for each procedure
and eliminating heavily overlapping circles by majority vote – the circle that overlaps
with the most other circles is kept.

The final output of the module is a list of (x,y,r) values, where the (x,y) represent t he
position of the center of the crater and r is its radius. All the values are scaled to
represent the actual dimensions of the landscape; the calculations are based on the
resolution of the camera and the known altitude of the lander.

3 .4 La ndsca pe M a tch ing

The Landscape Matching algorithm finds correspondences between the craters found
by the Crater Detection Module and the features that exist in the database. It takes as
an input the list of craters observed by the lander during descent, a value for size
tolerance and one for distance tolerance. The tolerance is required since it is very

unlikely that there will be any exact matches between the observat ions and the
features recorded in the database. From previous iterations of the algorithm, a subset
of the database has been selected. The subset, which is called „reference‟, corresponds
to the response to a range query in the kd-tree. The range corresponds to an upper
bound on the distance the lander had traversed since the last run of the algorithm.

First, the algorithm determines candidate reference-observation couples representing
features that can be mapped to each other based on their size. For each pair of couples,
it is determined if they are mutually exclusive for the given distance tolerance, that is,
whether the distance between references is close enough to the distance between
observations. If the distance between two observations is not within tolerance of the
distance between references, it is impossible that both observation-reference
mappings are correct because we are assuming that the distance between the two
features must be preserved, even as the features are considered in different models –
the observed image and the feature database. The result after this step is a set of
mappings, some of which are mutually exclusive.

Of interest is the largest subset of mappings for which any two mappings are not
exclusive. Were the mutual exclusive relationship represented in a graph, the subset
corresponds exactly to the largest clique in the graph. It is a well known fact that
determining the largest clique is both an NP hard problem and difficult to optimize.
Fortunately, in this case it is only necessary to determine the maximum clique during
the first run of the algorithm and only when sanity check is required. At all other
times, it is enough to have one or several control observation-reference couples.
Therefore, the algorithm can use an iterative process where the mappings that are
consistent with the controls are kept and become controls, while the rest are discarded.

Three controls are sufficient to ensure that there are no ambiguous cases when two
points are consistent with the controls, but not with each other. Error recovery
happens when, during sanity check, there is too little overlap between the new control
points and the old ones, where the overlap is measured in terms of number of pairs that
are not mutually exclusive.

3 .5 Surfa ce Asses s me nt

The Surface Assessment Module is designed to determine which portions of an
observed area are fit for landing. The problem is imbalanced in the sense that a false
positive – a spot that is deemed appropriate for landing but really isn‟t – could have a
devastating effect on the mission.

To start with, a heuristic method of generating a heatmap has been developed. For
each pixel from the input image projected onto the horizontal plane, the algorithm
computes the maximum distance between the initial pixel value and the values
obtained by applying square moving average filters of dimensions varying from 2 to
the image height. The intuition behind this is that, for even surfaces, the pixel values
will change less after applying a moving average filter than for portions representing
craters. Once the values are normalized, cross validation can be used to obtain a
threshold so that asymptotically (i.e. as the number of samples increases), the false
positive error is below a desired value.

A different way to detect landing spots is to train a classifier based on a series of
features that characterize each pixel from a set of manually labeled images. The set of
10 features include information about the distribution of values in the vicinity of the
pixel. The following classification methods were used: tree-augmented Naïve Bayes,
logistic regression, K-nearest neighbors, decision trees, support vector machines. In
the case of logistic regression, an empirical bound on the false positive error can be

obtained by learning the threshold above which a point is appropriate for landing. It is
to be noted however that with the decrease of false positive error comes an increase in
false negative error, up to the point where the elimination criteria will be so harsh that
there will be virtually no candidate landing spots.

The method by which the lander determines the relative height of terrain features is
via use of stereo imaging. The Birchfield-Tomasi stereo discontinuity algorithm is
adequate given terrestrial images; however, its present effectiveness on lunar terrain
is highly dependent on the placement of lander stereo cameras and lunar lighting
conditions. This algorithm is applied as follows: The lander takes two pictures of the
same region of the lunar surface from two different points in its orbit in order to
simulate a large stereo vision system. The baseline can be estimated by comparing the
size of the same feature in the two consecutive images. The two images are then fed
into the Birchfield algorithm in order to generate a disparity map of the lunar surface.
From this disparity map, the relative elevations of various terrain features are
determined. Determining a landing spot is, at least theoretically, straightforward.

Light tracking is used to obtain the trajectory of the brighter parts of the image. From
their variation, as well as from the relative positioning of the camera, we can obtain
sequences of movement of the sun. From these sequences, the angle the lander has
with respect to the desired east-west axis is calculated and the attitude is then adjusted
accordingly.

4 Evaluation

The evaluation of the LRS was performed in two stages, the first one consisting of unit
testing each of the components, and the second of a descent simulation.

4 .1 Test ing the Cra ter Detec t io n M o dule

The crater detection method was tested with LRO images depicting the Apollo landing
sites. A crucial aspect must be pointed out: the crater detection need not be exact. As
long as an amount of landscape information is obtained that is sufficient to distinguish
one landscape from the other, the landmark matching algorithm will unambiguously
determine the location of the Lander – when the ellipse fitting is accurate. Appendix B
shows the three methods of crater detection applied to an LRO image. Also, the crater
detection module is used in testing the landmark matching module – Table 1.

4 .2 Test ing the La n d ma r k M a tch ing M o dule

The landmark matching module was also tested using LRO images of the Apollo sites.
A set of 20 other images randomly selected from the LRO repository were used a
negative examples. In each test, an image from a landing site was cropped to contain
only portions of the landscape, resulting in five overlapping images. Two sets of four
tests have been performed, for the Apollo 11, 14, 16, 17 locations, each test using 25
images, 5 of which were positives.

In the first set of tests, the table containing lunar features was manually created as
appearing in the World Wind application [3]. For the second set of tests, the extracted
features from the LRO LIDAR data were used. The performance of the Landmark
Matching process is illustrated in Table 1. For the manually generated feature set, the
performance is perfect. For the feature set obtained from the LIDAR data, the system
made some mistakes because of the discrepancies that appear between the LIDAR
data and the LRO images after processing. The reason why this does not present a
problem in the simulation is because the LRS does not match a single image, but a

sequence of images and also uses the orbital images in the highest level of the
database to verify the estimation.

Table 1: Results of Landmark Matching

Test Set 1 True Positives False
Positives

True
Negatives

False
Negatives

Apollo 11 5/5 0/20 20/20 0/5

Apollo 14 5/5 0/20 20/20 0/5

Apollo 16 5/5 0/20 20/20 0/5

Apollo 17 5/5 0/20 20/20 0/5

Test Set 2

Apollo 11 4/5 3/20 17/20 1/5

Apollo 14 3/5 4/20 16/20 2/5

Apollo 16 5/5 3/20 17/20 0/5

Apollo 17 4/5 4/20 16/20 1/5

4 .3 Test ing the Surfa ce As sess ment M o dule

To achieve classification with the heuristic SAM, a threshold must be selected so that
the probability of a false positive is below a user-specified value α. Table 2 shows the
false negative rate β for a set of values for a set of limiting false positive rates, as
evaluated on leave-one-image-out cross validation on a set of five images from the
LCROSS repository.

Table 2: Error Rates for heuristic SAM

False Positive Rate 0.1 0.01 0.001 0.0001 0.00001

False Negative Rate 0.056 0.121 0.482 0.578 0.924

The trained SAM was also evaluated using LOO cross validation on LCROSS images
– an image was left out, the classifier was trained on the remaining 4 images, then
evaluated on the image that was left out. Table 3 shows the achieved accuracies for
each type of classifier. Accuracy represents the percentage of (manually labeled) test
points that are were correctly classified as acceptable/not acceptable landing spots.

Table 3: Accuracy for trained SAM

Classifier TAN LR KNN DT SVM

Accuracy 0.75 0.79 0.67 0.71 0.82

Evaluation of the stereo procedure has not yielded good results since the horizon line
is missing. Available packages are not specifically designed to work with landscapes
taken from this angle or this type of barren, colorless terrain.

4 .4 Si mula t io n o f Ho mi ng Sy s te m

The experiments presented so far were aimed at evaluating individual components of
the LRS. Testing the system as a whole presents some challenges, mainly due to the
difficulty of performing reliable field tests. The TAM requires close-ups of the
moon‟s surface that aren‟t widely available. Also, although high resolution images of

the moon‟s surface are available from lunar orbiters, these are all taken from a
direction perpendicular to the moon‟s surface.

The developed simulation framework uses the World Wind SDK [reference needed],
which comprises of imagery from the Clementine mission. The simulation algorithm
is depicted in Algorithm 1. Appendix D presents a sequence diagram of how the
simulation works. The Lander starts from a given altitude and set of coordinates . An
image corresponding to those coordinates is taken from the World Wind API and fed
to the LRS. The LRS runs the crater detection module and the landscape matching
algorithm comparing the observed craters with reference features selected based on
the previously known position of the Lander.

To determine the initial position, the observed features are compared to all the high
levels (i.e. of greater size) features in the kd-tree to find the position. Also, the
captured image of the landscape is compared to the images in the first partition of the
database – the orbital lunar photos, in order to validate the initial assessment of the
position. After the position is estimated, control points are established and the
estimated position is sent back to the simulator, which checks it. The LRS also
requests a direction of movement depending on the target. The simulator uses the
movement model of the Lander to update the position. The algorithm is then repeated.
The simulation has achieved successful targeting 5 out of 5 times for Apollo 16, 4 out
of 5 for Apollo 11, 14, and 17.

Algorithm 1: Simulation of Homing System

def run_simulation(initial_position, initial_altitude, destination):
 #setup initial position
 actual_coor = inital_position
 altitude = initial_altitude
 while (altitude > 0):
 # accesses World Wind API for view from given location
 image = worldwind_get_image(coor,altitude)
 # feeds image to LRS in order to estimate current position
 estimated_coor = lrs_analyze_image(image,altitude)
 # compares current and desired coordinates to determine flight direction
 direction = compare_coor(estimated_coor, destination)
 # moves lander in desired direction and updates altitude
 actual_coor, altitude = move_lander(actual_coor,altitude,direction)

def lrs_analyze_image(image,altitude):
 # calls crater detection algorithm on the image
 craters = detect_craters(image)
 # scales for lander altitude
 craters_mod = adjust_for_range(craters,altitude)
 # calls landscape recognition algorithm and compares with database information
 return compare_with_database(craters_mod)

Conclusions

This investigation into mechanisms for solving the problem of Lander localization
and trajectory planning has yielded a system capable of examining lunar terrain and
comparing it to a local database. From this information, the system ef fectively
determines its present location above the moon and the location of a landing site
devoid of obstructions such as craters and steep slopes. It is therefore safe to conclude
that the discussed system would facilitate the success of a lunar landing mission.

Ac kno w ledg me nts

This paper was written for the 16-861 Mobile Robot Design class at Carnegie Mellon
University.

References

[1] Yang Cheng; Ansar, A., Landmark Based Position Estimation for Pinpoint Landing on
Mars, Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on , vol., no., pp. 4470- 4475, 18-22 April 2005

[2] S. Birchfield and C. Tomasi, Depth Discontinuities by Pixel-to-Pixel Stereo, International
Journal of Computer Vision, 35(3): 269-293, December 1999

[3] Java World Wind SDK: worldwind.arc.nasa.gov/java/

[4] Cell segmentation: blogs.mathworks.com/steve/2006/06/02/cell -segmentation/

[5] Anastasios I. Mourikis, Nikolas Trawny, Stergios I. Roumeliotis, Andrew E. Johnson,
Adnan Ansar, and Larry Matthies. 2009. Vision-aided inertial navigation for spacecraft entry,
descent, and landing. Trans. Rob. 25, 2 (April 2009)

[6] Johnson A., Ansar A., L. Matthies, N. Trawny, A. I. Mourikis, and S. I. Roumeliotis, A
General Approach to Terrain Relative Navigation for Planetary Landing , AIAA Infotech at
Aerospace Conference, Rohnert Park, CA, May 2007.

[7] Yang Cheng, Andrew E. Johnson, Larry H. Matthies, Clark F. Olson, Optical Landmark
Detection for Spacecraft Navigation, In Proceedings of the 13th Annual AAS/AIAA Space
Flight Mechanics Meeting, Ponce, Puerto Rico, February 2002.

[8] http://alhat.jpl.nasa.gov/

Appendix A – Feature Compiler Example

LIDAR Data (Apollo 11 site):

Extracted features:

X Y

235 54

27 126

42 189

212 179

55 242

Appendix B – Crater Detection Results on LRO image

Original image:

Circles detected with gradient edge detection + Hough transform:

Circles detected with histogram edge detection + Hough transform:

Circles detected with segmentation for cell recognition:

Appendix C – Surface Assessment: Heat-map Example (Apollo 11 Site)

Appendix D – Sequence diagram of Simulation

