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Abstract 

A critical part of a lunar surface mission is pinpoint landing. To land 
in a pre-designated location, the craft must be aware of its position, 
which this paper shows to be accomplishable through visual 
registering. The proposed Landmark Recognition System 
distinguishes lunar landmarks in images captured from orbit and 
estimates the coordinates at which the images were taken. The 
Surface Assessment Module chooses an unobstructed landing site 
which ensures the successful accomplishment of surface operations. 
Tests on photos from the Apollo missions and imagery taken by the 
Lunar Reconnaissance Orbiter demonstrate the system's 
effectiveness. Performance is highlighted through simulated 
landings. Reinforcing landing through Landscape Analysis has the 
potential to change the outlook of unmanned missions to charted 
celestial bodies. 

1  Introduction  

Pinpoint landing is a prerequisite to any lunar surface mission. Not only must the 
lander reach the moon unharmed, but it must also land as close as possible to a desired 
location. Moreover, the exact landing site must be chosen so that surface operations, 
such as rover egress, are easily performed – this is to be accomplished without human 
input. Thus, two issues arise. First, the lander must have a good estimate of its present 
position above the moon. Second, it is imperative that when close to the ground 
(50-200 meters), the lander seeks a location with a smooth, even surface devoid of 
rocks, craters and steep slopes.  

The first problem is addressed through landscape matching, which achieves 
localization by establishing correlations between the observed landscapes and known 
lunar features. The reasoning is that only a very compact representation of the lunar 
surface is required rather than vast amounts of imagery. Also, the sheer number and 
diversity of lunar craters ensure that it is very unlikely two configurations will look 



 

exactly alike. The latter issue, choosing a landing spot, is solved by evaluating the 
terrain up close and determining which portions of it are unsuitable for landing. As 
there are many ways to assess the suitability of a landing spot, several image 
processing methods are used for this purpose. 

The system discussed here contains three key components: a database to record lunar 
surface features, a “Landmark Recognition System” (LRS) to determine lander 
position, and a “Surface Assessment Module” (SAM) to determine a desirable landing 
site. 

The database of lunar features is organized into three parts: first, a set of 
non-processed orbital lunar photos displaying the moon's large structures, such as the 
Sea of Tranquility, from different angles; second, a KD-tree containing the position 
and radius of lunar craters extracted from LIDAR data and inserted in order of size; 
third, a series of low-altitude images gathered from various moon landing missions.  

The Landmark Recognition System works in three stages. First, the LRS detects 
craters in an image of the lunar surface. Next, it estimates the scale and relative 
orientation of the moonscape based on the lander's attitude and altitude. Finally, it 
uses a graph matching algorithm to search the database for lunar terrain resemb ling 
the landscape beneath the lander. The LRS is shown to effectively distinguish 
landmarks such as the Apollo landing sites from orbital images and achieve effective 
localization using the known coordinates of the landmark. 

The Surface Assessment Module is designed to pick a landing spot when the lander is 
close to the lunar surface. To do so, the SAM employs three mechanisms. First, a 
landing heat map generator uses a heuristic algorithm based on moving window filters 
to seek smooth terrain. Secondly, a landing spot classifier uses features extracted from 
pixel values trained on labeled segments of low-altitude images. The third is a surface 
model builder that estimates the shape of the terrain based on shading and stereo 
techniques. An estimation of the azimuth based on the shading is also derived at this 
level. This is significant because the lander must settle in an east-west direction so 
that the solar panels receive the maximum amount of sunlight. 

The performance of the Landmark Detection System has been illustrated through 
simulation. 

2  Related work  

Yang Cheng and Adnan Ansar propose a scheme that solves landmark identification, 
lander velocity and position estimation [1]. They use ellipse fitting for crater 
detection, geometric recognition to match craters detected in real time to a databa se 
containing crater locations. To get a robust estimation of the lander position, the 
authors use projections penalized by least mean squares error. A Kalman filter model 
is used for velocity estimation. The paper explores the use of observable features to 
obtain position and velocity information about the lander. A similar approach is 
presented in [7]. 

Mourikis et al. [5] seek to make use of a mixed vision/inertial sensor system to 
achieve precise landing on a planetary surface. Although this group does not explicitly 
focus on crater detection, it does make use of an extended Kalman filter to process 
visual data in order to determine present vehicle position. This exploration offers 
useful insight into the possibility of tracking features between different images.  

Johnson et al. [6] describe an algorithm for determining the present state of a 
planetary lander in descent. Although this algorithm is dependent on inertial 
measurements, it does offer information as to possible methods of localization.  



 

The Autonomous Landing and Hazard Avoidance Technology (ALHAT) [8] program 
encompasses research into technologies that allow landers to measure and analyze 
topography of the landing site. Their technologies are tested with Monte Carlo 
simulations and through Hardware-in-the-Loop testbeds. 

3  Landmark Recogni tion System (LRS)  

This section presents the Landmark Recognition System, a solution to the pinpoint 
landing problem that uses correspondences between observed lunar terrain and a 
database of features to estimate the position of the lander.  

An overview of our system is displayed in Figure 1. Active components are displayed 
in red rectangles, while data items are represented in blue. LIDAR (Light Detection 
and Ranging) Data from the Lunar Reconnaissance Orbiter (LRO) and LCROSS 
(Lunar CRater Observation and Sensing Satellite) impact images were used as inputs 
to a Feature Compiler, which built a database of lunar features. This database is 
updated as new information becomes available and a copy of it will be placed on the 
lander to be accessed upon descent. The image capture happens as the lander nears the 
target.  

At high altitude, an image from the camera is sent to the crater detection module, 
which extracts a list of observed lunar features characterized by their position relative 
to each other and their size. The Landscape Matching algorithm finds 
correspondences between the observed features and the landmarks stored in the 
database. If the observed configuration of features is similar enough to a stored feature 
configuration, the system can infer the position along the lunar orbit where the lander 
was located at the time the image was captured.  

As the Lander gets closer to the surface, the landmark data becomes less informative 
and attention is shifted towards determining a safe landing location. The Surface 
Assessment module accomplishes this by estimating the shape of the terrain based on 
the imagery and creates a heatmap representing the estimated probability of 
successfully landing at a given location.  

Finally, either the position information or the landing heatmap, depending on the 
altitude of the craft, are used to guide the movement of the lander. Specifically the 
output of the Surface Assessment module will be considered when the lander is close 
enough to the surface according to a predetermined threshold and any of the following 
three conditions are true: 

 according to landscape matching, the lander is in the correct area 

 according to landscape matching, the lander is in an incorrect area, but 
nothing can be done to change it so the least that can be done is to attempt safe 
landing anywhere 

 landscape matching can no longer provide useful information because of the 
proximity to the lunar surface 

The homing system makes the high-level decisions concerning the subsequent target 
positioning of the lander. 



 

 

Figure 1: Overview of Landmark Recognition System 

3 .1  Av a i la b le  luna r  da ta  

LIDAR data necessary to create the lunar feature database is available from the LRO 
and the Clementine project. Although the Clementine data is more evenly spaced, the 
LRO data comes in an already-interpolated form, therefore the latter was used in 
feature extraction. The Lunar Reconnaissance Orbiter (LRO) has the most detailed 
imagery of the lunar surface, with a resolution of 100m/pixel. Images from this set 
were used in testing the crater identification and landmark matching modules. 

Close-ups of the lunar surface were required to train and test the surface assessment 
module. The LCROSS probe is virtually the only source to get such images short of 
the Apollo photos. Most of the Apollo photos were not taken during descent, and the 
available ones matching this criterion are not sufficiently detailed to make training a 
classifier feasible. Training data was therefore limited to LCROSS photos. 

One of the challenges of this project was selecting, from the vast amount of 
moon-related information available, the subset that is the most relevant for the 
intended task and processing it into usable form. 

3 .2  Fea ture  extra c t io n  f rom LID AR da ta  

The LIDAR data that is used as ground truth needs to be processed so that it can be 
represented as a tree of features rather than a bi-dimensional array of heights. This 
task is performed by the Feature Compiler. 

The Feature Compiler takes as input a matrix containing altitude data from a given 
region of the moon‟s surface and outputs a list of longitude and latitude coordinates 
and a radius for each detected features. The compiler scans along the latitudinal and 
longitudinal axes looking for local minima in terms of height – valleys. Once these are 
detected, second degree curves – parabolas and ellipses – are fitted to the surrounding 
points to obtain the size of the feature. The fitting error of a curve represents the mean 
squared difference between the actual height at each point and the estimated height at 
that point according to the curve. The final set of features is obtained by selecting the 



 

fitted curve with the minimum fitting error from a region along an axis and cross 
validating with the features obtained along the other axis. 

LIDAR data from the regions around the Apollo landing sites has been processed by 
the Feature Compiler and used as ground truth in testing the Landscape Matching 
algorithm. An example of features extracted from the interpolated LIDAR data in the 
region of the Apollo 11 landing site can be seen in Appendix A. 

3 .3  Cra ter  Detec t io n  

In order to compare the landscape “seen” by the lander to the features in the existing 
database, it is necessary to detect the craters in an observed lunar landscape. This is 
the purpose of the Crater Detection module, which receives as input an image of the 
moon‟s surface as seen from above, the altitude at which this image was taken, the 
attitude of the Lander and the resolution of the camera. The module transforms the 
image, and finds indented circular patterns that represent craters.  

To start with, the image is initially flattened to eliminate the curvature of the moon. 
Missing values due to the uneven data density distribution along the axes are 
interpolated. The crater fitting is accomplished by merging the outputs of several 
image processing procedures, since it was observed that not one method is superior to 
the rest for all test samples.  

The basic algorithm for the first two methods is the same: edge detection followed by 
a Hough transform to find circles. The third method, developed for cell recognition 
[4], performs unsupervised segmentation by finding circular patterns through 
aggregation, not through Hough transform. It must be noted that standard edge 
detection methods such as canny, sobel or prewitt fail for lunar images because, 
despite the existing contrast obvious to the human eye, the image gradients are 
smooth. Using a lower threshold for the gradient does not work either, because in this 
case most accidental variations in contrast are incorrectly considered edges.  

The first method detects crater edges by scanning each line and detecting the starting 
and ending points of a sequence that has descending values and then ascending values . 
The tolerance parameter this procedure receives represents the percentage of points 
that can be out of order. This method is also designed to allow for overlapping circles, 
which the subsequent procedures will cross-validate. The second method is based on 
comparing the color histogram in neighboring regions of the image to detect edges. 

 Both of these procedures take as a parameter a range – minimum and maximum 
values for the radius of the circle. Craters of various sizes are detected  by running the 
procedures multiple times for different ranges. For a given range, the output of the 
procedures is combined by taking the union of the detected sets for each procedure 
and eliminating heavily overlapping circles by majority vote – the circle that overlaps 
with the most other circles is kept. 

The final output of the module is a list of (x,y,r) values, where the (x,y) represent t he 
position of the center of the crater and r is its radius. All the values are scaled to 
represent the actual dimensions of the landscape; the calculations are based on the 
resolution of the camera and the known altitude of the lander.  

3 .4  La ndsca pe  M a tch ing  

The Landscape Matching algorithm finds correspondences between the craters found 
by the Crater Detection Module and the features that exist in the database. It takes as 
an input the list of craters observed by the lander during descent, a value for size 
tolerance and one for distance tolerance. The tolerance is required since it is very 



 

unlikely that there will be any exact matches between the observat ions and the 
features recorded in the database. From previous iterations of the algorithm, a subset 
of the database has been selected. The subset, which is called „reference‟, corresponds 
to the response to a range query in the kd-tree. The range corresponds to an upper 
bound on the distance the lander had traversed since the last run of the algorithm.  

First, the algorithm determines candidate reference-observation couples representing 
features that can be mapped to each other based on their size. For each pair  of couples, 
it is determined if they are mutually exclusive for the given distance tolerance, that is, 
whether the distance between references is close enough to the distance between 
observations. If the distance between two observations is not within tolerance of the 
distance between references, it is impossible that both observation-reference 
mappings are correct because we are assuming that the distance between the two 
features must be preserved, even as the features are considered in different models – 
the observed image and the feature database. The result after this step is a set of 
mappings, some of which are mutually exclusive.  

Of interest is the largest subset of mappings for which any two mappings are not 
exclusive. Were the mutual exclusive relationship represented in a graph, the subset 
corresponds exactly to the largest clique in the graph. It is a well known fact that 
determining the largest clique is both an NP hard problem and difficult to optimize. 
Fortunately, in this case it is only necessary to determine the maximum clique during 
the first run of the algorithm and only when sanity check is required. At all other 
times, it is enough to have one or several control observation-reference couples. 
Therefore, the algorithm can use an iterative process where the mappings that are 
consistent with the controls are kept and become controls, while the rest are discarded.   

Three controls are sufficient to ensure that there are no ambiguous cases when two 
points are consistent with the controls, but not with each other.  Error recovery 
happens when, during sanity check, there is too little overlap between the new control 
points and the old ones, where the overlap is measured in terms of number of pairs that 
are not mutually exclusive. 

3 .5  Surfa ce  Asses s me nt  

The Surface Assessment Module is designed to determine which portions of an 
observed area are fit for landing. The problem is imbalanced in the sense that a false 
positive – a spot that is deemed appropriate for landing but really isn‟t – could have a 
devastating effect on the mission.   

To start with, a heuristic method of generating a heatmap has been developed. For 
each pixel from the input image projected onto the horizontal plane, the algorithm 
computes the maximum distance between the initial pixel value and the values 
obtained by applying square moving average filters of dimensions varying from 2 to 
the image height. The intuition behind this is that, for even surfaces, the pixel values 
will change less after applying a moving average filter than for portions representing 
craters. Once the values are normalized, cross validation can be used to obtain a 
threshold so that asymptotically (i.e. as the number of samples increases), the false 
positive error is below a desired value. 

A different way to detect landing spots is to train a classifier based on a series of 
features that characterize each pixel from a set of manually labeled images. The set of 
10 features include information about the distribution of values in the vicinity of the 
pixel. The following classification methods were used: tree-augmented Naïve Bayes, 
logistic regression, K-nearest neighbors, decision trees, support vector machines. In 
the case of logistic regression, an empirical bound on the false positive error can be 



 

obtained by learning the threshold above which a point is appropriate for landing. It is 
to be noted however that with the decrease of false positive error comes an increase in 
false negative error, up to the point where the elimination criteria will be so harsh that 
there will be virtually no candidate landing spots. 

The method by which the lander determines the relative height of terrain features is 
via use of stereo imaging. The Birchfield-Tomasi stereo discontinuity algorithm is 
adequate given terrestrial images; however, its present effectiveness on lunar terrain 
is highly dependent on the placement of lander stereo cameras and lunar lighting 
conditions. This algorithm is applied as follows: The lander takes two pictures of the 
same region of the lunar surface from two different points in its orbit in order to 
simulate a large stereo vision system. The baseline can be estimated by comparing the 
size of the same feature in the two consecutive images. The two images are then fed 
into the Birchfield algorithm in order to generate a disparity map of the lunar surface. 
From this disparity map, the relative elevations of various terrain features are 
determined. Determining a landing spot is, at least theoretically, straightforward. 

Light tracking is used to obtain the trajectory of the brighter parts of the image. From 
their variation, as well as from the relative positioning of the camera, we can obtain 
sequences of movement of the sun. From these sequences, the angle the lander has 
with respect to the desired east-west axis is calculated and the attitude is then adjusted 
accordingly. 

4  Evaluation 

The evaluation of the LRS was performed in two stages, the first one consisting of unit 
testing each of the components, and the second of a descent simulation.  

4 .1  Test ing  the  Cra ter  Detec t io n  M o dule  

The crater detection method was tested with LRO images depicting the Apollo landing 
sites. A crucial aspect must be pointed out: the crater detection need not be exact. As 
long as an amount of landscape information is obtained that is sufficient to distinguish 
one landscape from the other, the landmark matching algorithm will unambiguously 
determine the location of the Lander – when the ellipse fitting is accurate. Appendix B 
shows the three methods of crater detection applied to an LRO image. Also, the crater 
detection module is used in testing the landmark matching module – Table 1. 

4 .2  Test ing  the  La n d ma r k M a tch ing  M o dule  

The landmark matching module was also tested using LRO images of the Apollo sites. 
A set of 20 other images randomly selected from the LRO repository were used a 
negative examples. In each test, an image from a landing site was cropped to contain 
only portions of the landscape, resulting in five overlapping images. Two sets of four 
tests have been performed, for the Apollo 11, 14, 16, 17 locations, each test using 25 
images, 5 of which were positives.  

In the first set of tests, the table containing lunar features was manually created as 
appearing in the World Wind application [3]. For the second set of tests, the extracted 
features from the LRO LIDAR data were used. The performance of the Landmark 
Matching process is illustrated in Table 1. For the manually generated feature set, the 
performance is perfect. For the feature set obtained from the LIDAR data, the system 
made some mistakes because of the discrepancies that appear between the LIDAR 
data and the LRO images after processing. The reason why this does not present a 
problem in the simulation is because the LRS does not match a single image, but a 



 

sequence of images and also uses the orbital images in the highest level of the 
database to verify the estimation. 

Table 1: Results of Landmark Matching 

Test Set 1 True Positives False 
Positives 

True 
Negatives 

False 
Negatives 

Apollo 11 5/5 0/20 20/20 0/5 

Apollo 14 5/5 0/20 20/20 0/5 

Apollo 16 5/5 0/20 20/20 0/5 

Apollo 17 5/5 0/20 20/20 0/5 

Test Set 2     

Apollo 11 4/5 3/20 17/20 1/5 

Apollo 14 3/5 4/20 16/20 2/5 

Apollo 16 5/5  3/20  17/20  0/5  

Apollo 17 4/5  4/20  16/20  1/5  

4 .3  Test ing  the  Surfa ce  As sess ment  M o dule  

To achieve classification with the heuristic SAM, a threshold must be selected so that 
the probability of a false positive is below a user-specified value α. Table 2 shows the 
false negative rate β for a set of values for a set of limiting false positive rates, as 
evaluated on leave-one-image-out cross validation on a set of five images from the 
LCROSS repository. 

Table 2: Error Rates for heuristic SAM 

False Positive Rate 0.1 0.01 0.001 0.0001 0.00001 

False Negative Rate 0.056 0.121 0.482 0.578 0.924 

The trained SAM was also evaluated using LOO cross validation on LCROSS images 
– an image was left out, the classifier was trained on the remaining 4 images, then 
evaluated on the image that was left out. Table 3 shows the achieved accuracies for 
each type of classifier. Accuracy represents the percentage of (manually labeled) test 
points that are were correctly classified as acceptable/not acceptable landing spots. 

Table 3: Accuracy for trained SAM 

Classifier TAN LR KNN DT SVM 

Accuracy 0.75 0.79 0.67 0.71 0.82 

Evaluation of the stereo procedure has not yielded good results since the horizon line 
is missing. Available packages are not specifically designed to work with landscapes 
taken from this angle or this type of barren, colorless terrain. 

4 .4  Si mula t io n  o f  Ho mi ng  Sy s te m  

The experiments presented so far were aimed at evaluating individual components of 
the LRS. Testing the system as a whole presents some challenges, mainly due to the 
difficulty of performing reliable field tests. The TAM requires close-ups of the 
moon‟s surface that aren‟t widely available. Also, although high resolution images of 



 

the moon‟s surface are available from lunar orbiters, these are all taken from a 
direction perpendicular to the moon‟s surface.  

The developed simulation framework uses the World Wind SDK [reference needed], 
which comprises of imagery from the Clementine mission.  The simulation algorithm 
is depicted in Algorithm 1. Appendix D presents a sequence diagram of how the 
simulation works. The Lander starts from a given altitude and set of coordinates . An 
image corresponding to those coordinates is taken from the World Wind API and fed 
to the LRS. The LRS runs the crater detection module and the landscape matching 
algorithm comparing the observed craters with reference features selected based on 
the previously known position of the Lander.  

To determine the initial position, the observed features are compared to all the high 
levels (i.e. of greater size) features in the kd-tree to find the position. Also, the 
captured image of the landscape is compared to the images in the first partition of the 
database – the orbital lunar photos, in order to validate the initial assessment of the 
position. After the position is estimated, control points are established and the 
estimated position is sent back to the simulator, which checks it. The LRS also 
requests a direction of movement depending on the target. The simulator uses the 
movement model of the Lander to update the position. The algorithm is then repeated.  
The simulation has achieved successful targeting 5 out of 5 times for Apollo 16, 4 out 
of 5 for Apollo 11, 14, and 17. 

Algorithm 1: Simulation of Homing System 

 
def run_simulation(initial_position, initial_altitude, destination):  
 #setup initial position 
 actual_coor = inital_position 
 altitude = initial_altitude 
 while (altitude > 0): 
  # accesses World Wind API for view from given location 
  image = worldwind_get_image(coor,altitude) 
  # feeds image to LRS in order to estimate current position  
  estimated_coor = lrs_analyze_image(image,altitude) 
  # compares current and desired coordinates to determine flight direction  
  direction = compare_coor(estimated_coor, destination)  
  # moves lander in desired direction and updates altitude 
  actual_coor, altitude = move_lander(actual_coor,altitude,direction)  
 
def lrs_analyze_image(image,altitude): 
 # calls crater detection algorithm on the image 
 craters = detect_craters(image) 
 # scales for lander altitude 
 craters_mod = adjust_for_range(craters,altitude) 
 # calls landscape recognition algorithm and compares with database information  
 return compare_with_database(craters_mod) 

 

 



 

Conclusions 

This investigation into mechanisms for solving the problem of Lander localization 
and trajectory planning has yielded a system capable of examining lunar terrain and 
comparing it to a local database. From this information, the system ef fectively 
determines its present location above the moon and the location of a landing site 
devoid of obstructions such as craters and steep slopes. It is therefore safe to conclude 
that the discussed system would facilitate the success of a lunar landing mission. 

Ac kno w ledg me nts  

This paper was written for the 16-861 Mobile Robot Design class at Carnegie Mellon 
University. 
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Appendix A – Feature Compiler Example 

LIDAR Data (Apollo 11 site): 

 

 

Extracted features: 

X  Y  

235  54  

27  126  

42  189  

212  179  

55  242  

 



 

 

Appendix B – Crater Detection Results on LRO image 

Original image: 

 

Circles detected with gradient edge detection + Hough transform: 

 



 

Circles detected with histogram edge detection + Hough transform: 

 

Circles detected with segmentation for cell recognition: 

 

 

Appendix C – Surface Assessment: Heat-map Example (Apollo 11 Site) 

 



 

Appendix D – Sequence diagram of Simulation 

 


