
Virtualization
15-410 Fall 2006

Glenn Willen
Mike Cui

2

Synchronization

• Kernel due tonight

• If you are using your late days,
don’t forget to register on the
website

• Be alert for an opportunity to study
large warm floppy disks at midnight

3

Outline

• Overview

• The Game (Why/How Virtualization?)

• Other Stuff

• Virtualization on x86

• Paravirtualization

• Hardware Assisted Virtualization

• Software Implementation

4

Virtualization

Process of presenting and
partitioning computing resources
in a logical way rather than what

is dictated by their physical reality

5

Virtual Machine

An execution environment identical
to a physical machine, with the

ability to execute a full operating
system

Q: Process : OS :: OS :
A: Virtualization layer

6

IBM System 370

VM/CMS ~1967

VM - Virtualization Layer

CMS - Single-user DOS-like operating system

1000 users, each user gets a personal mainframe!

7

Motivation
• Fake hardware (e.g. for old code)

• Multiple OSes simultaneously

• Efficient use of resources

• Can share one machine’s resources
between services which require the
isolation of separate machines

• Can move virtual machines among
physical machines to load-balance

• Billion-dollar industry

8

Motivation for You

• Virtualization is cool

• Application of OS concepts you already
know from this class

• Impress VMware interviewer

99

Virtual
Machine
Layers

The virtualization layer is
commonly referred to as

the Virtual Machine
Monitor / Virtual Memory

Monitor (VMM) or
Hypervisor

9

10

Virtualization Layer

• VMM: Virtual {Memory|Machine}
Manager

• Runs with the highest privileges

• Controls and allocates hardware
resources for the virtual machine(s)

• It is the “operating system”

11

Guest OS
• CPL 0 code running at CPL > 0

• Code that assumes it’s privileged,
running without privileges

• Accesses physical memory

• Manages virtual memory

• Installs interrupt / system call handlers

• Controls hardware devices

• [Does not know about the VMM]

12

Why and How?
Scenario: Virtualization to fake different
hardware
(Rationale: Simpler example than multiple guest
OSs)

All we need to do is control and redirect access
to hardware
• Make the guest OS see our virtual hardware
 instead of the real thing

…how hard can it be?

13

What Won’t Work

Absolutely cannot run the guest OS in kernel
mode (ring 0). Why?

14

What Won’t Work

Absolutely cannot run the guest OS in kernel
mode (ring 0). Why?

• No way for us to keep control of the machine!
• No way to keep the guest away from physical
devices!
• Once we let it run, we never get control back;
guest runs I/O instructions, nothing we can do.

15

So What’s Left?

No choice but to run the guest kernel in user
mode (ring 3)

… and strictly maintain the illusion that it’s in
kernel mode!
• This part is slightly difficult…

What do we need to do (and how do we do it?)

16

The Game
• Virtualization requirements, OR

• “How to play pretend with a kernel”

• In order of importance:

• Protection

• Illusion

• Performance

17

The Game (Part 1)

• Protection: Virtual machine _must not_

• Alter the state of the VMM (directly)

• Interact directly with the hardware

• Alter the state of any other VMs running
side-by-side with it

• Rule: VM must not be able to alter anything
outside the simulation

• Otherwise it’s a pretty bad simulation!

18

The Game (Part 2)

• Illusion:

• VM must not (with the one exception of timing)
be able to determine that it is running in a
simulation

• Say it with me: Otherwise it’s a pretty bad
simulation!

• Critical for software which is not aware, and
cannot be made aware, that it is being
simulated (i.e. closed source)

19

The Game (Part 3)

• Performance:

• A secondary requirement, but still important

• The system must be fast enough to use,
otherwise nobody will!

• If we didn’t care about speed, we would be
simulating in pure software.

• Difficult to make this a hard requirement -- very
much best-effort

20

How?

• Keep guest OS off of I/O instructions

• Basically free: they are privileged, will
automatically trap into the VMM

• Keep guest OS off of other “sensitive”
instructions

• Which ones are these?

• Keep guest OS out of VMM’s memory

• Slightly more difficult…

21

How, Part I
(Trap and Emulate)

• Guest tries:

• outb(TIMER_PERIOD_IO_PORT, timerperiod >>
8); /* timer period MSB */

• To allow this would violate protection: the guest is
attempting direct hardware access

• We’re saved: the OUT instruction is privileged; since
the guest is running in ring 3, a general protection fault
occurs. TRAP!

22

How, Part I
(Trap and Emulate)• VMM now must emulate the instruction that the guest

was attempting, to maintain the illusion.

• Guest is attempting to change period of the system
timer

• Instead, write down new period for guest’s virtual
timer

• The real (VMM) timer handler will “call” (read: fake a
trap into) the guest’s handler as appropriate, to
maintain the illusion that the guest has control of the
real hardware timer.

• If the guest tries to read the period of the hardware
timer, same game in reverse: tell it the period of its
virtual timer device instead. Maintain the illusion!

23

How?

• Keep guest OS off of I/O instructions

• Basically free: they are privileged, will
automatically trap into the VMM

• Keep guest OS off other “sensitive”
instructions

• Which ones are these?

• Keep guest OS out of VMM’s memory

• Slightly more difficult…

24

How, Part 2
(Sensitive instructions)

• Any instruction which, used by the guest, puts the
simulation at risk, and which we therefore must simulate

• Handle these the same as I/O instructions (which are
really just an example of sensitive instructions.) But
which instructions? E.g.:
• cli
• outb
• movl %eax, %cr3

• Luckily, all the examples given here will trap into the VMM if
run by the guest in ring 3, so there’s no problem

• Q: What do we do with other guest kernel instructions?

• addl $3, %eax

• A: Just run them!

25

How?

• Keep guest OS off of I/O instructions

• Basically free: they are privileged, will
automatically trap into the VMM

• Keep guest OS off other “sensitive”
instructions

• Which ones are these?

• Keep guest OS out of VMM’s memory

• Slightly more difficult…

26

How, Part 3
(Memory Protection)

• Physical memory is a shared resource

• Do not allow guest to access it directly

• Instead, map fake “physical” pages for the
guest

• Provide guest with the illusion of access to
all of physical memory

• Guest never knows about real machine
frames

• How?

27

Virtual Memory
Virtualization

• Guest OS itself will need to use virtual
memory

• Need 2 level virtual address translation

• virtual page to fake “physical” page

• “physical” page to real machine frame

• But the memory management hardware
only gives us one…

28

Virtual Memory
Virtualization
• Need 2 level virtual address translation

• virtual page to fake “physical” page

• “physical” page to real machine frame

Virtual Page

“Physical”
Page

This box is ALL the
guest sees. It thinks

this

is a physical address.

Machine
FrameA real hardware address:

The guest NEVER sees
this.

29

Virtual Memory
Virtualization

• But how can we get the memory-management
hardware to do this for us? It can only handle a
single level mapping.

Virtual Page

“Physical”
Page

This box is ALL the
guest sees. It thinks

this

is a physical address.

Machine
FrameA real hardware address:

The guest NEVER sees
this.

30

Virtual Memory
Virtualization

Virtual Page

“Physical”
Page

This box is ALL the
guest sees. It thinks this

is a physical address.

Machine
Frame

A real hardware address:
The guest NEVER sees this.

Tell the memory management hardware this:

31

Shadow Page Tables
• Let guest maintain page tables according to the

illusion, mapping virtual pages to fake “physical”
pages

• VMM tracks mappings from the fake “physical”
pages to the real machine frames

• For the memory management hardware, maintain a
set of “shadow” page tables mapping guest virtual
pages => machine frames

• Every time the guest sets CR3, or updates its
page tables:

• Look up the fake “physical” => real machine
page mapping(s)

• Update the “shadow” page tables to match

32

Shadow Page Tables
• Let guest maintain page tables according to the

illusion, mapping virtual pages to fake “physical”
pages

Guest Page Table

Virtual CR3Virtual CR3

Fake
“physical”
addresses

Virtual
addresses

33

Shadow Page Tables
• For the memory management hardware, maintain a set of

“shadow” page tables mapping guest virtual pages to machine
frames

VMM’s internal
memory mappings

Guest Page Table Shadow Page Table

CR3CR3

+

(real)
Real

machine
frames

Virtual
addresses

34

Shadow Page Tables

• Protection: The guest OS cannot (directly)
affect the real page tables

• Page tables are protected from
editting

• More important: the rest of the
universe is protected from the guest

• Guest has no way to touch parts of machine
memory that it shouldn’t know about

35

Shadow Page Tables
• Illusion:

• Need the guest to think it can read/write CR3

• That’s a privileged instruction, so it traps into the
VMM, we simulate it in sofware and advance EIP to
the next instruction

• Need the guest to get the “right” value back when it
reads CR3

• When we simulate the read, give back the address of
the fake guest page tables instead of the real shadow
page tables

• Extra-subtle: What kind of address is it?

36

Managing Shadow Page
Tables

• On every write to the page directory or a
page table by the guest, we need to

• Maintain an illusion: update the guest’s
fake page table, so the next read will give
the right answer

• Maintain protection: update the real
shadow page tables to contain the right
thing

• We do this by tracing accesses to the guest’s page
tables

37

Tracing
• Use memory protection to trap writes to

page tables

• Very similar to copy-on-write

• Tell the guest it can write to the memory
areas it thinks are page tables

• Mark them read-only in reality, so writes
to them trap into the VMM

• Do the write that faulted, and then take
the opportunity to update the shadow
page table to keep it in sync

38

Tracing
• Use memory protection to trap writes to page tables

• pte[17] =

• alloc_new_frame() | PTE_PAGE_PRESENT

• Guest tries to add a mapping for a new frame into the page table

• Address from alloc_new_frame() is not really a machine frame, it is a
fake “physical” page which the VMM will map to an actual frame. (The
guest kernel does not know this!)

• This assignment will cause a page fault, trapping into the VMM

• VMM does the write on behalf of the guest (to maintain the illusion
that the guest controls the page tables)

• VMM updates the shadow page tables to contain the machine frame
address corresponding to the fake “physical” frame the guest is trying
to map

39

Performance?• Quite slow to rebuild shadow page tables every
time CR3 changes, and trap every time the
guest writes its page tables. Can we speed this
up?

• Caching: When CR3 changes, keep old
shadows around, for recycling when it
changes back

• Subtle problem: garbage collection! How long do
we keep old shadow page tables around, before
deciding that the guest has freed that context
and will never switch to it again?

• Subtle solution: Guess.
* Some patterns of memory access look

 like a page table. Most of them don’t.

* If we haven’t seen it in awhile, maybe it’s

 not coming back

40

Performance?

• Quite slow to rebuild shadow page tables every time
CR3 changes, and trap every time the guest writes its
page tables. Can we speed this up?

• Lazy updates: Don’t usually need to update the real
mappings until the guest flushes the TLB

• Don’t trace the page tables at all; instead, just
trap CR3 writes and INVLPGs.

• Guest just sees a Very Big TLB.

• Very serious speed gains to be had here, but
hugely complicated to get right

41

x86 Hardware
• x86 instruction set is not “virtualizable”

• 17 instructions silently behave differently in
privileged versus non-privileged mode

• Example: POPF

• In user mode, “helpfully” pops some flags but
ignores privileged flags

• Would be much more helpful (to VMM) if it
trapped instead

• Should really be two instructions (one
privileged, one not)

42

Virtualization on x86

• Possible, through a lot of clever hacks

• VMware (1998)

• Binary translation: Edits problematic guest
kernel instructions to be traps into VMM

• E.g. POPF becomes INT 99

• It’s not really anywhere near that simple.

• Directly execute guest user code

• Only 20% performance overhead, or less

43

Paravirtualization
Motivation• Full virtualization is expensive and

complicated

• If guest OS can be modified to work
with the hypervisor, then it’s
unnecessary to

• Trap and emulate

• Shadow and trace

• Dynamically recompile guest kernel
code

44

Paravirtualization
Implementation

Guest OSes are modified to accept
the fact that they are is running inside
a VM.

The VMM does not create an illusion
that the VM owns all machine
resources.

Instead, the VMM provides an
hypercall interface to provide service
to VMs.

45

Hypercall Interface

• Allows the guest to voluntarily trap into
the hypervisor

• All guest access to hardware state
happens through hypercalls

• The guest does not access hardware
state directly at all

• No instruction decoding necessary

46

Physical Memory

• Guest knows that it does not own all of
physical memory

• Guest requests physical memory from
hypervisor

• There are no fake “physical” addresses;
guest knows real frame addresses

47

Virtual Memory
• Guest relinquishes ownership of its own

page tables

• All paging operations happen through
hypercalls
int frame = hypervisor_frame_please();

 /* Politely ask for a physical frame*/

map(virtaddress, frame);

 /* Ask to map into our address space */

map_many(virtaddrs[], framenums[]);
 /* Works like set_cr3() */

• No shadows or traces:

48

Hardware Abstraction

Paravirtualization = Hardware abstraction

The hypervisor abstracts away all the
hardware details from the guest operating

system

Requires porting guest OS to hypervisor,
as if it was another hardware platform

49

Hypervisor Examples

• Xen - portable hypervisor

• Hypercall interface defined for any ISA

• mmu_update()

• VMware - x86 specific

• Hypercall interface similar to hardware

• VMI_SetCR3()

• News Flash! VMI is now a portable interface
to both VMware and Xen hypervisors

50

Hardware Assisted
Virtualization

• Intel VT (Vanderpool) - Core Duo/Solo

• AMD SVM (Pacifica) - soon to come

• Provides a hardware mode of operation
for virtual machines

• Architectural extension to make x86
virtualization easier

• Does not replace the VMM

51

Hardware Assisted
Virtualization

• Key feature: Supports a mode in which
the 17 “problem child” instructions will
trap into the VMM instead of silently
doing the wrong thing

• Key problem: Offers no support (yet) for
making the page table shadowing
problem any easier

52

Hardware Assisted
Virtualization

• Boneheaded: It turns out that well-
optimized binary translation is currently
faster than the weirdo-traps that happen
in the special virtualized mode.

• (It’s ok hardware guys, you’ll get it
next time.)

53

Summary

• Full Virtualization

• Trap and emulate, shadow and trace

• Paravirtualization

• Voluntary trap, hardware abstraction

• Hardware Assisted Virtualization

54

Further Reading
• J.S. Robin, and C.E. Irvine, “Analysis of the Intel Pentium’s Ability to

Support a Secure Virtual Machine Monitor”

• M. Rosenblum, and T. Garfinkel, “Virtual Machine Monitors: Current
Technology and Future Trends"

• S. Devine, E. Bugnion, and M. Rosenblum, “Virtualization system
including a virtual machine monitor for a computer with a segmented
architecture”, US Patent 6,397,242

• P. Barham, et. al., “Xen and the Art of Virtualization”

• “Xen Developer’s Reference”

• “VMI Specification” from VMware

• R. Uhlig, et. al., “Intel Virtualization Technology”

• “Intel VT Specification”

• M. Rosenblum, et. al., “Optimizing the Migration of Virtual Computers”

Disclaimer: This slide not
modified from last

semester. But most of it’s
probably still interesting.

