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Synchronization

• Kernel due tonight

• If you are using your late days, 
don’t forget to register on the 
website

• Be alert for an opportunity to study 
large warm floppy disks at midnight
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Outline

• Overview

• The Game (Why/How Virtualization?)

• Other Stuff

• Virtualization on x86

• Paravirtualization

• Hardware Assisted Virtualization

• Software Implementation
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Virtualization

Process of presenting and 
partitioning computing resources 
in a logical way rather than what 

is dictated by their physical reality
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Virtual Machine

An execution environment identical 
to a physical machine, with the 

ability to execute a full operating 
system

Q: Process : OS :: OS :
A: Virtualization layer
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IBM System 370

VM/CMS ~1967

VM - Virtualization Layer

CMS - Single-user DOS-like operating system

1000 users, each user gets a personal mainframe!
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Motivation
• Fake hardware (e.g. for old code)

• Multiple OSes simultaneously 

• Efficient use of resources

• Can share one machine’s resources 
between services which require the 
isolation of separate machines

• Can move virtual machines among 
physical machines to load-balance

• Billion-dollar industry



8

Motivation for You

• Virtualization is cool

• Application of OS concepts you already 
know from this class

• Impress VMware interviewer
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Virtual 
Machine 
Layers

The virtualization layer is 
commonly referred to as 

the Virtual Machine 
Monitor / Virtual Memory 

Monitor (VMM) or 
Hypervisor

9
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Virtualization Layer

• VMM: Virtual {Memory|Machine} 
Manager

• Runs with the highest privileges

• Controls and allocates hardware 
resources for the virtual machine(s)

• It is the “operating system”
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Guest OS
• CPL 0 code running at CPL > 0

• Code that assumes it’s privileged, 
running without privileges

• Accesses physical memory

• Manages virtual memory

• Installs interrupt / system call handlers

• Controls hardware devices

• [Does not know about the VMM]
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Why and How?
Scenario: Virtualization to fake different 
hardware
(Rationale: Simpler example than multiple guest 
OSs)

All we need to do is control and redirect access 
to hardware
•  Make the guest OS see our virtual hardware 
    instead of the real thing

…how hard can it be?
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What Won’t Work

Absolutely cannot run the guest OS in kernel 
mode (ring 0). Why?
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What Won’t Work

Absolutely cannot run the guest OS in kernel 
mode (ring 0). Why?

• No way for us to keep control of the machine! 
• No way to keep the guest away from physical 
devices! 
• Once we let it run, we never get control back; 
guest runs I/O instructions, nothing we can do.
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So What’s Left?

No choice but to run the guest kernel in user 
mode (ring 3)

… and strictly maintain the illusion that it’s in 
kernel mode!
• This part is slightly difficult…

What do we need to do (and how do we do it?)
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The Game
• Virtualization requirements, OR

• “How to play pretend with a kernel”

• In order of importance:

• Protection

• Illusion

• Performance
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The Game (Part 1)

•  Protection: Virtual machine _must not_

• Alter the state of the VMM (directly)

• Interact directly with the hardware

• Alter the state of any other VMs running 
side-by-side with it

• Rule: VM must not be able to alter anything 
outside the simulation

• Otherwise it’s a pretty bad simulation!
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The Game (Part 2)

•  Illusion:

• VM must not (with the one exception of timing) 
be able to determine that it is running in a 
simulation

• Say it with me: Otherwise it’s a pretty bad 
simulation!

• Critical for software which is not aware, and 
cannot be made aware, that it is being 
simulated (i.e. closed source)
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The Game (Part 3)

•  Performance:

• A secondary requirement, but still important

• The system must be fast enough to use, 
otherwise nobody will!

• If we didn’t care about speed, we would be 
simulating in pure software.

• Difficult to make this a hard requirement -- very 
much best-effort
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How?

• Keep guest OS off of I/O instructions

• Basically free: they are privileged, will 
automatically trap into the VMM

• Keep guest OS off of other “sensitive” 
instructions

• Which ones are these?

• Keep guest OS out of VMM’s memory

• Slightly more difficult… 
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How, Part I 
(Trap and Emulate)

• Guest tries: 

• outb(TIMER_PERIOD_IO_PORT, timerperiod >> 
8);    /* timer period MSB */

• To allow this would violate protection: the guest is 
attempting direct hardware access

• We’re saved: the OUT instruction is privileged; since 
the guest is running in ring 3, a general protection fault 
occurs. TRAP!
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How, Part I 
(Trap and Emulate)• VMM now must emulate the instruction that the guest 

was attempting, to maintain the illusion.

• Guest is attempting to change period of the system 
timer

• Instead, write down new period for guest’s virtual 
timer

• The real (VMM) timer handler will “call” (read: fake a 
trap into) the guest’s handler as appropriate, to 
maintain the illusion that the guest has control of the 
real hardware timer.

• If the guest tries to read the period of the hardware 
timer, same game in reverse: tell it the period of its 
virtual timer device instead. Maintain the illusion! 
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How?

• Keep guest OS off of I/O instructions

• Basically free: they are privileged, will 
automatically trap into the VMM

• Keep guest OS off other “sensitive” 
instructions

• Which ones are these?

• Keep guest OS out of VMM’s memory

• Slightly more difficult… 
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How, Part 2 
(Sensitive instructions)

• Any instruction which, used by the guest, puts the 
simulation at risk, and which we therefore must simulate

• Handle these the same as I/O instructions (which are 
really just an example of sensitive instructions.) But 
which instructions? E.g.:
• cli
• outb
• movl %eax, %cr3

• Luckily, all the examples given here will trap into the VMM if 
run by the guest in ring 3, so there’s no problem

• Q: What do we do with other guest kernel instructions?

• addl $3, %eax

• A: Just run them!
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How?

• Keep guest OS off of I/O instructions

• Basically free: they are privileged, will 
automatically trap into the VMM

• Keep guest OS off other “sensitive” 
instructions

• Which ones are these?

• Keep guest OS out of VMM’s memory

• Slightly more difficult… 
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How, Part 3
(Memory Protection)

• Physical memory is a shared resource

• Do not allow guest to access it directly

• Instead, map fake “physical” pages for the 
guest

• Provide guest with the illusion of access to 
all of physical memory

• Guest never knows about real machine 
frames

• How?
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Virtual Memory 
Virtualization

• Guest OS itself will need to use virtual 
memory

• Need 2 level virtual address translation

• virtual page to fake “physical” page

• “physical” page to real machine frame

• But the memory management hardware 
only gives us one…
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Virtual Memory 
Virtualization
• Need 2 level virtual address translation

• virtual page to fake “physical” page

• “physical” page to real machine frame

Virtual Page

“Physical” 
Page

This box is ALL the
guest sees. It thinks 

this

is a physical address.

Machine 
FrameA real hardware address: 

The guest NEVER sees 
this.
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Virtual Memory 
Virtualization

• But how can we get the memory-management 
hardware to do this for us? It can only handle a 
single level mapping.

Virtual Page

“Physical” 
Page

This box is ALL the
guest sees. It thinks 

this

is a physical address.

Machine 
FrameA real hardware address: 

The guest NEVER sees 
this.
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Virtual Memory 
Virtualization

Virtual Page

“Physical” 
Page

This box is ALL the
guest sees. It thinks this

is a physical address.

Machine 
Frame

A real hardware address: 
The guest NEVER sees this.

Tell the memory management hardware this:
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Shadow Page Tables
• Let guest maintain page tables according to the 

illusion, mapping virtual pages to fake “physical” 
pages

• VMM tracks mappings from the fake “physical” 
pages to the real machine frames

• For the memory management hardware, maintain a 
set of “shadow” page tables mapping guest virtual 
pages => machine frames

• Every time the guest sets CR3, or updates its 
page tables:

• Look up the fake “physical” => real machine 
page mapping(s)

• Update the “shadow” page tables to match
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Shadow Page Tables
• Let guest maintain page tables according to the 

illusion, mapping virtual pages to fake “physical” 
pages

Guest Page Table

Virtual CR3Virtual CR3

Fake 
“physical” 
addresses

Virtual 
addresses
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Shadow Page Tables
• For the memory management hardware, maintain a set of 

“shadow” page tables mapping guest virtual pages to machine 
frames

VMM’s internal 
memory mappings

Guest Page Table Shadow Page Table

CR3CR3

+

(real)
Real 

machine 
frames

Virtual
addresses
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Shadow Page Tables

• Protection: The guest OS cannot (directly) 
affect the real page tables

• Page tables are protected from 
editting

• More important: the rest of the 
universe is protected from the guest

• Guest has no way to touch parts of machine 
memory that it shouldn’t know about
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Shadow Page Tables
• Illusion:

• Need the guest to think it can read/write CR3

• That’s a privileged instruction, so it traps into the 
VMM, we simulate it in sofware and advance EIP to 
the next instruction

• Need the guest to get the “right” value back when it 
reads CR3

• When we simulate the read, give back the address of 
the fake guest page tables instead of the real shadow 
page tables

• Extra-subtle: What kind of address is it?
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Managing Shadow Page 
Tables

• On every write to the page directory or a 
page table by the guest, we need to

• Maintain an illusion: update the guest’s 
fake page table, so the next read will give 
the right answer

• Maintain protection: update the real 
shadow page tables to contain the right 
thing

• We do this by tracing accesses to the guest’s page 
tables
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Tracing
• Use memory protection to trap writes to 

page tables

• Very similar to copy-on-write

• Tell the guest it can write to the memory 
areas it thinks are page tables

• Mark them read-only in reality, so writes 
to them trap into the VMM

• Do the write that faulted, and then take 
the opportunity to update the shadow 
page table to keep it in sync
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Tracing
• Use memory protection to trap writes to page tables

• pte[17] = 

•    alloc_new_frame() | PTE_PAGE_PRESENT

• Guest tries to add a mapping for a new frame into the page table

• Address from alloc_new_frame() is not really a machine frame, it is a 
fake “physical” page which the VMM will map to an actual frame. (The 
guest kernel does not know this!)

• This assignment will cause a page fault, trapping into the VMM

• VMM does the write on behalf of the guest (to maintain the illusion 
that the guest controls the page tables)

• VMM updates the shadow page tables to contain the machine frame 
address corresponding to the fake “physical” frame the guest is trying 
to map
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Performance?• Quite slow to rebuild shadow page tables every 
time CR3 changes, and trap every time the 
guest writes its page tables. Can we speed this 
up?

• Caching: When CR3 changes, keep old 
shadows around, for recycling when it 
changes back

• Subtle problem: garbage collection! How long do 
we keep old shadow page tables around, before 
deciding that the guest has freed that context 
and will never switch to it again?

• Subtle solution: Guess. 
* Some patterns of memory access look 

  like a page table. Most of them don’t.

* If we haven’t seen it in awhile, maybe it’s

  not coming back



40

Performance?

• Quite slow to rebuild shadow page tables every time 
CR3 changes, and trap every time the guest writes its 
page tables. Can we speed this up?

• Lazy updates: Don’t usually need to update the real
mappings until the guest flushes the TLB

• Don’t trace the page tables at all; instead, just 
trap CR3 writes and INVLPGs.

• Guest just sees a Very Big TLB.

• Very serious speed gains to be had here, but 
hugely complicated to get right
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x86 Hardware
• x86 instruction set is not “virtualizable”

• 17 instructions silently behave differently in 
privileged versus non-privileged mode

• Example: POPF

• In user mode, “helpfully” pops some flags but 
ignores privileged flags

• Would be much more helpful (to VMM) if it 
trapped instead

• Should really be two instructions (one 
privileged, one not)
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Virtualization on x86

• Possible, through a lot of clever hacks

• VMware (1998)

• Binary translation: Edits problematic guest 
kernel instructions to be traps into VMM

• E.g. POPF becomes INT 99

• It’s not really anywhere near that simple.

• Directly execute guest user code

• Only 20% performance overhead, or less
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Paravirtualization 
Motivation• Full virtualization is expensive and 

complicated

• If guest OS can be modified to work 
with the hypervisor, then it’s 
unnecessary to

• Trap and emulate

• Shadow and trace

• Dynamically recompile guest kernel 
code
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Paravirtualization 
Implementation

Guest OSes are modified to accept 
the fact that they are is running inside 
a VM.

The VMM does not create an illusion 
that the VM owns all machine 
resources.

Instead, the VMM provides an 
hypercall interface to provide service 
to VMs.
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Hypercall Interface

• Allows the guest to voluntarily trap into 
the hypervisor

• All guest access to hardware state 
happens through hypercalls

• The guest does not access hardware 
state directly at all

• No instruction decoding necessary
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Physical Memory

• Guest knows that it does not own all of 
physical memory

• Guest requests physical memory from 
hypervisor

• There are no fake “physical” addresses; 
guest knows real frame addresses
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Virtual Memory
• Guest relinquishes ownership of its own 

page tables

• All paging operations happen through 
hypercalls
int frame = hypervisor_frame_please();

 /* Politely ask for a physical frame*/

map(virtaddress, frame);

 /* Ask to map into our address space */

map_many(virtaddrs[], framenums[]);
 /* Works like set_cr3() */

• No shadows or traces:
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Hardware Abstraction

Paravirtualization = Hardware abstraction

The hypervisor abstracts away all the 
hardware details from the guest operating 

system

Requires porting guest OS to hypervisor, 
as if it was another hardware platform
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Hypervisor Examples

• Xen - portable hypervisor

• Hypercall interface defined for any ISA

• mmu_update()

• VMware - x86 specific

• Hypercall interface similar to hardware

• VMI_SetCR3()

• News Flash! VMI is now a portable interface 
to both VMware and Xen hypervisors
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Hardware Assisted 
Virtualization

• Intel VT (Vanderpool) - Core Duo/Solo

• AMD SVM (Pacifica) - soon to come

• Provides a hardware mode of operation 
for virtual machines

• Architectural extension to make x86 
virtualization easier

• Does not replace the VMM
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Hardware Assisted 
Virtualization

• Key feature: Supports a mode in which 
the 17 “problem child” instructions will 
trap into the VMM instead of silently 
doing the wrong thing

• Key problem: Offers no support (yet) for 
making the page table shadowing 
problem any easier
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Hardware Assisted 
Virtualization

• Boneheaded: It turns out that well-
optimized binary translation is currently 
faster than the weirdo-traps that happen 
in the special virtualized mode.

• (It’s ok hardware guys, you’ll get it 
next time.)
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Summary

• Full Virtualization

• Trap and emulate, shadow and trace

• Paravirtualization

• Voluntary trap, hardware abstraction

• Hardware Assisted Virtualization
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Further Reading
• J.S. Robin, and C.E. Irvine, “Analysis of the Intel Pentium’s Ability to 

Support a Secure Virtual Machine Monitor”

• M. Rosenblum, and T. Garfinkel, “Virtual Machine Monitors: Current 
Technology and Future Trends"

• S. Devine, E. Bugnion, and M. Rosenblum, “Virtualization system 
including a virtual machine monitor for a computer with a segmented 
architecture”, US Patent 6,397,242

• P. Barham, et. al., “Xen and the Art of Virtualization”

• “Xen Developer’s Reference”

• “VMI Specification” from VMware

• R. Uhlig, et. al., “Intel Virtualization Technology”

• “Intel VT Specification”

• M. Rosenblum, et. al., “Optimizing the Migration of Virtual Computers”

Disclaimer: This slide not 
modified from last 

semester. But most of it’s 
probably still interesting.


