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Abstract. We present a new approach for approximate updates of factorized nonsymmetric
preconditioners for solving sequences of linear algebraic systems. This approach is algebraic and it
is theoretically motivated. It generalizes diagonal updates introduced by Benzi and Bertaccini [3, 9].
It is shown experimentally that this approach can be very beneficial. For example, it is successful
in significantly decreasing the number of iterations of a preconditioned iterative method for solving
subsequent systems of a sequence when compared with freezing the preconditioner from the first
system of the sequence. In some cases, the updated preconditioners offer a rate of convergence similar
to or even higher than the rate obtained when preconditioning with recomputed preconditioners.
Since the updates are typically cheap and straightforward, their use is of practical interest. They can
replace recomputing preconditioners, which is often expensive, especially in parallel and matrix-free
environments.
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1. Introduction. We consider the solution of sequences of linear systems

A(i)x = b(i), i = 1, . . . ,(1.1)

where A(i) ∈ IRn×n are general nonsingular sparse matrices and b(i) ∈ IRn are cor-
responding right-hand sides. Such sequences arise in many applications like compu-
tational fluid dynamics, structural mechanics, numerical optimization as well as in
solving non-PDE problems. For example, a system of nonlinear equations F (x) = 0
for F : IRn → IRn solved by a Newton or Broyden-type method leads to a sequence
of problems

J(xi)(xi+1 − xi) = −F (xi), i = 1, . . . ,(1.2)

where J(xi) is the Jacobian evaluated in the current iteration xi or its approximation
[33], [34].

The solution of sequences of linear systems is the main bottleneck in many appli-
cations mentioned above. For instance, the solvers may need powerful preconditioners
in order to be efficient and computing preconditioners M (1), M (2), . . . for individual
systems separately can be very expensive. There is a strong need for reduction of costs
by sharing some of the computational effort among the subsequent linear systems.

A way to reduce the overall costs for solving systems of the type (1.2) is to modify
Newton’s method by skipping some Jacobian evaluations as in the Shamanskii com-
bination of Newton’s method and the Newton-chord method [11], [54]. In this way we
get a sequence of systems with identical matrices, and techniques for solving systems
with more right-hand sides may be applied provided the right-hand sides are available
a priori, see, e.g., [46], [25], [55], [60]. However, combinations of Newton’s method
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and the Newton-chord method have much weaker nonlinear convergence properties
than the standard Newton method.

A different approach to reduce the overall costs, which is usually more efficient, is
based on freezing the preconditioner (using the same preconditioner for a sequence of
linear systems), but recomputing (approximate) Jacobians A(i) [12], [39], [40]. This
approach is very natural in the context of a matrix-free environment, where the system
matrices A(i) may be available only in the form of matrix-vector products (matvecs),
see also the overview of matrix-free Newton-Krylov methods in [38].

Another way to avoid efficiency and/or memory related problems connected to
algebraic preconditioning is to use conceptually simpler preconditioners derived from
the physics of the problem. In some PDE problems the original operator can be re-
placed by a simpler one. Early results related to preconditioning by fast solvers can
be found in [16], [24]. For instance, the simpler operator can be a scaled diffusion
operator for a PDE with variable coefficients or a convection-diffusion operator [12],
[36], [38]. In the algebraic setting, simple preconditioners derived from stationary iter-
ative methods can be used. Preconditioning by the symmetric part of a nonsymmetric
matrix was proposed in [17], [62], see also [14]. Another popular preconditioning tech-
nique for general convection-diffusion-reaction models is based on generalizations of
ADI splitting from [49], see, e.g., [36]. Note that we restrict ourselves here to linear
preconditioners; for nonlinear preconditioning techniques we refer, e.g., to [13] and the
references therein. In order to make the preconditioning more efficient and to sim-
plify the preconditioner setup even more, reformulations based on nested iterations
were introduced, see, e.g., [59]. For instance, the flexible Krylov-subspace framework
enables theoretically sound implementations of inner-outer Krylov-subspace methods
[51], [56].

Freezing the preconditioner or using simple preconditioning techniques may not be
enough for fast convergence in practice. Our contribution proposes new and efficient
approximate updates of a preconditioner which is factorized as LDU ≈ A. The
updated preconditioners are then used for solving the subsequent members of the
sequence. We do not assume any simple relation among the systems of the sequence.
Note that straightforward approximate small rank preconditioner updates can be
obtained in case of a sequence of linear systems from a quasi-Newton method, as shown
in the SPD case in [45], [8]. It is well-known how to compute the exact updates of
sparse decompositions [19], [20], [21]; the techniques for dense updates starting in early
papers, e.g., [28], and having mostly the intent to be applied to the simplex method of
linear programming and its extensions, are a classical part of numerical mathematics.
Another algebraically-motivated strategy used in preconditioning sequences of systems
is to use adaptive information generated by Krylov subspace methods [2]. Recent work
on recycling explicit information from Krylov subspaces can be found in [42], [48].

In this paper we directly generalize the approximate diagonal updates which are
useful for solving the parabolic PDEs proposed in [3], see also [9]. This generalization
consists in modifying general offdiagonal entries. Our numerical experiments show
that the generalizations are competitive with recomputing the factorized nonsym-
metric preconditioners in terms of achieving similar convergence rates for subsequent
systems. Moreover, forming the updates can be significantly cheaper than recomput-
ing the preconditioner. As far as we know, there are no theoretical or experimental
results in this direction. We give a couple of theoretical explanations for the good
performance of the updates and discuss some unexpected effects which help to im-
prove the convergence, and, as far as we know, have not been communicated before.
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The strategy which we use forms the updated preconditioner from two separate lay-
ers: entries of the original factorized preconditioner and scaled entries of the matrix
update. For the sake of quality and efficiency we typically need to exploit only a part
of the update. This part may result from a Gauss-Seidel type of splitting, or it may
be found in a more sophisticated way. In this paper we treat both cases.

The paper is organized as follows. In Section 2 we present a brief introduction into
preconditioner updates and motivate the basic form of our updated factorizations. In
Section 3 we describe the new techniques for approximate updating. The results of
numerical experiments with the new algorithms are presented and discussed in Section
4. Directions for current and future research are given in Conclusions. Throughout
the paper, ‖ · ‖ denotes an arbitrary matrix norm.

2. The ideal updated preconditioner. Some of the strategies to update pre-
conditioners that we mentioned in the introduction are linked with specific classes of
linear solvers (e.g. recycling Krylov subspaces) and nonlinear solvers (e.g. Broyden-
type methods) or they were designed for symmetric matrices. In this paper we wish
to consider sequences of general, nonsymmetric systems that are solved by precondi-
tioned iterative methods. We address here the following problems: First, how can we
update, in theory, a preconditioner in such a way that the updated preconditioner is
likely to be as powerful as the original one? And second, how can we approximate,
in practice, such an update in order to obtain a preconditioner that is inexpensive to
apply and yet useful?

In order to simplify the notation, we consider two linear systems of dimension n
denoted by Ax = b and A+x+ = b+. Denote the difference matrix A−A+ by B and
let M be a preconditioner approximating A. Some information about the quality of
the preconditioner M can be taken from a norm of the matrix

A−M(2.1)

or from some norm of the matrix

I −M−1A or I −AM−1(2.2)

if we consider preconditioning from the left or right, respectively (see, e.g. [3]). If
preconditioners are in factorized form, both (2.1) and (2.2) should be considered in
practice since the preconditioners can suffer from two types of deteriorations. While
the norm of the matrix (2.1) expresses accuracy of the preconditioner, the norms of
the matrices (2.2) relate to its stability [15], see also [5]. We will define updated
preconditioners M+ for A+ whose accuracy and stability are close to the accuracy
and stability of M for A. For their derivation we concentrate on the norm of the
matrix (2.1) because of its simplicity. Later in this section we present theoretical
results demonstrating that both accuracy and stability of the derived updates are
comparable to or even better than those of M for A.

We immediately obtain

‖A−M‖ = ‖A+ − (M −B)‖.
Hence M+ ≡ M −B represents an updated preconditioner for A+ of the same “level”
of accuracy as M represents for A. We will call it the ideal updated preconditioner.
Note that there may very well exist different preconditioners that are ideal with respect
to a norm of A+ −M+. Just consider M+ = M − C for some matrix C 6= B with

‖A−M‖ = ‖A+ −M+‖ = ‖A+ −M + C‖.
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Because B is often readily available, we will concentrate on M+ = M −B.
If we want to use M+ as a preconditioner, we need to multiply vectors with its

inverse in every iteration of the linear solver. In some problems, the difference matrix
B is such that (M − B)−1 can be obtained from M−1 with low costs. For instance
if B has small rank, M+ can be easily inverted using the Sherman-Morrison formula,
see e.g. [45, 8]. In general, however, the ideal updated preconditioner cannot be used
since multiplication of vectors with (M −B)−1 is expensive. Instead, we will consider
cheap approximations of (M −B)−1.

In this paper we will assume that M is given in the form of a triangular decompo-
sition as M = LDU ≈ A, where L and U have unit main diagonal. The approximate
updates of factorized preconditioners which we will describe below typically assume
that the matrices have a strong diagonal. Note that this assumption is very simi-
lar to theoretical assumptions which are generally required to get simple incomplete
factorizations without a breakdown. For example, standard ILU(0) and AINV pre-
conditioners are proved to be breakdown-free if the system matrix is an H-matrix [44],
[6]. In order to extend the breakdown-free property to more general matrices we need
to change the decomposition by modifications which make the diagonal stronger, e.g.,
by a preliminary shift [44], [41], see also [35], [1], or by global modification of the
decomposition [57], [37], [4]. The transfer from diagonal dominance of the matrix to
diagonal dominance of the factors is discussed, for example, in [7], cf. also [3], or in
the practical reordering strategies based on strong transversals [47], [22], [23]. In the
following we tacitly assume matrices are given in such form that the factors L and U
more or less approximate the identity matrix.

If M−B is invertible, we can approximate its inverse by a product of more factors
which are easier to invert. For example, we can replace (M − B)−1 by a product of
inverses of triangular matrices and by an inverse of a difference of matrices where a
diagonal matrix is used instead of M , as in

(M −B)−1 = U−1(D − L−1BU−1)−1L−1 ≈ U−1(D −B)−1L−1,(2.3)

provided D − B is nonsingular. Now assume D −B is a nonsingular approximation
of D − B that can be inverted inexpensively. Then we can define a preconditioner
M+ via the last expression in (2.3) as

M+ = L(D −B)U.(2.4)

In the symmetric case, this preconditioner changes to M+ = L(D −B)LT , hence
symmetry is preserved if we choose D −B appropriately. Here we are primarily
interested in the nonsymmetric case, and in this case we can further simplify the
update. For example, we can approximate as

(M −B)−1 = (DU − L−1B)−1L−1 ≈ (DU −B)−1L−1,(2.5)

if DU − B is nonsingular. If DU −B denotes a nonsingular and easily invertible
approximation of DU −B, then we define M+ by

M+ = L(DU −B).(2.6)

In comparison with (2.4), it seems to be much easier to deal only with two factors.
An analogue of (2.5) is approximation through

(M −B)−1 = U−1(LD −BU−1)−1 ≈ U−1(LD −B)−1.(2.7)
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In our experiments we choose between approximation with (2.5) or (2.7) adaptively
(we explain this later on). We describe our theoretical results for the case (2.5) only.

A first question is whether the update (2.6) has the potential to be more powerful
than the frozen preconditioner M = LDU for A+. In the following simple lemma we
express the relation of frozen and updated preconditioner quantitatively.

Lemma 2.1. Let ||A − LDU || = ε||A|| < ||B||. Then the preconditioner from
(2.6) satisfies

||A+ −M+|| ≤ ||L(DU −DU −B)−B||+ ε||A||
||B|| − ε||A|| · ||A+ − LDU ||

≤ ‖L‖ ‖DU −B −DU −B‖+ ||L− I|| ‖B‖+ ε||A||
||B|| − ε||A|| · ||A+ − LDU ||.

Proof. We get directly

||A+ −M+|| = ||A−B − L(DU −B)|| = ||(A− LDU) + L(DU −DU −B)−B||
≤ (

ε||A||+ ||L(DU −DU −B)−B||) ||B|| − ε||A||
||B|| − ε||A||

≤ (
ε||A||+ ||L(DU −DU −B)−B||) ||(A− LDU)−B||

||B|| − ε||A||

≤ ||A+ − LDU || ||L(DU −DU −B)−B||+ ε||A||
||B|| − ε||A||

= ||A+ − LDU || ||L(DU −DU −B −B) + (L− I)B||+ ε||A||
||B|| − ε||A||

≤ ||A+ − LDU || ‖L‖ ‖DU −B −DU −B‖+ ||L− I|| ‖B‖+ ε||A||
||B|| − ε||A|| .

The multipliers of ||A+ −LDU || in Lemma 2.1 can be smaller than one if DU −B is
close to DU − B and if ||L − I|| tends to be small. In practice, taking into account
preconditioner modifications to improve diagonal dominance, this is often realistic.
Note that the assumption ||A−LDU || = ε||A|| < ||B|| is satisfied as soon as we have
a strong preconditioner M = LDU .

The lemma states, apart from showing a relation to the frozen preconditioner,
that for ε||A|| small enough a good approximation to DU −B combined with a close
to diagonal factor L yields an accurate preconditioner which may be as powerful as
a recomputed preconditioner. If we have a recomputed preconditioner MR with say
‖A+−MR‖ = δ = ‖A−M‖, then based on (2.5) we expect ‖A+−M+‖ ≥ δ. But the
previous lemma shows ‖A+ −M+‖ < δ is not at all excluded. In Section 4 we will
show experimentally that the update (2.6) in some cases gives a higher convergence
rate than if the preconditioner is recomputed.

The following theorem shows in a different way that, under the given assumptions,
the quality of the update may be better than that of recomputed preconditioners if
the approximation DU −B is favorably chosen. Since Lemma 2.1 is related to the
accuracy according to (2.1), the theorem considers its quality with respect to (2.2).
The result is a straightforward generalization of a result from [9]. To simplify the
description, the scaled updated approximate factor D−1(DU −B) will be denoted by
U −D−1B, and U−1(U −D−1B) will be denoted by I − U−1D−1B.
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Theorem 2.2. Assume that LDU + E = A for some error matrix E and let
‖U−1D−1B‖2 ≤ 1/c < 1 where ‖ · ‖2 denotes the Euclidean norm. Further assume
that the singular values σi of

(I − L)B + L
(
DU −B − (DU + L−1E −B)

)

satisfy

σ1 ≥ σ2 ≥ . . . ≥ σt ≥ δ ≥ σt+1 ≥ . . . ≥ σn.

for some integer t, t ¿ n, and some small δ > 0. Let (DU −B) have nonzero main
diagonal, and D = diag(d1, . . . , dn). Then there exist matrices F and ∆ such that

(DU −B)−1L−1A+ = I + ∆ + F,(2.8)

with rank(∆) ≤ t and

‖F‖2 ≤ c

c− 1
max

i

δ

|di| ‖L
−1‖2‖U−1‖2.

Proof. We have

L(DU −B)−A+ = L(DU + L−1E −B + DU −B − (DU + L−1E −B))−A+

= (I − L)B + L
(
DU −B − (DU + L−1E −B)

)
.

By assumption, the SVD of the latter matrix can be written as

(I − L)B + L
(
DU −B − (DU + L−1E −B)

)
= WΣV T =

Wdiag(σ1, . . . , σt, 0, . . . , 0)V T + Wdiag(0, . . . , 0, σt+1, . . . , σn)V T ≡ ∆1 + F1,

where rank(∆1) ≤ t and ‖F1‖2 ≤ δ. Hence

L(DU −B)−A+ = ∆1 + F1

and

(DU −B)−1L−1A+ = I − (DU −B)−1L−1∆1 − (DU −B)−1L−1F1.

By setting

F ≡ −(DU −B)−1L−1F1, ∆ ≡ −(DU −B)−1L−1∆1,

we get (2.8), where rank(∆) ≤ t. The matrix F can be bounded by

‖F‖2 ≤ ‖L−1‖2
∥∥∥∥
(
D(U −D−1B)

)−1
∥∥∥∥

2

δ,

hence

‖F‖2 ≤ max
i

δ

|di| ‖L
−1‖2‖(U −D−1B)−1‖2

≤ max
i

δ

|di| ‖L
−1‖2‖U−1‖2‖(I − U−1D−1B)−1‖2.
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By assumption, ‖U−1D−1B‖2 ≤ 1/c < 1, and consequently

‖F‖2 ≤ max
i

δ

|di| ‖L
−1‖2‖U−1‖2

(
1− ‖U−1D−1B‖2

)−1

≤ c

c− 1
max

i

δ

|di| ‖L
−1‖2‖U−1‖2.

Note that if the matrix F in (2.8) is zero, then the preconditioned system is a rank
t update of the identity and Krylov subspace methods converge, in exact arithmetics,
in at most t + 1 iterations.

In the following section we propose approximations DU −B of DU − B that
can be efficiently computed and that lead to preconditioners that are inexpensive to
apply. All techniques we present can be analogously formulated for updates of the
form (LD −B)U corresponding to (2.7).

3. Approximate preconditioner updates. We propose the following strate-
gies to approximate DU −B by an easily invertible matrix (DU −B). A first obvious
but effective strategy is to set DU −B ≡ triu(DU −B), where triu denotes the pos-
sibly sparsified upper triangular part (including the main diagonal). This results in
the preconditioner

M+ = L(DU − triu(B)),(3.1)

which can be obtained entirely for free. The additional cost for applying this pre-
conditioner is one triangular sweep with the triangular part of B, if we store B and
U separately. We may also merge them; then the additional sweep can be virtually
for free if the sparsity patterns of triu(B) and U are close enough. We will call the
update constructed by considering entries from one triangular part only the structured
update. A trivial structured sparsification is given by

DU −B ≡ diag(DU −B),

which is a straightforward application of an approach from [3] to nonsymmetric prob-
lems.

As we show in the experiments, the simple update (3.1) and its analogue

M+ = (LD − tril(B))U(3.2)

seem to be powerful in many problems. One expects them to be particularly suited
when one triangular part of B clearly dominates the other. The typical situation of
that kind arises when matrices come from upwind/downwind discretization schemes.
Nevertheless, as they take into account only one triangular part of the difference
matrix B, there may be applications where important information is lost, leading to
weak convergence. In the following we present a technique to replace DU −B by an
easily invertible matrix which is in general not triangular.

Denote the matrices diag(DU −B) by D̃, and D̃−1(D̃ −DU −B) by B̃, respec-
tively. Then B̃ has zero diagonal and we can write

DU −B = D̃(I − B̃).(3.3)

To motivate the scaling transformation in (3.3) consider for a moment the case when
B̃ = βeie

T
j , for some 1 ≤ i, j ≤ n, i 6= j, and recall we assume DU −B is nonsingular,
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hence so is I − B̃. Then we get, with the Sherman-Morisson formula,

(I − B̃)−1 = I + βeie
T
j /(1− βeT

j ei) = I + βeie
T
j = I + B̃.(3.4)

The matrix in (3.4) is equal to the identity modified by an off-diagonal entry β at the
position (i, j). That is, (I − B̃) is a special Gauss-Jordan transformation [29], it is
inverted without costs and it has a fill-in free inverse.

Based on this well-known fact, in the following we will try to find unstructured
approximations DU −B of DU −B such that the scaled matrix I− B̃ can be written
as a product of Gauss-Jordan transformations

(I − ei1 b̃i1∗)(I − ei2 b̃i2∗) . . . (I − eiK
b̃iK∗), K ≤ n− 1,(3.5)

where B̃ = (b̃)ij . Denote the sparsity structure of a row i of B̃ (with zero diagonal)
by row(i), that is, row(i) = {k|i 6= k ∧ b̃ik 6= 0}. The multiplication (I − B̃)−1v for a
given vector v is very cheap, as stated in Observation 3.1.

Observation 3.1. The number of operations for multiplying a vector by a matrix
of the form (3.5) or its inverse is at most 2

∑K
j=1 |row(ij)|.

It is well known that any unit upper triangular matrix I − B̃ from (3.3) can be
trivially written as the product Rn−1 . . . R1 of n − 1 elementary triangular matrices
Ri = I − eib̃i∗ for i = 1, . . . , n − 1. Hence using (3.1) may be considered a special
case of (3.5). The following theorem shows a necessary and sufficient condition for
the existence of a decomposition of I − B̃ of the form (3.5).

Theorem 3.1. Let I − B̃ = I −∑
jl:l=1,...,K ejl

b̃jl∗. Then

I − B̃ = (I − ei1 b̃i1∗)(I − ei2 b̃i2∗) . . . (I − eiK b̃iK∗)(3.6)

if and only if

il 6∈
l−1⋃

k=1

row(ik) for 2 ≤ l ≤ K(3.7)

for all i1, . . . , iK such that {j1, . . . , jK} = {i1, . . . , iK}.
Proof. The equivalence of (3.6) and (3.7) follows from the orthogonality of the

unit vector eil
with respect to all b̃ik∗ for k < l, 1 ≤ l ≤ K.

Based on Theorem 3.1 we first propose a greedy procedure to find a suitable
approximation DU −B with I − B̃ satisfying (3.6). Consider a sequential choice of
indices i1, . . . , iK , where K ≤ n− 1 are determined by the algorithm. In each step we
keep and update a set of candidate rows R initialized by {1, . . . , n}. After choosing a
row i we remove from R all the rows j ∈ R for which b̃ij 6= 0.

Algorithm 3.1. Algorithm to approximate DU − B by a matrix which, scaled
by its diagonal, can be written in the form (3.6).

(1) set R = {1, . . . , n}, K = 0
(2) for k = 1, . . . , n do
(3) set row(k) = {i|i 6= k ∧ |(DU −B)ki| 6= 0}
(4) set pk =

∑
j∈row(k) |(DU −B)kj |

(5) end for
(6) while R 6= 0 do
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(7) choose a row i ∈ R maximizing pi −
∑

j∈R∩row(i) pj

(8) set K = K + 1, iK = i, R = R\{row(iK) ∪ i}
(9) end while

The row indices i1, . . . , iK provided by Algorithm 3.1 then determine the approx-
imation in (3.3) with I − B̃ equal to the product (3.5). The heuristic criterion in step
(7) aims on the one hand to choose the row of DU − B with largest entries. On the
other hand it stimulates the choice of a row which results, based on condition (3.7), in
removal of candidate rows with small entries. To balance between the two heuristics
one may want to introduce a weighting parameter ω and use

(7 ′) choose a row i ∈ R maximizing pi − ω ·∑j∈R∩row(i) pj .

Clearly, the algorithm may find more factors of (3.6) if there are less nonzero
entries in the searched rows. Therefore it may be reasonable to perform some dropping
strategy on-the-fly when running the algorithm by substituting step (3) with

(3 ′) set row(k) = {i|i 6= k ∧ |(DU −B)ki| > tol}
for a predefined drop-tolerance tol. Apart from tolerance-based dropping, sparsifica-
tion based on the given mask may enhance the effectiveness of our strategy. Note that
sparsification not only helps in covering as much rows as possible by Gauss-Jordan
transformations, but it also leads to less expensive matvecs with the inverse of (3.5).

A more elegant and systematic way to get an unstructured update based on Gauss-
Jordan transformations can be described by the following bipartite graph model.
Let us define the bipartite graph of (DU − B) as G(DU − B) = (R, C, E), where
R = {1, . . . , n}, C = {1′, . . . , n′} and E = {(i, j′)|(DU − B)ij 6= 0}. Then we have
the following result.

Theorem 3.2. Consider a spanning forest T = (VT , ET ) of G(DU − B) such
that {(i, i′)|1 ≤ i ≤ n} ⊆ ET . Then the matrix DU −B ∈ IRn×n with the entries
defined by

(DU −B)ij =
{

(DU −B)ij if (i, j′) ∈ ET

0 otherwise ,

scaled by its diagonal entries as in (3.3), can be expressed as a product of the form
(3.5).

Proof. First consider the case when the spanning forest T is not connected. Com-
ponents of T induce a block diagonal splitting of DU −B, and matrices corresponding
to individual blocks can be mutually multiplied in any order without causing any fill-
in. Consequently, we can assume without loss of generality that T is connected and
that T is a spanning tree. In the following we will show how to form the sequence of
Gauss-Jordan transformations from the left to the right.

Our assumption implies that T contains at most n − 1 edges (i, j′) with i 6= j.
There exists a free row vertex i ∈ R in T which is in T incident only to the edge (i, i′)
such that there is an edge (k, i′) ∈ ET for some k. Set i1 = i. Then remove from T
the vertices i ∈ R, i′ ∈ C and all edges incident to them. Clearly, the updated tree
T contains a free row vertex again. By repeating the choice of free row vertices and
updates T in this way we get the sequence i1, . . . , in−1. If we rewrite as I − B̃ the
matrix DU −B scaled by its diagonal we have I−B̃ = (I−ei1 b̃i1∗)(I−ei2 b̃i2∗) . . . (I−
ein−1 b̃in−1∗) which proves the theorem.
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Theorem 3.2 implies the following algorithmic strategy to find a matrix DU −B
which would approximate DU − B and could be expressed as a product of Gauss-
Jordan transformations.

Algorithm 3.2. Algorithm to find DU −B such that (3.6) is satisfied based on
a bipartite graph of DU −B.
(1) Find a spanning forest T = (VT , ET ) of G(DU −B) of maximum weight with

edge weights wij = |(DU−B)ij | for (i, j′) ∈ ET such that {(i, i′)|1 ≤ i ≤ n} ⊆ ET .
(2) Find the entries of B̃ (and corresponding entries of DU −B) as well as a feasible

ordering of Gauss-Jordan factors for i1, . . . , in−1 in (3.5) with Theorem 3.2.
(3) For each k = 2, . . . , n add to DU −B all entries (DU −B)ikl of DU −B such

that l ∈ {i1, . . . , ik−1}.
Note that in the last step of Algorithm 3.2 we possibly put into DU −B much more
nonzero entries than the 2n − 1 entries provided by the weighted spanning forest.
This is possible because of Theorem 3.1. The complexity of the weighted minimum
spanning forest (here we need, in fact, a weighted maximum forest) is O(m log m) for
the Kruskal algorithm [31] and O(n + m log m) for the Prim algorithm [50], where
m is the number of edges in the graph G. Note, in addition, that we start with the
partial spanning tree with the set of edges {(i, i′)|1 ≤ i ≤ n}. While in some cases the
algorithms may seem time consuming, this procedure can provide useful updates. As
in Algorithm 3.1, we can sparsify DU −B by discarding entries smaller than a certain
drop tolerance tol, which reduces the value of m and therefore also computational
complexity.

From Lemma 2.1 it is clear that the quality of the approximation of DU −B may
play a decisive role in the power of the preconditioner M+ = L(DU −B). In practice,
the way that the original incomplete decomposition is constructed (scaling L during
the construction, pivoting) can strongly support the quality of DU −B. In order
to use the most powerful type of update, in our experiments we switch adaptively
between (3.1) and (3.2) based on the weighting of both triangular parts of B and
use an unstructured update based on Algorithm 3.1 or 3.2 if its weighting is the most
important. More precisely, we compute sums of magnitudes of entries in the triangular
parts of the matrices and simulate runs of Algorithm 3.1 and Algorithm 3.2 to get
the sum of magnitudes of entries covered by the unstructured update. We then use
the strategy which corresponds to the maximum value among these sums.

It can happen and it often happens that in spite of the fact that the updated
preconditioner loses some information about the system matrix it yields a better con-
vergence rate than if the preconditioner would be recomputed from the scratch. There
are several possible explanations for this phenomenon. First, note that we showed the-
oretically in Lemma 2.1 and Theorem 2.2 that our updated preconditioners have the
potential to be stronger than recomputed factorizations. In practice, it frequently
happens that by updating the preconditioner we relate it to a previous decomposition
which is more diagonally dominant than a recomputed decomposition. A part of the
stable triangular factors is inherited and the update may even stabilize less stable
factors of the initial factorization. Note that a modified old decomposition might be
useful in general, but, e.g. in the related strategy [44], the size of the modification
should be typically rather small to get a useful preconditioned iterative method. This
is exactly what happens when modifying with entries of difference matrices B that
are typically small compared to those of A(i). In addition, updates appear to perform
better also in cases where there is no instability. We presume this is so because the
preconditioner may be favorably modified by the additional structural information
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given by the update. To our knowledge, this conjecture is stated for the first time.
An overlooked fact is that the most powerful dual-threshold incomplete decomposi-
tions and inverse decompositions can be very memory-efficient, but they may discard
the structure of the problem. Our updates can add to a memory-efficient decomposi-
tion cheap and useful information about the structure as seems to be clear from our
experiments. We believe that such a strategy might be used to improve constructing
general preconditioners in some cases. We might consider the update as a simple
and efficient way to modify off-diagonal entries of the preconditioner, getting thus
a generalization of diagonal modifications from [44] or forced diagonal modifications
introduced in [35]. It is not unusual that level-based incomplete decompositions are
much better than their sophisticated counterparts. Such a behavior has been observed
on some VENKAT matrices from the Harwell-Boeing collection, where powerful and
compact ILUT [52] preconditioners are less efficient than often very dense but rea-
sonably structured ILU preconditioners using the concept of levels [61], [30].

The next section is devoted to numerical experiments with the most promising
updates introduced in the paper.

4. Numerical experiments. In this section we present results of numerical
experiments with preconditioned Krylov subspace methods for solving sequences of
systems of linear algebraic equations, where updated preconditioners are compared
with recomputed and frozen preconditioners. We consider the sequences in three
application problems. The first and second problem were generated with the opti-
mization software UFO [43]. The last application is based on [10]. Software for the
problem was kindly provided by Philipp Birken. We present results with several kinds
of incomplete LU-preconditioners to show that the introduced techniques are quite
general. In order to show a larger spectrum of various results, some of the computa-
tions were done in Matlab using its incomplete ILU decomposition script. We used
Matlab version 7.0. Most of the tests, in particular for larger problems, were per-
formed with preconditioners and the updates written in Fortran 90, and compiled by
Compaq Visual Fortran 6.6a. The codes were run on a computer with Intel Pentium
4, 3GHz processor, 1GB RAM memory, 512k L2 cache.

As an accelerator, the BiCGSTAB [58] iterative method with right precondition-
ing was used. We also performed some experiments with the restarted GMRES [53]
method and the transpose-free QMR [26] method. The results were similar and we
do not report on them here. Iterations were stopped when the Euclidean norm of
the residual was decreased by seven orders of magnitude. Nevertheless, in our experi-
ments we observed close to linear behavior of convergence curves of the preconditioned
iterative method. Therefore, we expect qualitatively the same results for weaker or
nonuniform stopping criteria used in nonlinear solvers.

Our first test problem is a two-dimensional nonlinear convection-diffusion model
problem which we use to illustrate various aspects of the proposed strategies (general
behavior of the strategies, choice of parameters, values of the bounds in Lemma 2.1).
It has the form (see, e.g. [33])

−∆u + Ru

(
∂u

∂x
+

∂u

∂y

)
= 2000x(1− x)y(1− y),(4.1)

on the unit square, discretized by 5-point finite differences on a uniform 70× 70 grid.
The initial approximation is the discretization of u0(x, y) = 0. We choose the modest
Reynolds number R = 50 in order to avoid potential discretization problems which
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may ask for adding stabilization terms. We obtain a small sequence of 7 matrices
with 24220 nonzeros each (in the tables we denote the number of nonzeros by nnz).

Our update techniques are particularly beneficial when recomputing precondi-
tioners is expensive. We start with a typical example given by the so-called ILU(0)
incomplete decomposition which has the same sparsity pattern as the matrix it pre-
conditions. This has the obvious advantage that it enables straightforward a priori
allocation but its computation may be time-consuming. In Table 1 we display the
total time to solve the whole sequence and the numbers of BiCGSTAB iterations
needed to solve the individual linear systems for several preconditioning strategies.
In the first of them, denoted by ‘Recomp’, the ILU(0) preconditioner was computed
for each matrix separately. The strategy ‘Freeze’ used a fixed preconditioner. The
strategy denoted by ‘Str’ used structured updates, ’Unstr. GJ’ stays for unstructured
updates based on Gauss-Jordan transformations obtained from Algorithm 3.1 and
’Unstr. Kr.’ for those obtained from Algorithm 3.2, where the spanning tree is com-
puted with Kruskal algorithm. We see that the recomputed ILU(0)-decompositions
yield powerful preconditioners for our problem but they are rather slowly computed
in Matlab. Freezing the initial ILU(0)-decomposition avoids these slow computations
and although it yields much higher numbers of BiCGSTAB iterations, the overall
time to solve the sequence is shorter. Excellent behavior of the structured updates is
demonstrated by this table. Here the triangular parts were chosen adaptively based
on the magnitudes of their entries. While iteration numbers are nearly as low as with
recomputation, significant time savings are achieved by avoiding the recomputation
of preconditioners. The iteration counts for unstructured updates from Algorithm 3.1
are a little higher than for structured updates but they are clearly lower than with
the frozen preconditioner. Unstructured updates from Algorithm 3.2 yield iteration
numbers comparable to those of structured updates.

Of course, running Algorithm 3.1 or Algorithm 3.2 to compute the unstructured
updates adds a time penalty. However, the timings displayed in Table 1 are pessimistic
because they include solution with non-triangular factors of the form (3.5), which
cannot compete with the highly optimized implementation of back- and forward solves
in Matlab. The complexity of Algorithm 3.1 or Algorithm 3.2 alone is not very high
for sparse matrices since it is linear in the number of matrix nonzeros. In this context,
note that using a drop tolerance in Algorithm 3.1 and Algorithm 3.2 has an influence
on the number of nonzeros and hence also on computational time. We computed the
unstructured updates with tol = 0.3 in Algorithm 3.1 and Algorithm 3.2. In practice
this parameter should be chosen according to the following considerations for the
individual algorithms.

In Algorithm 3.2 we first construct a maximum spanning forrest of at most 2n−1
entries. Hence we need a value of tol selecting the 2n − 1 largest entries and as few
other entries as necessary to be able to build the spanning forrest. We could have
optimized the choice of tol according to this rationale, leading to tol = 0.35 and an
overall time of 10.5 seconds. For Algorithm 3.1 the situation is quite different. Here,
an interesting fact is that if we significantly overestimate the parameter then the
unstructured update may be very sparse since a smaller number of nonzeros can be
covered by Gauss-Jordan transforms. If we underestimate it then the update may be
very sparse as well since we get only a small number of factors in the unstructured
update of the form (3.1). In our case we did not optimize its choice but a value
tol = 0.1− 0.4 for a reasonably scaled system matrix in order to keep only a few, say
up to k nonzeros in a row, and thus to cover by the unstructured update approximately
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Table 1
Nonlinear convection-diffusion model problem with R=50, n=4900, nnz=24220, ILU(0).

ILU(0), psize ≈ 24000
Matrix Recomp Freeze Str. Unstr. GJ Unstr. Kr.
A(0) 40 40 40 40 40
A(1) 29 36 32 39 30
A(2) 21 39 27 34 30
A(3) 20 48 26 33 24
A(4) 17 55 26 31 26
A(5) 16 58 29 29 30
A(6) 15 50 22 24 26
A(7) 15 62 26 28 29
A(8) 17 68 28 30 31
A(9) 15 71 27 28 28
A(10) 15 51 24 29 28

overall time 11 s 7.5 s 5 s 8.5 s 12.5 s

k · n offdiagonal entries, is fine. This type of behavior is different from what we can
sometimes observe in the field of algebraic preconditioners. As for the choice of ω in
Algorithm 3.1, its value does not seem to have a crucial influence on the performance of
the update either. In Figure 4.1 we display the total number of BiCGSTAB iterations
needed to solve the whole sequence for different values of ω. Only for values smaller
than 0.5, criterion (7 ′) of Algorithm 3.1 starts to overemphasize the weight of the
chosen candidate row, resulting in bad approximations of DU − B. In the other
experiments presented here, we always used the choice ω = 1.

In Table 2 the accuracies ‖A(i) − M+‖ (in the Frobenius norm) of the precon-
ditioners M+ for the individual strategies are displayed. For this sequence, where
stability of the preconditioners is not an issue, the accuracies nicely correspond to the
numbers of BiCGSTAB iterations. We also present some information about the qual-
ity of the approximations DU −B. Table 3 contains the values of the approximations
‖DU − B − DU −B‖ in the Frobenius norm for the considered update techniques.
Also these values correspond to the numbers of BiCGSTAB iterations.

In Table 4 we take a closer look at the various update techniques we introduced.
Whereas Table 1 suggests that structured updates provide more efficient precondi-
tioners than unstructured updates, this is not apparent from Table 4. Here we use
as initial preconditioner the ILU-factorization implemented in Matlab with drop tol-
erance 0.01. The tolerance in Algorithms 3.1 and 3.2 for unstructured updates is
0.3. Clearly, unstructured updates are more powerful than structured updates with
this kind of initial factorization. This is caused by the fact that the approximations
DU −B in (2.6) cover more large entries when we use unstructured updates. In the
following we quantify this property for a difference matrix B from the middle of the
sequence, B = A(0)−A(4). For other difference matrices from the sequence we would
obtain similar numbers. With B = A(0) −A(4), nonzero entries in DU −B are quite
evenly distributed over both triangular parts. We have ‖striu(DU − B)‖ ≈ 80 and
‖stril(DU − B)‖ ≈ 38 in the Frobenius norm. Here stril(·) and striu(·) denotes the
strict lower and upper triangular matrix part, respectively. Hence the upper triangular
part is dominating, but important entries may be found in the lower part too and they
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Fig. 4.1. Nonlinear convection-diffusion model problem: Iteration counts for Unstr. GJ in
dependency of ω.

Table 2
Nonlinear convection-diffusion model problem, accuracies ‖A(i) −M+‖

ILU(0), psize ≈ 24000
Matrix Recomp Freeze Str. Unstr. GJ Unstr. Kr.
A(0) 28.5 28.5 28.5 28.5 28.5
A(1) 27.8 34.6 29.2 50.2 37.3
A(2) 26.8 42.3 41.7 51.0 42.1
A(3) 25.5 51.0 48.5 55.8 48.9
A(4) 24.1 60.4 55.8 64.0 56.5
A(5) 23.6 63.5 58.3 63.9 59.1
A(6) 23.1 66.6 60.6 64.9 61.6
A(7) 23.1 66.6 60.6 64.9 61.5
A(8) 23.1 66.5 60.6 64.9 61.5
A(9) 23.1 66.5 60.6 64.9 61.5
A(10) 23.1 66.5 60.6 64.9 61.5

are lost with structured updates. The unstructured updates take into account both
triangular parts. This is reflected by the Frobenius norms ‖striu(DU −B)‖ ≈ 70 and
‖stril(DU −B)‖ ≈ 16 for the approximation DU −B from Algorithm 3.1. With Al-
gorithm 3.2 we obtain ‖striu(DU −B)‖ ≈ 58 and ‖stril(DU −B)‖ ≈ 32. Note that
Algorithm 3.2 yields more nonzeros, which is explained by step (3) of the algorithm.
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Table 3
Nonlinear convection-diffusion model problem, approximation qualities ‖DU −B −DU −B‖.

ILU(0), psize ≈ 632000
Matrix Str. Unstr. GJ Unstr. Kr.
A(1) 13.89 37.01 18.19
A(2) 22.1 36 22.7
A(3) 29.78 40.1 30.34
A(4) 37.46 48.32 38.47
A(5) 39.92 47.39 41.2
A(6) 42.29 47.91 43.69
A(7) 42.27 47.9 43.66
A(8) 42.23 47.86 43.62
A(9) 42.23 47.86 43.63
A(10) 42.23 47.86 43.63

Table 4
Nonlinear convection-diffusion model problem with R=50, n=4900, nnz=24220, ILU(0.01).

ILU(10−2), psize ≈ 52000
Matrix Freeze Unstr GJ Struct Unstr. Kr.
A(0) 17 17 17 17
A(1) 34 57 21 48
A(2) 49 43 24 36
A(3) 77 39 34 33
A(4) 102 36 54 29
A(5) 140 37 69 28
A(6) 142 30 76 25
A(7) 154 35 77 28
A(8) 144 36 91 33
A(9) 152 35 91 29
A(10) 123 31 90 28

overall time 14.5 s 7.5 s 9 s 9 s

In this context, also note that the number of nonzeros of the initial factorization and
structured updates is about 52000 whereas unstructured updates have smaller num-
bers of nonzeros, about 39000–46000, which makes application of the unstructured
updated preconditioner less expensive. This is one of the reasons why the unstruc-
tured updates are competitive even with respect to timing with structured ones, in
spite of the time penalty to run Algorithm 3.1 or 3.2. The other reason is, of course,
lower BiCGSTAB iteration numbers.

In situations as in Table 1, recomputing preconditioners is outperformed by our
updates because of the high expenses of recomputing. When on the other hand, re-
computation is straightforward, updates need not be more effective. An example is
given in Table 5 with as initial preconditioner the dual-threshold ILUT(0.1,5) de-
composition, implemented in Fortran 90. The number of nonzeros in the incomplete
LU decomposition is about 38000 (slightly differing for different matrices). Here the
time spent for recomputation is very small due to the simple discretization stencil
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Table 5
Nonlinear convection-diffusion model problem with R=50, n=4900, nnz=24220, ILUT(0.1, 5).

ILUT(0.1,5), timep≈ 0.01, psize ≈ 38000
Matrix Recomp Freeze Struct. update
A(0) 25 25 25
A(1) 25 33 26
A(2) 23 47 27
A(3) 19 58 27
A(4) 18 83 27
A(5) 17 88 28
A(6) 16 119 28
A(7) 16 114 27
A(8) 17 107 27
A(9) 17 111 28
A(10) 17 123 27

overall time 0.20 s 0.78 s 0.25 s

and by far the most time is spent while solving with BiCGSTAB. Still, concerning
iteration counts, the (adaptively chosen) structured updates perform only little worse
than recomputation. Note that there is a strong overlap between the location of the
nonzeros in B and in the preconditioner, but as above, we did not merge the trian-
gular parts of the updated preconditioner. Table 6 shows similar behavior for a much
larger problem with ILUT(0.1,3) as initial decomposition. Here we discretized (4.1)
on a 282 × 282 grid, the matrices have dimension 79524. While evaluating Tables 5
and 6, it is important to realize that the timings may provide here only partial in-
formation. In case of matrix-free implementation we typically need to estimate the
matrices first using, for example, graph coloring techniques [18], [27]. Our matrices
have five diagonals and this implies that they can be estimated by at most 7 matvecs.
Namely, the number of matvecs corresponds to the number of colors needed to color
the undirected graph of AT A, the so-called intersection graph. Computing some of
the standard preconditioners both directly and efficiently based on matvecs is a state-
of-the-art challenging problem and can be very time-consuming. When using updates
in matrix-free environment, only part of the difference matrix needs to be estimated.
In our cases the needed part of the difference matrix was always available from at most
three matvecs, because the intersection graph of the (possibly permuted) triangular
part of the matrix could be colored by only three colors.

In addition to the experiments presented here we performed also some experi-
ments where the nonlinear problems were discretized by upwind schemes, leading to
triangular difference matrices. As one can guess from the pattern, the results for
solving the linear problems were rather good, but we typically needed more nonlinear
iterations. Consequently, discretization by central differences was preferable.

Our second test problem is a smaller but rather difficult problem of dimension
2500. It consists of the two dimensional driven cavity problem of the form

∆∆u + R

(
∂u

∂y

∂∆u

∂x
− ∂u

∂x

∂∆u

∂y

)
= 0,

on the unit square, discretized by 13-point finite differences on a shifted uniform grid
with 50×50 inner nodes [32]. The boundary conditions are given by u = 0 on ∂Ω and
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Table 6
Nonlinear convection-diffusion model problem with R=50, n=79524, nnz=615997, ILUT(0.1, 3).

ILUT(0.1, 3), timep≈ 0.05, psize ≈ 632000
Matrix Recomp Freeze Struct. update
A(0) 82 82 82
A(1) 86 85 82
A(2) 73 97 82
A(3) 72 91 76
A(4) 66 97 73
A(5) 68 113 77
A(6) 71 140 75
A(7) 68 139 70
A(8) 70 137 76
A(9) 69 136 83
A(10) 65 217 72

overall time 17.4 s 31.0 s 19.4 s

Table 7
Driven cavity problem with R=50, n=2500, nnz=31504, ILU(0.01).

ILU(0.01), psize ≈ 47000
Matrix Recomp Freeze Str. Unstr. GJ Unstr. Kr.
A(0) 93 93 93 93 93
A(1) 269 93 88 337 81
A(2) > 500 > 500 156 324 58
A(3) > 500 164 179 265 60
A(4) > 500 288 298 206 74
A(5) > 500 > 500 144 184 71
A(6) > 500 > 500 132 190 70

overall time ∞ ∞ 8 s 17 s 6.5 s

∂u(0, y)/∂x = 0, ∂u(1, y)/∂x = 0, ∂u(x, 0)/∂x = 0 and ∂u(x, 1)/∂x = 1. The initial
approximation is the discretization of u0(x, y) = 0.

For the same reason as before, we choose modest Reynolds numbers. Even with
modest Reynolds numbers we obtain sequences of linear systems that are hard to
solve for the BiCGSTAB accelerator. As system matrices have 31504 nonzeros, we
needed a relatively dense initial ILU-preconditioner with 47000 nonzeros and with
drop tolerance 0.01 from Matlab to be able to solve the linear systems at all. Sparser
preconditioners caused BiCGSTAB to stagnate for the initial linear system. In Ta-
bles 7 and 9 we show experiments executed in Matlab with the initial ILU(0.01)
preconditioner for R = 50 and R = 10 respectively. As before, with ’overall time’ we
mean the time needed to solve the whole sequence, including preconditioner compu-
tations. In the columns ’Unstr.’ we display the performance of unstructured updates
computed with Algorithm 3.1 (tol = 0.05 for R = 50 and tol = 0.02 for R = 10) and
Algorithm 3.2 (tol = 0.7 for R = 50 and tol = 0.02 for R = 10).

This problem represents the case where recomputing should be avoided for stabil-
ity reasons. For instance with R = 50, the recomputation of the incomplete factoriza-
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Table 8
Driven cavity problem with R=50, estimated Euclidean norms of inverses of first factor.

ILU(0.01), psize ≈ 47000
Matrix Recomp Freeze Str. Unstr. GJ Unstr. Kr.
A(0) 264 264 264 264 264
A(1) 2 · 103 264 203 1069 185
A(2) 9 · 105 264 227 99 101
A(3) 8 · 104 264 326 291 130
A(4) 3 · 105 264 327 290 131
A(5) 2 · 105 264 327 290 131
A(6) 4 · 105 264 327 290 131

Table 9
Driven cavity problem with R=10, n=2500, nnz=31504, ILU(0.01).

ILU(0.01), psize ≈ 47000
Matrix Recomp Freeze Str. Unstr. GJ Unstr. Kr.
A(0) 84 84 84 84 84
A(1) 84 87 95 91 91
A(2) 312 183 119 95 113
A(3) 261 198 119 103 134
A(4) 352 > 500 190 149 164
A(5) 259 > 500 163 204 164
A(6) 291 183 150 217 144

overall time 12.5 s ∞ 7 s 12 s 11 s

tion failed for the last 5 linear systems (giving the Matlab warning ’Incomplete upper
triangular factor had 1 zero diagonal replaced by local drop tolerance’). In order
to quantify instability we computed estimates of the 2-norms of the inverses of the
factors of the used factorizations. For the initial decomposition we have ‖U−1‖2 ≈ 41
and ‖(LD)−1‖2 ≈ 264, but these norms grow rapidly for subsequent recomputed fac-
torizations. In the second column of Table 8 the norms for (LD)−1 are displayed,
norms for U−1 grow similarly. Clearly, forward and backward substitution have be-
come unstable. In the columns corresponding to updated factorizations we estimated
‖(LD −B)−1‖2. We see that higher estimates correspond in the majority of cases to
higher iteration numbers. In the frozen preconditioner strategy, however, instability
is not the cause of stagnation. We guess the frozen preconditioner fails to provide the
structural information contained in updated factorizations. The results for R = 10
reflect similar phenomena in a weaker form. Structured and unstructured updates
from Algorithm 3.2 yield the best results. In the case R = 50 the optimal choice
tol = 0.7 results in particular good performance of Algorithm 3.2, both with respect
to time and iteration count.

We conclude this section with an application which leads to very large sequences
of linear systems. They arise from numerical computation of steady vertical air flow
through a level tunnel at a low Mach number subject to the gravitational force. The
domain is a two dimensional longitudinal section of the tunnel with the pressure and
density varying only in the horizontal direction such that the gravitational term is bal-
anced out by the pressure gradient. Neumann boundary conditions and Lax-Friedrichs
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fluxes were used. The gravitation term and the Euler equations were separated by a
first-order operator splitting. For the discretization, the implicit Euler method com-
bined with the first order finite volume discretization in space were used. In every
time step, one Newton step is performed in the flow solver only. More details can
be found in [10], in particular in Section 6.2. Our results were very similar for more
variations of the problem.

Table 10 contains the results for two sequences from the linear systems for the
described problem with a relatively coarse discretization grid. We used the dual-
threshold ILUT(0.001,5) preconditioner, where the parameters were chosen in order
to have a preconditioner size (that is, number of nonzeros) close to the size of the
original matrix and such that the total number of matvecs (two in each iteration) to
solve the initial system is reasonably small.

Table 10
Air flow in a tunnel, n=4800, nnz=138024, ILUT(0.001, 5).

ILUT(0.001, 5), timep≈0.05, psize ≈ 135798
Matrix Recomp Freeze Update

Its Time Its Time Its Time
A(5) 29 0.57 19 0.33 19 0.34
A(10) 30 0.55 17 0.27 17 0.27
A(15) 33 0.64 21 0.39 19 0.34
A(20) 32 0.64 19 0.34 17 0.31
A(25) 33 0.56 20 0.33 19 0.33
A(30) 34 0.66 24 0.44 21 0.34
A(35) 33 0.66 23 0.42 19 0.36
A(40) 39 0.72 31 0.52 24 0.39
A(45) 44 0.78 33 0.55 27 0.45
A(50) 40 0.75 39 0.63 24 0.44
A(55) 40 0.74 47 0.78 25 0.42
A(60) 47 0.85 80 1.41 31 0.56
A(65) 47 0.80 107 1.64 27 0.42
A(70) 38 0.75 72 1.28 28 0.51
A(75) 114 2.03 230 4.06 105 1.96
A(80) 63 1.19 87 1.51 80 1.42
A(35) 33 0.66 36 0.63 35 0.67
A(40) 39 0.72 37 0.64 35 0.59
A(45) 44 0.78 42 0.67 35 0.59
A(50) 40 0.75 43 0.67 29 0.45
A(55) 40 0.74 57 0.95 31 0.53
A(60) 47 0.85 84 1.37 33 0.54
A(65) 47 0.80 102 1.55 34 0.52
A(70) 38 0.75 87 1.47 34 0.58
A(75) 114 2.03 163 2.65 147 2.45
A(80) 63 1.19 81 1.38 93 1.64

Here we show results only for some linear systems from the beginning of the se-
quences (as given by the superscripts); the whole sequence has more than 1000 linear
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systems. Three preconditioning strategies were tested: Recomputation, freezing and
updating. Updates were always related to the first matrix of the sequence. In the
first sequence of Table 10, the preconditioner that is being frozen or updated was
computed for the matrix A(0), and in the second sequence it was taken from the
30th linear system. The update strategy was implemented as a black-box routine
which decides which of the updates (unstructured update from Algorithm 3.1 or 3.2,
structured update based on the upper triangular part of the difference matrix, struc-
tured update based on the lower triangular part of the difference matrix) is used,
based on the sum of magnitudes of strong matrix entries. The structured updates
store the update separately although merging with the decomposition could provide
even better timings. The results are characterized by the number of iterations of the
BiCGSTAB method, and by the timings of the preconditioned iterative method to
solve the individual linear systems, including the time to compute the preconditioner.
The average time to compute the preconditioner is denoted by timep and its average
number of nonzeros is denoted by psize. These last two characteristics slightly differ
in individual computations of a sequence of problems. Note that preconditioning this
problem was necessary, the unpreconditioned method worked rather poorly.

From Table 10 we can see once more that freezing the preconditioner may not
be enough for getting efficiently preconditioned iterative methods for all the systems.
Freezing with updating is typically better in terms of the number of matvecs. The
additional solve with the update may add a time penalty but its influence seems to be
limited. Clearly, by changing the matrix more and more the gap between the efficiency
of freezing and updating gets larger up to some point where, of course, also the update
is not sufficient anymore. We included this point in our table but in practice this would
be the moment to recompute a factorization. As in the previous problem, it seems
that the update is even more powerful than the recomputed preconditioners in the
sense of giving the smallest number of iterations among all the three preconditioning
strategies. This must be mainly caused by the fact that recomputation becomes less
stable as the sequence proceeds, as can be seen from the iteration numbers around the
75th linear system. However, the role of additional structural information provided
by updates should not be underestimated. In Table 12 we will consider a sequence
without instability regions where updates are still more powerful than recomputed
factorizations.

The following Table 11 presents qualitatively the same results for a larger ma-
trix. As above, a powerful ILUT preconditioner was chosen in order to provide small
iteration counts, and to have the number of nonzeros of the preconditioner similar
to the number of nonzeros of the original matrix. Note that for most of the more
difficult problems, the time needed to solve the linear system is the best for our up-
dates. While, as above, there is a similar behavior of the iteration counts we also show
results for more matrices around the point where the original frozen preconditioner
stops to be useful. Note that for some matrices the updated preconditioner behaves
much better than the other strategies.

In Table 12 we consider discretization leading to matrices of a dimension about
sixty thousand. Most of the remarks on the previous two tables can be made here
too, though note that there are no instability regions anymore. As before, updates
achieve an acceleration compared to recomputing of up to 90%. The relation to the
freezing strategy is the same as for the corresponding problems of smaller dimension.
A noteworthy difference with smaller dimensions is that the ratio of the average
time to recompute the preconditioner (’timep’) and the time to solve the systems,
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Table 11
Air flow in a tunnel, n=9600, nnz=277224, ILUT(10−7, 30).

ILUT(10−7, 30), timep ≈ 0.1, psize ≈ 283751
Matrix Recomp Freeze Update

Its Time Its Time Its Time
A(0) 3 0.13 3 0.13 3 0.13
A(5) 3 0.13 3 0.03 3 0.03
A(10) 4 0.15 4 0.05 5 0.05
A(15) 4 0.15 5 0.06 6 0.06
A(20) 5 0.15 6 0.06 7 0.09
A(30) 7 0.18 7 0.08 8 0.11
A(40) 8 0.23 14 0.16 14 0.17
A(45) 9 0.23 18 0.17 20 0.23
A(46) 11 0.24 22 0.23 16 0.18
A(47) 11 0.23 18 0.19 16 0.18
A(48) 15 0.29 23 0.25 22 0.26
A(49) 15 0.30 23 0.25 22 0.29
A(50) 16 0.33 24 0.23 19 0.23
A(51) 27 0.48 31 0.38 25 0.33
A(52) 47 0.69 33 0.34 27 0.31
A(53) 44 0.73 33 0.39 23 0.29
A(54) 67 1.12 54 0.61 32 0.43
A(55) 92 1.49 196 2.23 56 0.84
A(56) 76 1.21 131 1.48 40 0.54
A(57) 79 1.33 81 1.05 51 0.80
A(58) 52 0.91 45 0.59 34 0.51
A(59) 50 1.02 40 0.63 38 0.65
A(60) 32 0.74 961 15.3 440 7.98

is much larger. Hence avoiding recomputation becomes more important with larger
dimensions. To conclude, let us mention the problem of recomputing related to a
different preconditioner. This large air flow problem with the standard AINV(0.1)
preconditioner with a number of nonzeros close to the number of nonzeros in the first
matrix of the sequence converges in 12 iterations in average, the time to compute
the preconditioner is 1.67 s and time for the BiCGSTAB-iterations is 0.25 s! We
may assume that the role of avoiding frequent recomputations will be in this case
significantly increased but we did not follow this line.

5. Conclusions. In this paper we proposed a couple of algebraic procedures
which may be useful for solving sequences of systems of linear equations. The nu-
merical experiments show that our updated preconditioners can be rather successful
in practice, and the updates can often replace recomputation of preconditioners. In
many cases, one would like to make the overall number of operations smaller with
simple updates, and our experiments confirm that this is possible. In particular, the
preconditioner update seems to be more advantageous than the other approaches if
one of the following cases applies: if preconditioner computation is not cheap, if its
recomputation is unstable or if the update is structurally dominant, that is, if it covers
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Table 12
Air flow in a tunnel, n=59392, nnz=1127211, ILUT(10−8, 8).

ILUT(10−8, 8), timep ≈ 0.45, psize ≈ 1307000-1490000
Matrix Recomp Freeze Update

Its Time Its Time Its Time
A(0) 24 1.25 24 1.25 24 1.25
A(2) 21 1.13 27 0.95 23 0.88
A(4) 22 1.15 27 0.90 23 0.89
A(6) 21 1.15 27 0.90 23 0.90
A(8) 21 1.14 26 0.93 23 0.89
A(10) 22 1.15 26 0.91 23 0.91
A(12) 24 1.23 27 0.97 23 0.88
A(14) 23 1.20 27 1.01 23 0.90
A(16) 24 1.23 27 0.95 22 0.89
A(18) 24 1.27 27 0.92 22 0.89
A(20) 25 1.23 28 0.90 21 0.83
A(22) 25 1.24 28 0.92 22 0.86
A(24) 26 1.29 28 0.98 22 0.84
A(26) 29 1.60 28 1.00 22 0.85
A(28) 30 1.43 29 0.95 22 0.84
A(30) 28 1.37 28 0.97 23 0.89
A(32) 31 1.53 33 1.06 22 0.81
A(34) 28 1.42 28 0.95 23 0.89
A(36) 31 1.51 30 1.02 22 0.91
A(38) 30 1.51 29 1.01 23 0.95

a significant part of the difference matrices from subsequent problems. Nevertheless,
there can be also different, and sometimes very strong, reasons for avoiding pre-
conditioner recomputations. In matrix-free and/or parallel environments, which are
nowadays quite common, any recomputation of a preconditioner may be expensive.
This is especially true for strong algebraic preconditioners which are used for solving
difficult problems. We used intentionally structured updates based on one triangular
part only. Part of our motivation was that we concentrated on finding methods for
problems where the non-symmetry is apparent. In addition, we are interested in the
structured update since we expect possible cheap estimation of sparsified triangular
matrices. This may be important in matrix-free environment. Note that our unstruc-
tured updates are very close to permuted (and sparsified) triangular updates. We
intend to present fully matrix-free results in the near future. Another issue which
we currently investigate is combination of approximate factorizations with various
Gauss-Seidel type preconditioners to define updates.

An interesting problem which we would like to consider in the future is to find
first a nonsymmetric permutation which transforms the system matrices into a form
more suitable for one particular structured or unstructured update. In particular, this
permutation may make one triangular part of the matrices more heavy (in the sense
of the sum of magnitudes of its entries) than the other triangular part. This may have
a connection to the combinatorial method in Algorithm 3.2 to find an unstructured
update. The use of a weighted spanning tree strongly reminds the popular strat-
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egy of matchings-based nonsymmetric permutations which has significantly improved
algebraic preconditioning in recent years [23], [5].
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providing the software for solving the nonlinear problems and for useful instructions
to work with it. They thank Andreas Meister for initiating application of the proposed
techniques to the tunnel problem.

REFERENCES

[1] M.A. Ajiz and A. Jennings. A robust incomplete Choleski-conjugate gradient algorithm.
Int. J. Numer. Methods Engrg., 20:949–966, 1984.

[2] J. Baglama, D. Calvetti, G.H. Golub, and L. Reichel. Adaptively preconditioned GMRES
algorithms. SIAM J. Sci. Comput., 20:243–269, 1998.

[3] M. Benzi and D. Bertaccini. Approximate inverse preconditioning for shifted linear systems.
BIT Numer. Math., 43:231–244, 2003.
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