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Mobile Robot Localization Using Landmarks

Margrit Betke and Leonid Gurvits

Abstract—We describe an efficient method for localizing a marked on the agent’s map. The autonomous agent also has a

mobile robot in an environment with landmarks. We assume tgol that can measure angles. The agent may use the following

that the robot can identify these landmarks and measure their 5q4rithm to identify its location in the environment:
bearings relative to each other. Given such noisy input, the

algorithm estimates the robot's position and orientation with 1) identify surrounding landmarks in the environment;
respect to the map of the environment. The algorithm makes  2) find the corresponding landmarks on the map;

efficient use of our representation of the landmarks by complex  3) measure the bearings of the landmarks relative to each
numbers. The algorithm runs in time linear in the number of other:

landmarks. We present results of simulations and propose how . -
4) compute your position efficiently.

to use our method for robot navigation.

If the first three steps can be executed without errors three
landmarks are sufficient to compute the position of the agent,
unless the agent’s position and these three landmarks either
form a circle, or lie on one line. Then the localization problem

. INTRODUCTION does not have a unique solution.
E DESCRIBE AN efficient algorithm for localizing a However, in real life an agent makes two kinds of mistakes:

mobile robot in an environment with landmarks. Thd) some angles are measured with small errors and 2) some
robot has sensors that both identify landmarks and measl@@dmarks are misidentified. Another source of mistakes could
their bearings relative to each other. Such sensor informatie@ errors in the map itself. Suppose that the majority of
is generally uncertain and contains noise. Given the positioféstakes are of the first type. In this situation we address the
of possibly misidentified landmarks on a 2-D map of théllowing problems:
environment and noisy measurements of their bearings relative estimating the position and orientation of the agent effi-
to each other, the algorithm estimates the robot’s position with  ciently;
respect to the map of the environment. The algorithm makes» finding misidentified landmarks and large angle measure-
efficient use of the geometry of the problem; specifically, the ment errors.

representation of the landmarks by complex numbers. Thean algorithm is presented that estimates the agent's position
algorithm runs in time linear in the number of landmarksn O(n) operations where: is the number of landmarks on
Results of simulations are presented that explore the strengi{l 2-D map. Large errors due to misidentified landmarks and
of the algorithm. erroneous angle measurements can be found, discarded and the
Why is mobile robot localization important? A robot cannojigorithm can be repeated without them with improved results.
accurately execute its commands. As a mobile robot movesour work is motivated by a mobile robot called Ratbot that
through its environment, its actual position and orientatiagas built at the Learning Systems Department at Siemens
always differs from the position and orientation that it i€orporate Research. Ratbot is used as a test bed for vari-
commanded to hold. Wheel slippage is a major source of errg(;s machine learning approaches to robot navigation. Ratbot
The errors accumulate and the location uncertainty increasggigates through the corridors of the building at Siemens
over time. Dead-reckoning is not sufficient to locate the rOb(E-orporate Research. It is equipped with a camera that points
Therefore, sensory feedback is needed to locate the roboyvards onto a reflective ball which acts like a mirror of the
Its environment. surroundings (see Fig. 1). The camera setup is due to Judd
Consider an autonomous agent, which could be a mobylg. straight lines of objects like picture frames, doors, and
robot or a human traveler, who uses a map to navigate througaiis look like arcs in the images taken by Ratbot's camera.
an environment that contains landmarks. The landmarks WAly a circular, one-dimensional strip of the brightness of
each image is analyzed. Landmarks like doors, pictures, and
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Sugihara gives a(n>1gn) algorithm for finding the robot’s

reflecting ball position and orientation such that each ray pierces at least one
of the n points in the environment. Avis and Imai [5] and
camera Krotkov [6] extend Sugihara’'s result to the case that angle

measurements include errors.

Sutherland and Thompson [7] address the localization prob-
lem usingdistinguishabldandmarks in the environment (as we
do). They show that for a given error in angle measurement,
the size of the localization error varies depending on the
configuration of landmarks.

There is a wide variety of approaches to handle position
uncertainties associated with a navigating robot. Some ap-
proaches differ from our approach in the way the robot’s

\b\_// environment is represented, e.g., Brooks [8], Mataric [9], Elfes
[10], and Levittet al. [11]-[13].

Fig. 1. lllustration of a robot with a camera setup that provides “fish-eyed” Many authors use a St_at'St|Ca| approach for I‘Ob(?t navi-
circular images of the surroundings. gation, for example, Chatila and Laumond [14], Smith and

Cheeseman [15], Kosaka and Kak [16], Crowley [17], Leonard

projections of the same object in the environment, is mu%?d Durrant-Whyte [18], Watanabe and Yuta [19], Burlina,

. . . . Menthon and Davis [20], and Matthies and Shafer [21].
easier for pictures taken by Ratbot. Only one-dimensiona L ) -
; . : Approaches to handle uncertainties in a robot’s position can
strips of pixel values of two pictures need to be compared

. , . -also be distinguished by the kind of data available to the robot.
Hancock and Judd provide an algorithm that finds matchlrgur method gses ViSU>E/l| input. Other sensors that have been
features in two image strips [2]. )

; . - . _..used for position estimation are sonar sensors [22], odometr
Once corresponding landmarks are identified, a descripti b [22] y

of the matching landmarks within the global map of the robot% . GPS [24], and _ultrasomc beagong [25].
. 2 . . We address mobile robot localization as a problem of
environment is given. The map of the environment is a two-

dimensional description of the office building through Whi(:ﬁe'atIng robot-centered information with global map infor-

. . . ion. Relatin mera-center rdin m n
the robot navigates. The position of the robot with respect Egato elat 'd & camera-ce tered €00 d a'te sy.ste. toa
. . . external coordinate system is calledxterior orientationin
this map is unknown and needs to be determined.

" Lo . . the field of photogrammetry (see, for example, [26]). Pho-
Our position estimation algorithm has been used by Grei %rgrammetry deals with the problem of how objects in the

and Isukapalli [3] to determine which of the landmarks that ~ . - . .
. . " . environment are related to their images in camera systems with
are visible to Ratbot are useful for its position estimate.

Our localization algorithm is not restricted to robots with different orientations and positions. For robot manipulators,

- ) . e problem of relating a camera-centered coordinate system
similar camera system as Ratbot’s. Our techniques are gen?rala world-centered coordinate system is called Hamd-

and may be used for other camera setups. The algorithm could . : . ;
. . eye transformationThe camera information (eye) is used to
be used to localize a robot that moves in an assembly plant or. :
. : : o : guide a robot arm or a mobile robot (hand) [27]. Our paper
to localize an intelligent vehicle in a city. : : . ) :
. . . . contributes a solution to the problems of exterior orientation
The paper is organized as follows. Section Il describes .
; . nd hand-eye transformation.
the work related to our problem. Section Ill gives a formal
description of our problem. Section IV discusses how the
robot’s position can be estimated using a triangulation ap- 1
proach. Section V describes our position estimation algorithm ) ] ) ] ) ,
which uses a different approach that represents landmarks with? this section we define the problem of estimating a robot's
complex numbers. Section VI proposes how to incorporate deSition and orientation in its environment given a global

algorithm in an on-line navigation algorithm that estimates tH8ap of the environment and bearings of landmarks measured
robot's position while the robot is moving. relative to each other at the robot’s position.

We call the coordinate system of the map of the environment
the external coordinate system. It is spanned by axe¢
andy(®). We distinguish it from theobot-centerecoordinate

In recent years several authors have used triangulatisystem spanned by axe$” andy("). A landmarkz can be
approaches for mobile robot localization. Triangulation is @described in both coordinate systems. Vecté? describes
well-known technique for finding a position by means o0& landmark in the external coordinate system (see Fig. 2,
bearings from fixed points in the environment. top). Vector (") describes a landmark in the robot-centered

Sugihara [4] addresses a version of the localization probleraordinate system (see Fig. 2, bottom).
where the points in the environment look identical (to the The robot'spositionis described by vectoy = (p., py) in
contrary, we use landmarks that are distinguishable). The roltio¢ external coordinate system. Vecpotinks the origins of
measures the direction of rays each of which emanates frowsth coordinate systems. The robot is oriented in direction of
the robots position and “pierces” through an observed poitxis (). The robot'sorientationis described by anglé be-

mobile robot

. THE POSITION ESTIMATION PROBLEM

Il. RELATED WORK
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Fig. 3. Environment with external and robot coordinate system: Both vector
@ zl@ in the external coordinate system and veciﬁr) in the robot coordinate
system point to landmark; . The robot’s location is defined by position vector
A (r) p and orientation anglé.
y ZO
b (r) IV. A TRIANGULATION APPROACH
O: v . . . .
' This section shows how to apply well-known triangulation
(r) & techniques to the robot localization problem. First we consider
ZO,:' o Z the localization problem for perfect data, then for noisy data.
S robot coordinate ) , .
St system A. Triangulation with Perfect Data
ot Z. .
: » (r) If the visual angley between two landmarks, and z;
X - .
measured at an unknown positiprand the distance between
() the landmarks is known, then positignlies on an arc of a

Fig. 2. (a) Environment with external coordinate systeef), y(*)). Two  circle spanned by landmarks and z; [28] (see Fig. 4(a)).
landmarks,zo and z;, are shown. (b) Environment with robot coordinate A third landmark z» is needed to determine positign
system(«("), y(")). The robot's position is illustrated by a black circled . - itis the i tV2 . f the circle th h land K
disk. The robot is orientated in the direction of the coordinate ais. uniquetly: 1tis the in ersec Ion of the circle through landmarks
zo and z; and the circle through landmarks and 2, (see
_ ) Fig. 4(b)). Note thatp cannot be determined uniquely if
tween the external coordinate axi§’ and the robot-centered landmarkszo, z; and z, lie on a circle
. . " . . ~Uy ~ ~ N
coordinate axisz(™. Fig. 3 illustrates how an external and One approach to compute positipris to describe the two
a robot-centered coordinate system are linked given positigiicies analytically and determine their intersection. The law of
vectorp and orientation anglé. . cosine can be used to compute the radius of each circle given
Hang(e? map (S)f the robot's environment means that thge visual angles and distances between the landmarks. The
vectors z; 7, - -+, zn * in the external coordinate system ar@gordinates of the center of the circles can then be computed
given. The robot measures the bearing of each landmafkm the coordinates of landmarks, 2, andz». Once vector
relative to the direction in which the robot is oriented: Angl% is known’ the orientation of the robot’ i_e_' the direction of
7; is the angle subtended by landmark vect{)’i) and axis (") is known.
2 for i = 0,--+,n Another way of triangulating positiop is to determine the
o= Z(7(r) x(,,) distance between the robot and the three landmarks. We follow
EE ’ this approach in the next section.

We call the angle obtained from measuring the bearing of . _ _
one landmark relative to another landmark the “visual angl®. Triangulation with Noisy Data

between the two landmarks [7]. ~ Thetriangulation method described above does not compute
The robot does not h(g)ve away to measure depth, i.e., it dggs exact position if the input data is noisy. Using several
not know its distancgz; ’| to theith landmarkz; for all i.  |andmarks yields a more robust position estimate. Giuen

Note that if the orientation anglé is zero then we can Jandmarks, there ar¢}) combinations of three landmarks
express the vector between two landmask®ind z; as vector that can be used to compufg) position estimates by the
vg”) = zé”) - zi(”) = vie) = z((f') - zi(e) (see Fig. 3). triangulation method described above. One way of combining

Now we can formulate our problem: Given the externahese estimates to obtain a final position estimate is to compute
positions;:((f'), R z,(f') of n + 1 landmarks and correspondingtheir average.
angle measurements, - - - , 7, €stimate the positiop and the In the following we outline a different triangulation method
orientationd of the robot in the environment. that uses landmarks and is based on estimating the distance
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Fig. 5. Position estimation using the law of cosine.

First we could solve this system of nonlinear equations using
a least squares method. (A review of the least squares method
for solving linear equations is given in Section V-A.) Then we
could express the now known lengths”|, || and |z§”)|

() by the (unknown) coordinates of the positipn= (p.., p,) of

Fig. 4. Triangulation with perfect data: (a) Scenario with two landmarkgshe robot and the coordinat(§$7y) of the landmarks
The robot’s position is somewhere on the arc shown. The robot is oriented in
the direction ofz(™). (b) Scenario with three landmarks: The robot’s position
is at the point of intersection of the two arcs shown. The robot's orientation
can be uniquely determined fron{™.

OF

= (0 — p2)? + (vo — py)?
)2

AP = (20— pa)? + (yi — py)?
N

AV = (2 = pa)? + (= py)

between the robot and the landmarks. (Note that this is not
the method that we propose.)

Applying the law of cosine, the relationship between tw&ubtracting the second and third equation from the first we get
landmarksz; and z; can be written as two equations linear in the unknowps andp,:

. )2 )2

) 257" = |47|" = 28 — 2% + 2po (i — 20) + 18 — ¥}
+ 2py(yi — yo)

"2

z§)| =5 — @} + 2pa(x; — m0) + 43 — U5

+ 2py(y; — o).

AP

zi(r) |2 +

7(»7’)| COS ©; ;
2 @i

|vi|* =

where|v;;| is the (known) distance betweep andz;, ¢;; is |Z(r)|2 _

the visual angle between andz; at the robot’s position, and 0

12| and |z§”)| are the unknown distances to the landmarks

(see Fig. 5). Anglep;; is computed from measured angles _. . )

and ;7 @i = i — 1;. Finally, we can solve fop, andp, and obtain an estimate for
We can apply the law of cosine to all possible sets of W€ POSitionp = (pa.py). _ _

landmarks and get a system of equations which is overdeter-/angulation with noisy data as described above is based

mined and can be solved using a least squares approach. Cﬂ{bgc_)lvmg nonlinear equations with _compllcated cIo_sed-form

the Iengths}zf”)|,---,|z,(f)| are found, another overdeterminecfomt'ons' However, standard algorithms that provide least-

set of equations needs to be solved to find the positi ';;Luares solutions for large numbers of nonlinear equations
a2 9 , take too long for real-time robot navigation. In the following
p = (Pz,py) Of the robot:|z;"’|* = (z; — pz)* + (v — py)

) _ of’ section, we introduce a nelimear-timeapproach to localizing
fori =0, 1 wherexi andy; are the coordmgtes ; a mobile robot which is based on a least-squares solution of
Once vectorp is estimated, we can get an estimate for t

. . _ ) () Ng linear set of equations.
orientation angle by computing vector;; ’ = z;”’ — p for

somei and thend = /(=" 2()) — ;. V. LINEAR POSITION ESTIMATION
In the following we illustrate the method with three land-

marksz, z; andz; (see also Fig. 5). The law of cosine give?h
us

This section describes an efficient localization algorithm
at runs in time linear in the number of landmarks. Instead
of using the triangulation method described above, we use a
) method based on the complex number representation of the
Z; |COS ¥i0 landmarks. This representation is the key idea to get a set of
Z](,">| cos o linear equations whose solution is a set of position estimates.
(Triangulation methods may also provide a set of position
estimates but as a solution to nonlinear equations.) We describe

ol = 47 + |0 =21
s = 47174 27 2}

O+ [P = 2o cos .

Jois " =
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this set ofm linear equations as a vector equation. To solve this AlT)
particular vector equation, we do not need @m?) matrix y
inversion algorithm. Instead we introduce @gr) algorithm

which takes advantage of the special structure of the matrix ¥

(e)

and the right side of the vector equation. In the following, we & (r)
describe how to set up and solve this vector equation. y
A landmark z can be written as a complex number in the
robot-centered coordinate system. For each Iandmz%‘iPkwe ;obct)t r<T:1oordinate
have an expression ysie
! (r)
. i . X
20 =L fori=1,---,n ;
(e) & : .
where lengthl; is the unknown distance of the robot to % Z(.e,)."' 9% ()
- . - . i, H
Iandmarkzi(’), angler; is the measured angle betweejﬁ) > X
and the coordinate axis(™, andj = /—1. new robot-centered
. ) coordinate system
We pick a reference Iandmalzlé and compute the angles S p
o, =T;—Tofori=1,--- n. (Landmarkz((f) may be chosen i (e)
to be the most reliable landmark if such reliability information . > X
is available.) Dividing the complex number representation of ~ €xternal coordinate system
(r) (r) (") for 7 — i
Iandm_arkSzl ) AN by 2, _for i =1,---,nyields a set of Fig. 6. External coordinate system spanned:by andy(*), robot-centered
equations that includes the visual angledetween landmark coordinate system spanned by’ and (") and robot-centered coordinate
2z and landmarkz, system spanned k™) andg("). The robot is facing in direction of axis'") .
(7’) L L.
( 5 = lZ ed(Tmi—m0) — lZ ¥ (1)
™
0 choose the robot-centered coordinate system that is oriented
Given thatz"” = 2§ + ", (1) becomes the same way as the external coordinate system. Thus, its axes
(") and (") are parallel to axes(®) andy(¢), respectively
zé”) n Ui(,,) Lo . (see Fig. 6). We plck this particular coordinate system, because
o —.¢ fori=1,---n. we can then write
0
A(v) _ U(e) _ 7(6) _ 7(()6)

After some algebra we obtain a set of equations whose
unknowns are vectors!” and »{") and ratiosi;/l,, for

i= 1. for i = 1,---,n which yields equations
1 . 1 1 . 1
1 li 1 1 . - e e (5)
——dfi - —— fori=1,---,n. 2 ko (@ — ' (@ (©)
z(()”) loy (’) o @) Uk Uy, v; v;

) fori,k =1,---,n andk # ¢, whose only unknowns are ratios
To remove the dependence 93‘1 we substitute the left-hand,. T

side of (2) with the expression on the right-hand side for a Note that using the robot-centered coordinate system that is

different index % spanned by axe$(") and (") doesnot imply that the robot
L1 1 L1 1 knows its orientation in the environment a priori. It does not
S R N (3) know its orientation angld = /(z(™,z(®)) = /(z™ 2™).
lo Uz(f) U;(J) lov (7) %(7) Instead, once (5) are solved we can compute veﬁéfarwhich

can then be used to compute the robot’s orientation
fori,k =1,---,n andk # i. The only unknowns in (3) are
VeCtOI’Svi(T) and ratiosl; /lp. Since the anglesy,---, ¢, in
(3) are independent of the orientation of the robot-centered
coordinate system, we can rewrite (3) for a robot-centered
coordinate system with a different orientation as illustrated in Fig. 6.
The set of (5) can be transformed into a matrix equation

6= L(30,5)) = 7, 6)

miewk _ — 1 L e _ @) Ar = cwherer, ¢, and A can be defined as follows: Vector=
(") A(’) ‘ ( ) P (r1,-++,7,) is the vector of the unknown ratios of the length of
vectorss(™ ... 2{”. Vectorc is an(n—1) dimensional vector

fori,k =1,---,n andk # 4, where landmark; is described of differences of complex numbers = (c,;,¢y) = 1/8{"
by vector 27, r; = [57|/1287| ando{" = 5 — 2§7. We and matrix4 is an(n — 1) x n matrix consisting of complex
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numbersh; = (bai, byi) = ¢l A. Least Squares Errors and the Pseudo-Inverse
_ The “least squares method” is a standard method for solving
by by 0 0o - 0 0 : : )
b, 0 —bs 0 .- 0 0 overdetermined systems of equations [29]. In the following we
by 0 0 —by .- 0 0 rederive this method for our particular overdetermined system
of equations.
To solve the matrix equatioAr = ¢ we choose ratio vector
by 0 0 0 0 —b, 7 so as to minimize the “average” error in then — 1)
b b 0 0 0 0 equations. We define the average error by the sum of squares
0 b —bs3 O 0 0
0 b 0 —b 0 0 E? = ||Ar — ¢
A=
If there is an exact solution télr = ¢, the error iSEZ = 0.
0 by 0 0 0 —bn In practice it is unlikely that there is no error, therefore, we
solve the minimization problem
b 0 0 0 0 b . .
0 —b, 0 0 0 b, min{r : E?} = min{r : ||Ar — ¢||*}.
0 0 —bs 0 0 bn The necessary condition of the squared eféito be minimal
: is that its derivative with respect to vectermust be zero.
0 0 0 0 - =bp_1 by The derivative is
d d
and —E? = Z||Ar — ¢||?
dr d7’|| r=dl
C1 — Co
- d
€1 —c3 = (rTATAr —+TATe — T Ar + o)
Cl — C4 dr
: =92AT Ar — 247 ¢
1= 6Cn where AT is the conjugate transpose df Setting the deriva-
G2—a tive to zero gives us
€2 —C3
ca—ca 0=24%Ar —24%
c = . 7’I(ATA)_1ATC
Co — Cp . . . . .
2 provided matrix AT A is nonsingular. In Section V-C we
give the necessary and sufficient conditions fof A being
Cn —C1 nonsingular and argue that they will almost always be fulfilled
Cn — C2 in practice.
Cn = €3 Matrix AT = (ATA)~1AT is often called thepseudo-
: inverse of matrix A (see for example [30], [29]). In the
Cp — Cpi following section we describe an algorithm called Position

_ _ _ Estimator which efficiently calculates vecter = Atc¢ =
A solution of equationAr = c yields a vectorr whose (AT A)-1AT¢ such that the average error in the equations

components; can be used to solve equation is minimized.
1 1 J i 1 . . . .
e T e (7)  B. The Position Estimation Algorithm
20 v; v;

In this section we describe procedure Position Estimator
for some: to obtain vector;?o”). (This equation corresponds tothat estimates the position and the orientation of the robot.
(2) and describes the vectors with respect to the robot-centel@dthe description of the algorithm we use two kinds of

coordinate system spanned by a%#® and (™). Onceéé”) multiplications of complex numbers = (Re(a),Im(a)) and
is known’ the robot positio@; is b= (Re(b),hn(b)) the Standard Comp|eX multiplication

2(r) ab = (Re(a)Re(b) — Im(a)Im(b), Re(a)lm(b) + Re(b)lm(a))

_ZO

p=2"

Note that the system of linear equations = ¢ is overde- and the inner product

termined. We haven unknownsry,---,r, and n(n — 1) a’b = Re(a)Re(b) + Im(a)lm(b)
equations. These equations may be inconsistent, since we
have measurement errors. Therefore, we use a “least squavhsre @ = (Re(a), —Im(a)) is the conjugate ofa. For

method” to find a solution for which the average error in theotational convenience we write the inner product of complex
n(n — 1) equations is minimized. numbersa and b as a®b.



BETKE AND GURVITS: MOBILE ROBOT LOCALIZATION 257

I\ In line 13 of procedure Position Estimator, a set of esti-
matesp, - - -, p,, for the robot position is calculated using the
landmark z solutions for the position of landmark,.
. If there is no noise in the measurements, the vecﬁé’jfs
are the same for all indexésIn practice there will be noise,
so we take the centroid

vk 1 n
?, p=_ Zpi
o —- =1
robot’s position p landmark z, of the position estimates, , - - -, p, as an average to obtain an

estimate of the positiop of the robot (line 13 of procedure
Position Estimator). In line 14 the orientation angle is com-
puted using (6). (Note that taking the centroid may not be the

Procedure Position Estimator takes as an input the positidigst way to average theestimates. We are currently working

Fig. 7. Robot coordinate system defined asz-plane in the proof of
Lemma 3.

of the landmarksz(”, .-, (" (as given in the external On determining the best averaging coefficients [31]. They may
coordinate system) and the angles, - - -, ¢,,. not be the same for the- andy-coordinates of;.).
Position Estimatc(wée), . 27(16)7 OL, Pn) Procedure Ratios-Calculator takes as an input the \{ebtors
1. sum-ofe; = 0 and s and returns the vector = 2(A% A)~!s. First Ratios-
2 for i —11tomn (initialization) Calculator calculates ve_ctoigc = (bxl,--:,bm) and b, =
3 v = 2O _ (by1, - -, byn) Whereb,; is the real coordinate df; and by,
4 Cf _ 1%‘ v is the imaginary coordinate @&. Then it exploits the special
' : : n form of matrix AT A
5. sum-ofe; = sum-ofe; +¢;  (calculates) ”;” ; ¢;)
6. b; = ¢ AT A=
7. for i=1ton (calculatest ATc) (n—1)bi'by ~b{by —bibs o =biby
8. s; = nblc; — b} sum-ofe; —b3b (n—1)b3by —bbs - ~b3 b
9. Ratios-Calculat@by,- -, b,, s1,---,s,) (returnsr) :
10. for [f(j 1ton —bT'h, —bL'by —0Tby oo (n—1)bLb,
o 20 = (1)/ (”bi(; i) Instead of inverting the matrix” A directly, we write matrix
12 pi =2 — 2% AT A as a sum of a diagonal matrix and two matrices that
13. p=23%" p; (robot positionp) are outer products (or Grammian matrices, see [30]). In this
14. 6 = £(387,20) — 7 special form, the matrixi” A can be inverted efficiently
After the initialization of vectorsv,c,b and > . ¢ in AT A= 2(nD — b bL — bybg)

lines 2—6, Position Estimator first computes veater 1 A% ¢ where D is a diagonal matrix whoséth entry is bTh; =
i Vi =

in lines 7 and 8 as follows: For each component of vectos 3 T , .
5 = %ATc the procedure computes %m + by;, and the outer produdtb; is defined as follows:

59201 bxlba}Q e bxlbxn
S = (7’L - 1)b?Cl - Z b?cj b bT . bebxl biQ e bebxn
Jui#i e :
— ancz — zn: chj bxnbxl bxnbe e bfm
j=1 Matrix b,b can be written analogously.

n Thenr = (ATA)71ATc = (ATA)" 125 = 1/2(nD —
nbl c; — b Z ¢; bebL — bybl) 7125 = (nD — bbL — b,bL) 1. In this formr
=1 can be calculated (without invertingD —b,.b% —b, b directly)
n n using the following well-known lemma [30]:
= (byiCei + buiCai) — | bas Z Caj + byi Z ci |- (8) Lemma 1: If matrix K is nonsingular andK ~*h)Th # 1,
j=1 j=1

then
Procedure Position Estimator then determines = —— . K1hhTK-1
2(ATA)"'s by calling procedure Ratios-Calculator in (K —hh")™ =K~ + 1— (K—h)Th'
line 9. It next calculatesn position estimategy,---,p,
(lines 10-12). N _ Proof: The proof follows directly by verifying equation
In line 11 of procedure Position Estimator, a set of K-1hhT F-1
solutionséé’,’f, e ,78’,{ for the position of landmarkS” in I=(K- hhT)<K_]L + W)
the robot-centered coordinate system is calculated using (7) ) ) ) . = )
where[ is the identity matrix. |
7(()11) _ 1 fori=1,---,n. We apply the formula given in Lemma 1 twice to invert

ribi — ¢ matrix AT A. (We show in Section V-C that the requirements
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@) Fig. 9. Simulation results using algorithm Position Estimator on an input of
11 landmarks and angle measurements witherror uniformly distributed over
~ 10 L P [—A¢. Ap]whereAp ranges from 0 to 5. The errof|paceual — p|| in meters
g 9 °o°° is shown as a function oAy in degrees.
o
& 8t & . ,
Q9 7l o § We can now obtain the full expression for =
~ ) . .
s 6F o | (ATA)tATe = (nD — bxbf — bybL)~ts by substituting
o st ©° 1 K~ts, K~1b,, and (nD)~! into (9).
© . .
5 a b o - If the ¢th landmark is very close to the robot’s position, the
o . . .
5 31 o - least squares method described above may yield a negative
04 . . .
B2 o - In this case ratio; should be positive, but almost zero. Thus,
Hogt °°e°° - we assign it to be zero in procedure Ratios-Calculator:
ol Ratios-Calculatdby, - - -, by, 81, Sn)
00.511.522.533.544.55 1. compute diagonal matrig.D)

Fig. 8. Simulation results using algorithm Position Estimator on an input

of 11 landmarks and angle measurements with constant error. The error_"
||Pactual — p|| in meters (top) and the err¢d,..,a1 — 6| in degrees (bottom)
are shown as functions aky in degrees. 6.

ofLemmal,i

r=
=K ls+

Applying Lemma 1 again, the first terfk—'s can be ex-

pressed as

K™ l's=(nD—b,b) s

— (nD)_ls + (7‘LD)

Vector Kb,

applying the formula given in Lemma 1 which yields
K7, = (nD) 'b, +

The inverse of a diagonal matrix is a matrix whose entriddote that for any numbersy,--
on the diagonal are inverted. Thus, tita diagonal entry of (307, a;)> < n)..  a?
(nD)~*is 1/(nbfb;) = 1/(n(b2; +by,)).

.., matri¥( is nonsingular andK ~1h)Th # 1,
are indeed met.)

Sincer = (ATA)1ATc = ((nD — b,bL) — b,bl)7Ls, we
can apply Lemma 1 td& = (nD —b,b1) andh = b, and get

error in angles (degree) 1 A
2. compute vectok —*s using (10)

(®) 3. compute vecto ~1b, using (11)
compute vector = (r;,---,75) using (9)
5.fori =1ton

if , <Othenr;, «— 0

C. Correctness and Analysis of Position Estimator

In order to establish the correctness of procedure Position
Estimator we first need to prove the following lemmas. We
use the notatio) = diag(d;) to denote a diagonal matri&
whoseith diagonal element ig;. Given some matrixd/ we
write M > 0 if M is positive definite andy/ > 0 if M is
positive semidefinite.

Lemma 2: Let matrix D diag(b?; + b2,), bX
(be1, -+ ben), @nd b = (by1, -+, byny. Matrix ATA
2(nD — b,bE —b,bL) is nonsingular if and only if the vectors
b, andb, are linearly independent.

Proof: Since AT A > 0, we know thatA? A is singular
if and only if there exists a vector, » # 0 such that
2TAT Az = 0 or equivalently

27 (nD = bybl —bybl )z =0
2Dz = 21 b, b2 + szyb;‘fz

nz" diag(b%; + bzi)z = (2"b,) (b2 2) + (szy)(b;‘fz)

n Z (bfgZ + bzz)zf = <Z bm%) + <Z byizi> .
=1 =1 =1

-,a, We know that
and the equality holds if and only
if a; = a; for all indexes: andj. Therefore,A* A is singular

((nD = bbT) = b,b7) s
KK
1— (K~1b,)Th,
(K10, ) (K710 T's)
1= (K-10,)Tb,

K ls+

(9)

1

b, ((nD)"1b,) s
1— ((nD)~10,)Tb,

(nD — b,bL)71b, in (9) is calculated by

(10)

(nD)"Lb,((nD)"1b,) by
1—((nD)=1b,)Tb,

(11)
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Fig. 10. Distribution of errors fornyy = 1°. (a) The distribution of the length of error vectthp...tua1 — p|| with mean 19.7 cm and standard deviation
23.9 cm. (b) The distribution of the error in orientatifh.tua1 — 0| With almost zero mean and standard deviation 0201@) The distribution of error
in 2 position [p, actual — P=| With mean 0.93 cm and standard deviation 0.22 cm. (d) The distribution of errgr position |p, .ciual — Py| With
mean 10.6 cm and standard deviation 21.4 cm.

if and only if sufficient for the proof to find the geometrical interpretation
of the collinearity of the 2-D vectorg;, for 1 < k < n. That
beizi = bajz; and  byizg = by;z; is, we need a geometrical interpretation for the existence of

a complex numbey; such thath, = ay7n, whereq;, is a real
for all indexesi andj. This means thal, = oz andb, = 3z number.
for some constants and 3. Thus we get thab, = (a/3)b, We also have

which means that, andb, are linearly dependent. O R elen  elen
The following lemma gives the geometrical interpretation of BTG = UL 2k — 20
Lemma 2. where vectorv;, connects landmarlk, with the landmarks

Lemma 3: Matrix AT A = 2(nD —b,bY —b,bl') is singular z, and ¢, is the visual angle betwees, and z; from the
if and only if the landmarks and the robot's position areobot’s position forl < k& < n as illustrated in Fig. 7. (Note
arranged in a perfect circle or on a line. that b, = (bxk,byk)T is not a vector in the robot-centered
Proof: According to Lemma 2 we have to find a geo€oordinate system.)
metric criterion for vector$,, andb, to be linearly dependent. ~ Without loss of generality, we use a robot-centered coor-
The rank of then x 2 matrix b,.b, whose two columns consistdinate system in which the-axis is aligned with the vector
of vectorsb, andb, is one if vectorsh, andb, are collinear. 10 landmarkz, (see Fig. 7). The landmarks in this coordinate

Note that system are defined ag = |z |e/#* for 0 < k < n. Thus, by
BT can also be expressed as
rank(byb,) = rank| %
by bk = 72k i = 72k
2k — 20 |26] 2 — 20

where (2;) is the matrix whose rows are vectdrs and b’ _ _
By defirition (see Section V-B) we have wherek is defined to be /|z;|. Then vectord, 1 < k < b,
y are linearly independent if for all indexds
b _ (ba1ban (b1 by) Zk
bl byt -+ byn 1 bn bp=——k=an

Zl — 20
since b, = (bxk,byk)T, for 1 < k < n. Therefore, it is for some fixed complex nhumbey and reala;. We can also
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Fig. 11. Computed positions of the robot in the two-dimensional environment from 200 sets of 11 landmakks forl° (a). (b) Ay = 5°.

write this as £ 0.45 ———
. E
—k — B o 0.4 t ™
Zk — 20 o 2°°
. . . o 0.35 Rad B
for 31, = oy, /k which is equivalent t@nzo = Srnz —2, and o 0 3 o
Brzo ’ ' o
— =2z 5 0.25 ¢t R 1
/3k77 -1 - 0.2 o°°
. . . . M 2 F ® :
for gy — 1 # 0. We can view this as a mappingof points o °°o°°
w = Fgn in the complexw-plane into the complex-plane H 0.15 1 °°°°° |
where each landmark; is a point in thez-plane o 91 o 1
L2 54
20w o 0.05 1 o° E
w) = = z. s °*
f( ) w — 1 '2 0 S 1 1 1 A n 1 L 1 L
This mapping is called a bbius transformation (see for 00.511.522.533.544.55

o : . i 1 d
example [32]). The Mbius transformation maps the line error in angles [degree)

w = fn in the w-plane into a circle in th@;-plane_ Since Fig. 12. Simulation results using algorithm Position Estimator on an input
_ : P of 11 landmarks surrounding the robot and angle measurements with error

f(()) = 0, the circle passes throth the ongin of thq_alane. uniformly distributed ovef—Ay, Ap] whereAy ranges from 0 to 5. The

Thus, landmarksz,---,z, and the robot at (0,0) lie 0N &error||paciua — p|| in meters is shown as a function of measurement errors

circle if the vectorsdy, 1 < k < b, are linearly independent. in degrees.

Landmarkz, lies on the same circle since . .
coordinate system. Note that the actual position of the robot

Bz _ . nZo - (&) _ () i
,@1520 Br—1 _,3152077— 1/3 = 2. |s(eat Pactual = %5  — %5 - The algorithm calculatep =

) _ 15 5) hieh i
Note that we assumefin — 1 # 0. If Byn = 1, then we %0 w 2i=1 %, Which is equivalent to
know thath;, = <~ = k3,n = k which means thap;, = 0.

n

. L Pk —# . e 1 1
In this case it follows that all landmarks, - - -, z, lie on the P=%"—= Z .
) n~ rib; —c;
real axis of thez-plane. Thus, the landmarks and the robot i=1
lie on one line. (@ lzn: 1
The properties of a Kbius transformation also hold for — %0 — Ldgjes _ 1
inverse transforms. Therefore, given landmarks arranged on a Tk v
circle or on a line, it follows that vectors,, 1 < k < b,,, are 01 z": o™ (27 — 20)
linearly independent and matriz” A is singular. O AT ~ Jieiti — lpeito
The singularity condition is easily tested through some - () (o) a(r)
; 1 207 (87 = 257)
preprocessing that makes sure that the landmarks are not all — e _ 2 Z 0 \% T *0 )
arranged in a circle or on a line when procedure Position C n& 2 _ 55
Estimator is called. In practice it is highly unlikely that the @ 1 .
. . . . . =\ _ Zps
landmarks all lie on a perfect circle or line including the 0 o 7o
robot’s position. — e _ s
Lemma 4: If landmarks are correctly identified and there "0 0
is no noise in the measurements of the visual angles betwegius, the algorithm calculatgs= p,ctuai- O
the landmarks, then procedure Position Estimator returns thémmas 2 and 3 establish the correctness of our algorithm:
actual position of the robot. Theorem 1: Given a set of noisy measurements of land-

Proof: Let 25”) = [;¢/* be the vector to théth landmark marks which are not all arranged in a circle or line, algorithm
in the robot coordinate system that is oriented as the exterRalsition Estimator that determines the position of the robot
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Fig. 13. Experiments in which the robot is surrounded by 11 landmarks. On the left, the distributions of the length of errof|yegtors— p|| for Ap
uniformly distributed within [-1,1] and [-5,5]. On the right, Computed positions of the robot in the two-dimensional environménp ferl and 5.

such that the square of errors in the equatiohs = ¢ is robot positionpaciual = (P actual, Py,actual) 1S cOMpared to

minimized. O the positionp = (p,,p,) that is computed by procedure Posi-
Theorem 2: The algorithm Position Estimator runs in timetion Estimate. The actual robot orientati®f..; is compared
linear in the number of landmarks. I tothe orientatior that is also computed by procedure Position
Proof: Due to the special form of vecter= %ATc itcan Estimate.
be calculated in time linear in by first computingZ?:]L Ciz In the experiments, the errofs, actual—Px| aNd|py actual —
and Z;;l cj» and then computing each entsy of vectors p,| in the z- andy-coordinates of the position are computed.
following (8). The length of the error vectdpaciual — p|| and the orientation

Algorithm Position Estimator calls procedure Ratioserror |6,¢i4. — 6] are also computed.
Calculator which calculates vector by substituting matrix ~ Without loss of generality, the actual robot positign .
(nD)~! and vectorsK—'s and K~'b, into (9). Matrix is assumed to be at the origin of the map, igeiua1 = (0,0)
(nD)~! can be computed i(n) time if we represent this and the robot is assumed to be oriented in the direction of the
diagonal matrix by a vector of its diagonal entries. Tlle z-axis, i.e.,f,c00a1 = 0°.
diagonal entry of(nD)~! is 1/(n(b2; 4+ b%;)). Using this  First we randomly place 11 landmarks in a 10n10 m
vector representation means that multiplying mafib®)~*  area using a uniform distribution where the robot is at a corner
with vectorss and b, can also be done in linear time. Dotof this area. Note that this scenario uses only a quarter of
products((nD)~1b,)Ts and ((n.D) b, )T, take O(n) time the robot's surrounding area. It assumes that the robot cannot
to compute. Given vectorgnD)~!s and (nD)"'b, and get omnidirectional input as Ratbot can, but instead has a
scalars((nD)~'b,)*'s and ((n.D)~*b,)*b,, the computation conventional camera setup.

of (10) can be concluded i®(1) time. In an attempt to simulate worst-case measurement errors,
With a similar argument we can show that (11) and (9) cage first add a constant fractiahy of a degree t@achangle.
be computed in linear time. U Fig. 8 shows results of experiments in which the added noise

Ay ranges from 0 to & We average our results over 100 000
scenarios with 11 landmarks, distributed uniformly in the 10
by 10 meter area. The length of the error vegiQfiy. — p
This section reports results of simulation experiments usimgy57 cm for T noise, 1.1 m for 2 noise, and 2.57 m for®
procedure Position Estimate. In the experiments, the actdéi@ noise ineveryangle. The error in the position angleis

D. Quality of Position Estimator
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2° for 1°angle noise, 42for 2° angle noise, and 92&or 5° 7 .
angle noise. 6 * pos. est.ls) :'r g gﬁtﬁz;: :
Next we show results of experiments in which the an- § s | p with outliers ©
gle errors are not fixed, but uniformly distributed between ~ pos. est.s with outliers x
[-Ayp, Ap] where Ay also ranges from 0 to°5 Figs. 9 and  § 4
10 show the results of the experiments with 40000 different 31
environments that include 11 landmarks. Fig. 9 shows the 2 f L .
length of the error vector as a function of the visual angle » N ‘
error. The length of the error vect@t ;u.1 — p is 19 cm for 5 0 A
angle noise randomly chosen within]°,1°], 38 cm for angle b e *
noise randomly chosen within-°,2°], and 90 cm for angle § el x )
noise randomly chosen within-5°,5°]. The error in position -2 r x
angle 6 is on average zero. -3 : . . "
Fig. 10 shows how the error$pactua — pl, |pa:,actua1_pw|7 ° erro4r in x dgrectionlz(cm) 1
|Py,actual — Pyl, @Nd |Oaciual — 6] are distributed forAy = @
1°. Fig. 11 shows 200 positions of the robot in the two-
dimensional environment computed by Position Estimator with 5 T T y y T T
input errorA¢ = 1° and Ay = 5°. Note that the distributions E
for position errorsp, actual—pz| aNd|py actual—py | are almost E 0 "]
normal. “ %
In the next set of experiments, the robot is in the center ofz @
a 20 mx 20 m area with eleven landmarks. We expect better g 3 x % «

results for this scenario in which the robot can take advantageg
of information provided by all of its surrounding. Indeed, our >  -10}
results show that the error in position has length 8.9 cm fors
Ay uniformly distributed within F1,1], length 17.6 cm for

H

. S L 5 -1s5t
Ay uniformly distributed within |2,2], and length 42.6 cm §
for A¢ uniformly distributed within |5,5]. The results of the

. . . . _20 !l 1 1 A A 1
experiments are summanz.e_d in Figs. 12 and 13. N %120 100 -80 60 40 20 o 20

Note that procedure Position Estimator computgmsition error in x direction {cm)

estimatespy,---,p, and averages them to obtain estimate ()

p. Among p1,---,p,, there may be someutliers that are

not very close to the final position estimate However, "
in our experiments we observed that there is a one-to-one 0.5} .
correspondence between each landmarkand estimatep;.
Each outlierp; corresponds to either a misidentified landmark
z; or a noisy angle measurement for landmatk Fig. 14
illustrates this behavior of procedure Position Estimator. Given
an input of 21 landmarksy, - - - , 220, the procedure computes
20 position estimates,---,p20. To model outlier errors
resulting either from two noisy angle measurements or from-
two misidentified landmarks, we add a fixed error of 20

two arbitrary angles. The other angles have an additive error
uniformly distributed within |1°,1°]. .

Our experiments show that the outlier landmarks produce  ~3-° 12 s " 5
position estimates that are far from the actual position of error in x direction (cm)
the robot compared to the other estimates. So instead of (©
taking the centroid of all position estimatgs, ---,pzo in Fig. 14. Two experiments with 21 landmarks including two outliers. In the
line 12 of Position Estimator, we can obtain better resulfgst experiment (a), position estimagecomputed with outliers is a (2.3 cm,
if we modify the algorithm such that we discard the outlie?-7 ¢™) and computed without outliers is at (0.1 cm, 0.6 cm). In the second

L. . . ._.experiment (b) and (c), position estimateomputed with outliers is at (-12.3
position estimates and calculate the centroid of the remainigg _3 4 cm) ang» computedd without outliers is at (0.1 cm, 0.1 cm).
points.

However, it is even better to call Position Estimator on atme length of the error vector is 24.0 cm when computed
input of 19 landmarks (without the outlier landmarks). Fig. l#hcluding outlier landmarks, and 6.0 cm when computed
shows the results of our computation on two scenarios Wwithout the outlier landmarks. In the second scenario, the
which the length of the error vector is computed. For each t#ngth of the error vector is 127 cm when computed with
the scenarios, we show position estimates that are compubedlier landmarks, and 1.6 cm when computed without the
with and without the outlier landmarks. In the first scenariautlier landmarks.

direction {cm)

error in y
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VI.

We described an algorithm for estimating the position an[clzl9
orientation of a mobile robot given noisy input data. The
key advantages of our Position Estimator over the approaﬁgl
described in Section IV is that 1) the algorithm runs in
time linear in the number of landmarks, 2) the algorithm
provides a position estimate which is very close to the actd%il]
robot position and orientation, and 3) large errors in some
measurements (i.e., outliers) can be found. (22]

Our algorithm does not use information about the motion
of the mobile robot: the history of position estimates, thg3]
commands that make the robot move, and the uncertainties
in these commands. Procedure Position Estimator could (g
incorporated into a navigation algorithm that keeps track of
this information, for example, by using Kalman filtering. (25]

CONCLUSION
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