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Mobile Robot Localization Using Landmarks
Margrit Betke and Leonid Gurvits

Abstract—We describe an efficient method for localizing a
mobile robot in an environment with landmarks. We assume
that the robot can identify these landmarks and measure their
bearings relative to each other. Given such noisy input, the
algorithm estimates the robot’s position and orientation with
respect to the map of the environment. The algorithm makes
efficient use of our representation of the landmarks by complex
numbers. The algorithm runs in time linear in the number of
landmarks. We present results of simulations and propose how
to use our method for robot navigation.

Index Terms—Landmark navigation, map algorithms, mobile
robot localization, robotics, triangulation.

I. INTRODUCTION

W E DESCRIBE AN efficient algorithm for localizing a
mobile robot in an environment with landmarks. The

robot has sensors that both identify landmarks and measure
their bearings relative to each other. Such sensor information
is generally uncertain and contains noise. Given the positions
of possibly misidentified landmarks on a 2-D map of the
environment and noisy measurements of their bearings relative
to each other, the algorithm estimates the robot’s position with
respect to the map of the environment. The algorithm makes
efficient use of the geometry of the problem; specifically, the
representation of the landmarks by complex numbers. The
algorithm runs in time linear in the number of landmarks.
Results of simulations are presented that explore the strength
of the algorithm.

Why is mobile robot localization important? A robot cannot
accurately execute its commands. As a mobile robot moves
through its environment, its actual position and orientation
always differs from the position and orientation that it is
commanded to hold. Wheel slippage is a major source of error.
The errors accumulate and the location uncertainty increases
over time. Dead-reckoning is not sufficient to locate the robot.
Therefore, sensory feedback is needed to locate the robot in
its environment.

Consider an autonomous agent, which could be a mobile
robot or a human traveler, who uses a map to navigate through
an environment that contains landmarks. The landmarks are
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marked on the agent’s map. The autonomous agent also has a
tool that can measure angles. The agent may use the following
algorithm to identify its location in the environment:

1) identify surrounding landmarks in the environment;
2) find the corresponding landmarks on the map;
3) measure the bearings of the landmarks relative to each

other;
4) compute your position efficiently.

If the first three steps can be executed without errors three
landmarks are sufficient to compute the position of the agent,
unless the agent’s position and these three landmarks either
form a circle, or lie on one line. Then the localization problem
does not have a unique solution.

However, in real life an agent makes two kinds of mistakes:
1) some angles are measured with small errors and 2) some
landmarks are misidentified. Another source of mistakes could
be errors in the map itself. Suppose that the majority of
mistakes are of the first type. In this situation we address the
following problems:

• estimating the position and orientation of the agent effi-
ciently;

• finding misidentified landmarks and large angle measure-
ment errors.

An algorithm is presented that estimates the agent’s position
in operations where is the number of landmarks on
the 2-D map. Large errors due to misidentified landmarks and
erroneous angle measurements can be found, discarded and the
algorithm can be repeated without them with improved results.

Our work is motivated by a mobile robot called Ratbot that
was built at the Learning Systems Department at Siemens
Corporate Research. Ratbot is used as a test bed for vari-
ous machine learning approaches to robot navigation. Ratbot
navigates through the corridors of the building at Siemens
Corporate Research. It is equipped with a camera that points
upwards onto a reflective ball which acts like a mirror of the
surroundings (see Fig. 1). The camera setup is due to Judd
[1]. Straight lines of objects like picture frames, doors, and
walls look like arcs in the images taken by Ratbot’s camera.
Only a circular, one-dimensional strip of the brightness of
each image is analyzed. Landmarks like doors, pictures, and
fire extinguishers appear as dark bands on a strip. The strips
provide information on the bearing of one landmark relative
to another landmark, but not on the distance of the landmarks
to the camera (i.e., depth information).

To find the corresponding features of an image that is taken
during navigation and an image that is taken in advance and
stored in a database, only the strips of the two images need
to be compared. Therefore, the correspondence problem, i.e.,
the problem of identifying features in two images that are the
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Fig. 1. Illustration of a robot with a camera setup that provides “fish-eyed”
circular images of the surroundings.

projections of the same object in the environment, is much
easier for pictures taken by Ratbot. Only one-dimensional
strips of pixel values of two pictures need to be compared.
Hancock and Judd provide an algorithm that finds matching
features in two image strips [2].

Once corresponding landmarks are identified, a description
of the matching landmarks within the global map of the robot’s
environment is given. The map of the environment is a two-
dimensional description of the office building through which
the robot navigates. The position of the robot with respect to
this map is unknown and needs to be determined.

Our position estimation algorithm has been used by Greiner
and Isukapalli [3] to determine which of the landmarks that
are visible to Ratbot are useful for its position estimate.

Our localization algorithm is not restricted to robots with a
similar camera system as Ratbot’s. Our techniques are general
and may be used for other camera setups. The algorithm could
be used to localize a robot that moves in an assembly plant or
to localize an intelligent vehicle in a city.

The paper is organized as follows. Section II describes
the work related to our problem. Section III gives a formal
description of our problem. Section IV discusses how the
robot’s position can be estimated using a triangulation ap-
proach. Section V describes our position estimation algorithm
which uses a different approach that represents landmarks with
complex numbers. Section VI proposes how to incorporate our
algorithm in an on-line navigation algorithm that estimates the
robot’s position while the robot is moving.

II. RELATED WORK

In recent years several authors have used triangulation
approaches for mobile robot localization. Triangulation is a
well-known technique for finding a position by means of
bearings from fixed points in the environment.

Sugihara [4] addresses a version of the localization problem
where the points in the environment look identical (to the
contrary, we use landmarks that are distinguishable). The robot
measures the direction of rays each of which emanates from
the robots position and “pierces” through an observed point.

Sugihara gives an algorithm for finding the robot’s
position and orientation such that each ray pierces at least one
of the points in the environment. Avis and Imai [5] and
Krotkov [6] extend Sugihara’s result to the case that angle
measurements include errors.

Sutherland and Thompson [7] address the localization prob-
lem usingdistinguishablelandmarks in the environment (as we
do). They show that for a given error in angle measurement,
the size of the localization error varies depending on the
configuration of landmarks.

There is a wide variety of approaches to handle position
uncertainties associated with a navigating robot. Some ap-
proaches differ from our approach in the way the robot’s
environment is represented, e.g., Brooks [8], Mataric [9], Elfes
[10], and Levitt et al. [11]–[13].

Many authors use a statistical approach for robot navi-
gation, for example, Chatila and Laumond [14], Smith and
Cheeseman [15], Kosaka and Kak [16], Crowley [17], Leonard
and Durrant-Whyte [18], Watanabe and Yuta [19], Burlina,
DeMenthon and Davis [20], and Matthies and Shafer [21].

Approaches to handle uncertainties in a robot’s position can
also be distinguished by the kind of data available to the robot.
Our method uses visual input. Other sensors that have been
used for position estimation are sonar sensors [22], odometry
[23], GPS [24], and ultrasonic beacons [25].

We address mobile robot localization as a problem of
relating robot-centered information with global map infor-
mation. Relating a camera-centered coordinate system to an
external coordinate system is calledexterior orientation in
the field of photogrammetry (see, for example, [26]). Pho-
togrammetry deals with the problem of how objects in the
environment are related to their images in camera systems with
different orientations and positions. For robot manipulators,
the problem of relating a camera-centered coordinate system
to a world-centered coordinate system is called thehand-
eye transformation. The camera information (eye) is used to
guide a robot arm or a mobile robot (hand) [27]. Our paper
contributes a solution to the problems of exterior orientation
and hand–eye transformation.

III. T HE POSITION ESTIMATION PROBLEM

In this section we define the problem of estimating a robot’s
position and orientation in its environment given a global
map of the environment and bearings of landmarks measured
relative to each other at the robot’s position.

We call the coordinate system of the map of the environment
the external coordinate system. It is spanned by axes
and . We distinguish it from therobot-centeredcoordinate
system spanned by axes and . A landmark can be
described in both coordinate systems. Vector describes
a landmark in the external coordinate system (see Fig. 2,
top). Vector describes a landmark in the robot-centered
coordinate system (see Fig. 2, bottom).

The robot’sposition is described by vector in
the external coordinate system. Vectorlinks the origins of
both coordinate systems. The robot is oriented in direction of
axis . The robot’sorientation is described by angle be-
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(a)

(b)

Fig. 2. (a) Environment with external coordinate system(x(e); y(e)). Two
landmarks,z0 and z

i
, are shown. (b) Environment with robot coordinate

system(x(r); y(r)). The robot’s position is illustrated by a black circled
disk. The robot is orientated in the direction of the coordinate axisx(r).

tween the external coordinate axis and the robot-centered
coordinate axis . Fig. 3 illustrates how an external and
a robot-centered coordinate system are linked given position
vector and orientation angle.

Having a map of the robot’s environment means that the
vectors in the external coordinate system are
given. The robot measures the bearing of each landmark
relative to the direction in which the robot is oriented: Angle

is the angle subtended by landmark vector and axis
for

We call the angle obtained from measuring the bearing of
one landmark relative to another landmark the “visual angle”
between the two landmarks [7].

The robot does not have a way to measure depth, i.e., it does
not know its distance to the th landmark for all .

Note that if the orientation angle is zero then we can
express the vector between two landmarksand as vector

(see Fig. 3).
Now we can formulate our problem: Given the external

positions of landmarks and corresponding
angle measurements , estimate the position and the
orientation of the robot in the environment.

Fig. 3. Environment with external and robot coordinate system: Both vector
z
(e)
i

in the external coordinate system and vectorz
(r)
i

in the robot coordinate
system point to landmarkzi. The robot’s location is defined by position vector
p and orientation angle�.

IV. A T RIANGULATION APPROACH

This section shows how to apply well-known triangulation
techniques to the robot localization problem. First we consider
the localization problem for perfect data, then for noisy data.

A. Triangulation with Perfect Data

If the visual angle between two landmarks and
measured at an unknown positionand the distance between
the landmarks is known, then positionlies on an arc of a
circle spanned by landmarks and [28] (see Fig. 4(a)).

A third landmark is needed to determine position
uniquely: it is the intersection of the circle through landmarks

and and the circle through landmarks and (see
Fig. 4(b)). Note that cannot be determined uniquely if
landmarks and lie on a circle.

One approach to compute positionis to describe the two
circles analytically and determine their intersection. The law of
cosine can be used to compute the radius of each circle given
the visual angles and distances between the landmarks. The
coordinates of the center of the circles can then be computed
from the coordinates of landmarks and . Once vector

is known, the orientation of the robot, i.e., the direction of
is known.

Another way of triangulating position is to determine the
distance between the robot and the three landmarks. We follow
this approach in the next section.

B. Triangulation with Noisy Data

The triangulation method described above does not compute
the exact position if the input data is noisy. Using several
landmarks yields a more robust position estimate. Given
landmarks, there are combinations of three landmarks
that can be used to compute position estimates by the
triangulation method described above. One way of combining
these estimates to obtain a final position estimate is to compute
their average.

In the following we outline a different triangulation method
that uses landmarks and is based on estimating the distance
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(a)

(b)

Fig. 4. Triangulation with perfect data: (a) Scenario with two landmarks:
The robot’s position is somewhere on the arc shown. The robot is oriented in
the direction ofx(r). (b) Scenario with three landmarks: The robot’s position
is at the point of intersection of the two arcs shown. The robot’s orientation
can be uniquely determined fromx(r).

between the robot and the landmarks. (Note that this is not
the method that we propose.)

Applying the law of cosine, the relationship between two
landmarks and can be written as

where is the (known) distance between and is
the visual angle between and at the robot’s position, and

and are the unknown distances to the landmarks
(see Fig. 5). Angle is computed from measured angles
and : .

We can apply the law of cosine to all possible sets of two
landmarks and get a system of equations which is overdeter-
mined and can be solved using a least squares approach. Once
the lengths are found, another overdetermined
set of equations needs to be solved to find the position

of the robot:
for where and are the coordinates of .
Once vector is estimated, we can get an estimate for the
orientation angle by computing vector for
some and then .

In the following we illustrate the method with three land-
marks and (see also Fig. 5). The law of cosine gives
us

Fig. 5. Position estimation using the law of cosine.

First we could solve this system of nonlinear equations using
a least squares method. (A review of the least squares method
for solving linear equations is given in Section V-A.) Then we
could express the now known lengths and
by the (unknown) coordinates of the position of
the robot and the coordinates of the landmarks

Subtracting the second and third equation from the first we get
two equations linear in the unknowns and :

Finally, we can solve for and and obtain an estimate for
the position .

Triangulation with noisy data as described above is based
on solving nonlinear equations with complicated closed-form
solutions. However, standard algorithms that provide least-
squares solutions for large numbers of nonlinear equations
take too long for real-time robot navigation. In the following
section, we introduce a newlinear-timeapproach to localizing
a mobile robot which is based on a least-squares solution of
a linear set of equations.

V. LINEAR POSITION ESTIMATION

This section describes an efficient localization algorithm
that runs in time linear in the number of landmarks. Instead
of using the triangulation method described above, we use a
method based on the complex number representation of the
landmarks. This representation is the key idea to get a set of
linear equations whose solution is a set of position estimates.
(Triangulation methods may also provide a set of position
estimates but as a solution to nonlinear equations.) We describe
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this set of linear equations as a vector equation. To solve this
particular vector equation, we do not need an matrix
inversion algorithm. Instead we introduce an algorithm
which takes advantage of the special structure of the matrix
and the right side of the vector equation. In the following, we
describe how to set up and solve this vector equation.

A landmark can be written as a complex number in the
robot-centered coordinate system. For each landmarkwe
have an expression

for

where length is the unknown distance of the robot to
landmark , angle is the measured angle between
and the coordinate axis , and .

We pick a reference landmark and compute the angles
for . (Landmark may be chosen

to be the most reliable landmark if such reliability information
is available.) Dividing the complex number representation of
landmarks by for yields a set of
equations that includes the visual anglesbetween landmark

and landmark

(1)

Given that , (1) becomes

for

After some algebra we obtain a set of equations whose
unknowns are vectors and and ratios , for

for (2)

To remove the dependence on , we substitute the left-hand
side of (2) with the expression on the right-hand side for a
different index

(3)

for and . The only unknowns in (3) are
vectors and ratios . Since the angles in
(3) are independent of the orientation of the robot-centered
coordinate system, we can rewrite (3) for a robot-centered
coordinate system with a different orientation

(4)

for and , where landmark is described
by vector and . We

Fig. 6. External coordinate system spanned byx
(e) andy(e), robot-centered

coordinate system spanned byx(r) and y(r) and robot-centered coordinate
system spanned bŷx(r) andŷ(r). The robot is facing in direction of axisx(r).

choose the robot-centered coordinate system that is oriented
the same way as the external coordinate system. Thus, its axes

and are parallel to axes and , respectively
(see Fig. 6). We pick this particular coordinate system, because
we can then write

for which yields equations

(5)

for and , whose only unknowns are ratios
.

Note that using the robot-centered coordinate system that is
spanned by axes and doesnot imply that the robot
knows its orientation in the environment a priori. It does not
know its orientation angle .
Instead, once (5) are solved we can compute vectorwhich
can then be used to compute the robot’s orientation

(6)

as illustrated in Fig. 6.
The set of (5) can be transformed into a matrix equation

where , and can be defined as follows: Vector
is the vector of the unknown ratios of the length of

vectors . Vector is a dimensional vector
of differences of complex numbers
and matrix is a matrix consisting of complex
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numbers

...

...

...

...

and

...

...

...

...

A solution of equation yields a vector whose
components can be used to solve equation

(7)

for some to obtain vector . (This equation corresponds to
(2) and describes the vectors with respect to the robot-centered
coordinate system spanned by axes and .) Once
is known, the robot position is

Note that the system of linear equations is overde-
termined. We have unknowns and
equations. These equations may be inconsistent, since we
have measurement errors. Therefore, we use a “least squares
method” to find a solution for which the average error in the

equations is minimized.

A. Least Squares Errors and the Pseudo-Inverse

The “least squares method” is a standard method for solving
overdetermined systems of equations [29]. In the following we
rederive this method for our particular overdetermined system
of equations.

To solve the matrix equation we choose ratio vector
so as to minimize the “average” error in the

equations. We define the average error by the sum of squares

If there is an exact solution to , the error is .
In practice it is unlikely that there is no error, therefore, we
solve the minimization problem

The necessary condition of the squared errorto be minimal
is that its derivative with respect to vectormust be zero.
The derivative is

where is the conjugate transpose of. Setting the deriva-
tive to zero gives us

provided matrix is nonsingular. In Section V-C we
give the necessary and sufficient conditions for being
nonsingular and argue that they will almost always be fulfilled
in practice.

Matrix is often called thepseudo-
inverse of matrix (see for example [30], [29]). In the
following section we describe an algorithm called Position
Estimator which efficiently calculates vector

such that the average error in the equations
is minimized.

B. The Position Estimation Algorithm

In this section we describe procedure Position Estimator
that estimates the position and the orientation of the robot.
In the description of the algorithm we use two kinds of
multiplications of complex numbers and

: the standard complex multiplication

and the inner product

where is the conjugate of . For
notational convenience we write the inner product of complex
numbers and as .
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Fig. 7. Robot coordinate system defined as az-plane in the proof of
Lemma 3.

Procedure Position Estimator takes as an input the positions
of the landmarks (as given in the external
coordinate system) and the angles .
Position Estimator

1. sum-of-
2. for to (initialization)
3.
4.
5. sum-of- sum-of- (calculates )
6.
7. for to (calculates )
8. sum-of-
9. Ratios-Calculator (returns )

10. for to
11.

12.
13. (robot position )

14.

After the initialization of vectors and in
lines 2–6, Position Estimator first computes vector
in lines 7 and 8 as follows: For each component of vector

the procedure computes

(8)

Procedure Position Estimator then determines
by calling procedure Ratios-Calculator in

line 9. It next calculates position estimates
(lines 10–12).

In line 11 of procedure Position Estimator, a set of
solutions for the position of landmark in
the robot-centered coordinate system is calculated using (7)

for

In line 13 of procedure Position Estimator, a set of esti-
mates for the robot position is calculated using the
solutions for the position of landmark .

If there is no noise in the measurements, the vectors
are the same for all indexes. In practice there will be noise,
so we take the centroid

of the position estimates as an average to obtain an
estimate of the position of the robot (line 13 of procedure
Position Estimator). In line 14 the orientation angle is com-
puted using (6). (Note that taking the centroid may not be the
best way to average theestimates. We are currently working
on determining the best averaging coefficients [31]. They may
not be the same for the- and -coordinates of .).

Procedure Ratios-Calculator takes as an input the vectors
and and returns the vector . First Ratios-
Calculator calculates vectors and

where is the real coordinate of and
is the imaginary coordinate of . Then it exploits the special
form of matrix

...

Instead of inverting the matrix directly, we write matrix
as a sum of a diagonal matrix and two matrices that

are outer products (or Grammian matrices, see [30]). In this
special form, the matrix can be inverted efficiently

where is a diagonal matrix whoseth entry is
, and the outer product is defined as follows:

...

Matrix can be written analogously.
Then

. In this form
can be calculated (without inverting directly)
using the following well-known lemma [30]:

Lemma 1: If matrix is nonsingular and ,
then

Proof: The proof follows directly by verifying equation

where is the identity matrix.
We apply the formula given in Lemma 1 twice to invert

matrix . (We show in Section V-C that the requirements
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(a)

(b)

Fig. 8. Simulation results using algorithm Position Estimator on an input
of 11 landmarks and angle measurements with constant error. The error
kp

actual
� pk in meters (top) and the errorj�

actual
� �j in degrees (bottom)

are shown as functions of�' in degrees.

of Lemma 1, i.e., matrix is nonsingular and ,
are indeed met.)

Since , we
can apply Lemma 1 to and and get

(9)

Applying Lemma 1 again, the first term can be ex-
pressed as

(10)

Vector in (9) is calculated by
applying the formula given in Lemma 1 which yields

(11)

The inverse of a diagonal matrix is a matrix whose entries
on the diagonal are inverted. Thus, theth diagonal entry of

is .

Fig. 9. Simulation results using algorithm Position Estimator on an input of
11 landmarks and angle measurements witherror uniformly distributed over
[��';�']where�' ranges from 0 to 5�. The errorkp

actual
�pk in meters

is shown as a function of�' in degrees.

We can now obtain the full expression for
by substituting

, and into (9).
If the th landmark is very close to the robot’s position, the

least squares method described above may yield a negative.
In this case ratio should be positive, but almost zero. Thus,
we assign it to be zero in procedure Ratios-Calculator:
Ratios-Calculator

1. compute diagonal matrix
2. compute vector using (10)
3. compute vector using (11)
4. compute vector using (9)
5. for to
6. if then

C. Correctness and Analysis of Position Estimator

In order to establish the correctness of procedure Position
Estimator we first need to prove the following lemmas. We
use the notation to denote a diagonal matrix
whose th diagonal element is . Given some matrix we
write if is positive definite and if is
positive semidefinite.

Lemma 2: Let matrix
, and . Matrix

is nonsingular if and only if the vectors
and are linearly independent.

Proof: Since , we know that is singular
if and only if there exists a vector such that

or equivalently

Note that for any numbers we know that
and the equality holds if and only

if for all indexes and . Therefore, is singular
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(a) (b)

(c) (d)

Fig. 10. Distribution of errors for�' = 1
�. (a) The distribution of the length of error vectorkp

actual
� pk with mean 19.7 cm and standard deviation

23.9 cm. (b) The distribution of the error in orientationj�
actual

� �j with almost zero mean and standard deviation 0.017�. (c) The distribution of error
in x position jp

x;actual � pxj with mean 0.93 cm and standard deviation 0.22 cm. (d) The distribution of error iny position jpy;actual � py j with
mean 10.6 cm and standard deviation 21.4 cm.

if and only if

for all indexes and . This means that and
for some constants and . Thus we get that
which means that and are linearly dependent.
The following lemma gives the geometrical interpretation of
Lemma 2.

Lemma 3: Matrix is singular
if and only if the landmarks and the robot’s position are
arranged in a perfect circle or on a line.

Proof: According to Lemma 2 we have to find a geo-
metric criterion for vectors and to be linearly dependent.
The rank of the matrix whose two columns consist
of vectors and is one if vectors and are collinear.
Note that

where is the matrix whose rows are vectors and .
By definition (see Section V-B) we have

since , for . Therefore, it is

sufficient for the proof to find the geometrical interpretation
of the collinearity of the 2-D vectors , for . That
is, we need a geometrical interpretation for the existence of
a complex number such that , where is a real
number.

We also have

where vector connects landmark with the landmarks
and is the visual angle between and from the

robot’s position for as illustrated in Fig. 7. (Note
that is not a vector in the robot-centered
coordinate system.)

Without loss of generality, we use a robot-centered coor-
dinate system in which the-axis is aligned with the vector
to landmark (see Fig. 7). The landmarks in this coordinate
system are defined as for . Thus,
can also be expressed as

where is defined to be . Then vectors ,
are linearly independent if for all indexes

for some fixed complex number and real . We can also
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(a) (b)

Fig. 11. Computed positions of the robot in the two-dimensional environment from 200 sets of 11 landmarks for�' = 1� (a). (b)�' = 5�.

write this as

for which is equivalent to and

for . We can view this as a mappingof points
in the complex -plane into the complex -plane

where each landmark is a point in the -plane

This mapping is called a M̈obius transformation (see for
example [32]). The M̈obius transformation maps the line

in the -plane into a circle in the -plane. Since
, the circle passes through the origin of the-plane.

Thus, landmarks and the robot at (0,0) lie on a
circle if the vectors , are linearly independent.
Landmark lies on the same circle since

Note that we assumed . If , then we
know that which means that .
In this case it follows that all landmarks lie on the
real axis of the -plane. Thus, the landmarks and the robot
lie on one line.

The properties of a M̈obius transformation also hold for
inverse transforms. Therefore, given landmarks arranged on a
circle or on a line, it follows that vectors , are
linearly independent and matrix is singular.

The singularity condition is easily tested through some
preprocessing that makes sure that the landmarks are not all
arranged in a circle or on a line when procedure Position
Estimator is called. In practice it is highly unlikely that the
landmarks all lie on a perfect circle or line including the
robot’s position.

Lemma 4: If landmarks are correctly identified and there
is no noise in the measurements of the visual angles between
the landmarks, then procedure Position Estimator returns the
actual position of the robot.

Proof: Let be the vector to theth landmark
in the robot coordinate system that is oriented as the external

Fig. 12. Simulation results using algorithm Position Estimator on an input
of 11 landmarks surrounding the robot and angle measurements with error
uniformly distributed over[��';�'] where�' ranges from 0 to 5�. The
error kp

actual
� pk in meters is shown as a function of measurement errors

in degrees.

coordinate system. Note that the actual position of the robot
is at . The algorithm calculates

which is equivalent to

Thus, the algorithm calculates .
Lemmas 2 and 3 establish the correctness of our algorithm:

Theorem 1: Given a set of noisy measurements of land-
marks which are not all arranged in a circle or line, algorithm
Position Estimator that determines the position of the robot
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(a) (b)

(c) (d)

Fig. 13. Experiments in which the robot is surrounded by 11 landmarks. On the left, the distributions of the length of error vectorskp
actual

� pk for �'
uniformly distributed within [-1,1] and [-5,5]. On the right, Computed positions of the robot in the two-dimensional environment for�' = 1 and 5�.

such that the square of errors in the equations is
minimized.

Theorem 2: The algorithm Position Estimator runs in time
linear in the number of landmarks.

Proof: Due to the special form of vector it can
be calculated in time linear in by first computing
and and then computing each entry of vector
following (8).

Algorithm Position Estimator calls procedure Ratios-
Calculator which calculates vector by substituting matrix

and vectors and into (9). Matrix
can be computed in time if we represent this

diagonal matrix by a vector of its diagonal entries. Theth
diagonal entry of is . Using this
vector representation means that multiplying matrix
with vectors and can also be done in linear time. Dot
products and take time
to compute. Given vectors and and
scalars and , the computation
of (10) can be concluded in time.

With a similar argument we can show that (11) and (9) can
be computed in linear time.

D. Quality of Position Estimator

This section reports results of simulation experiments using
procedure Position Estimate. In the experiments, the actual

robot position is compared to
the position that is computed by procedure Posi-
tion Estimate. The actual robot orientation is compared
to the orientation that is also computed by procedure Position
Estimate.

In the experiments, the errors and
in the - and -coordinates of the position are computed.

The length of the error vector and the orientation
error are also computed.

Without loss of generality, the actual robot position
is assumed to be at the origin of the map, i.e.,
and the robot is assumed to be oriented in the direction of the

-axis, i.e., 0 .
First we randomly place 11 landmarks in a 10 m10 m

area using a uniform distribution where the robot is at a corner
of this area. Note that this scenario uses only a quarter of
the robot’s surrounding area. It assumes that the robot cannot
get omnidirectional input as Ratbot can, but instead has a
conventional camera setup.

In an attempt to simulate worst-case measurement errors,
we first add a constant fraction of a degree toeachangle.
Fig. 8 shows results of experiments in which the added noise

ranges from 0 to 5. We average our results over 100 000
scenarios with 11 landmarks, distributed uniformly in the 10
by 10 meter area. The length of the error vector
is 57 cm for 1 noise, 1.1 m for 2 noise, and 2.57 m for 5
for noise ineveryangle. The error in the position angleis
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2 for 1 angle noise, 4.2for 2 angle noise, and 9.8for 5
angle noise.

Next we show results of experiments in which the an-
gle errors are not fixed, but uniformly distributed between

where also ranges from 0 to 5. Figs. 9 and
10 show the results of the experiments with 40 000 different
environments that include 11 landmarks. Fig. 9 shows the
length of the error vector as a function of the visual angle
error. The length of the error vector is 19 cm for
angle noise randomly chosen within [1 ,1 ], 38 cm for angle
noise randomly chosen within [2 ,2 ], and 90 cm for angle
noise randomly chosen within [5 ,5 ]. The error in position
angle is on average zero.

Fig. 10 shows how the errors,
, and are distributed for

. Fig. 11 shows 200 positions of the robot in the two-
dimensional environment computed by Position Estimator with
input error 1 and 5 . Note that the distributions
for position errors and are almost
normal.

In the next set of experiments, the robot is in the center of
a 20 m 20 m area with eleven landmarks. We expect better
results for this scenario in which the robot can take advantage
of information provided by all of its surrounding. Indeed, our
results show that the error in position has length 8.9 cm for

uniformly distributed within [ 1,1], length 17.6 cm for
uniformly distributed within [ 2,2], and length 42.6 cm

for uniformly distributed within [ 5,5]. The results of the
experiments are summarized in Figs. 12 and 13.

Note that procedure Position Estimator computesposition
estimates and averages them to obtain estimate
. Among , there may be someoutliers that are

not very close to the final position estimate. However,
in our experiments we observed that there is a one-to-one
correspondence between each landmarkand estimate .
Each outlier corresponds to either a misidentified landmark

or a noisy angle measurement for landmark. Fig. 14
illustrates this behavior of procedure Position Estimator. Given
an input of 21 landmarks , the procedure computes
20 position estimates . To model outlier errors
resulting either from two noisy angle measurements or from
two misidentified landmarks, we add a fixed error of 20to
two arbitrary angles. The other angles have an additive error
uniformly distributed within [ 1 ,1 ].

Our experiments show that the outlier landmarks produce
position estimates that are far from the actual position of
the robot compared to the other estimates. So instead of
taking the centroid of all position estimates in
line 12 of Position Estimator, we can obtain better results
if we modify the algorithm such that we discard the outlier
position estimates and calculate the centroid of the remaining
points.

However, it is even better to call Position Estimator on an
input of 19 landmarks (without the outlier landmarks). Fig. 14
shows the results of our computation on two scenarios in
which the length of the error vector is computed. For each of
the scenarios, we show position estimates that are computed
with and without the outlier landmarks. In the first scenario,

(a)

(b)

(c)

Fig. 14. Two experiments with 21 landmarks including two outliers. In the
first experiment (a), position estimatep computed with outliers is a (2.3 cm,
0.7 cm) andp computed without outliers is at (0.1 cm, 0.6 cm). In the second
experiment (b) and (c), position estimatep computed with outliers is at (-12.3
cm, –3.4 cm) andp computedd without outliers is at (0.1 cm, 0.1 cm).

the length of the error vector is 24.0 cm when computed
including outlier landmarks, and 6.0 cm when computed
without the outlier landmarks. In the second scenario, the
length of the error vector is 127 cm when computed with
outlier landmarks, and 1.6 cm when computed without the
outlier landmarks.
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VI. CONCLUSION

We described an algorithm for estimating the position and
orientation of a mobile robot given noisy input data. The
key advantages of our Position Estimator over the approach
described in Section IV is that 1) the algorithm runs in
time linear in the number of landmarks, 2) the algorithm
provides a position estimate which is very close to the actual
robot position and orientation, and 3) large errors in some
measurements (i.e., outliers) can be found.

Our algorithm does not use information about the motion
of the mobile robot: the history of position estimates, the
commands that make the robot move, and the uncertainties
in these commands. Procedure Position Estimator could be
incorporated into a navigation algorithm that keeps track of
this information, for example, by using Kalman filtering.
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