

User guide for TERRA_URB v2.2: The urban-canopy land-surface scheme of the COSMO model

Hendrik Wouters Mikhail Varentsov Ulrich Blahak Jan-Peter Schulz Ulrich Schättler Edoardo Bucchignani Matthias Demuzere

April 18, 2017

Figure 1: The urban-atmospheric interactions resolved by TERRA_URB.

1 Introduction

The urban-canopy land-surface scheme TERRA_URB (*Wouters et al.*, 2016, 2015) offers an implementation of urban physics in the COSMO(-CLM) model (*Doms et al.*, 2011; *Rockel et al.*, 2008; *Steppeler et al.*, 2003) by modifications to the input data, the soil-vegetation module TERRA_ML (*Schulz et al.*, 2016) and the land-atmospheric interactions. The central goal is to perform urban-climate research and weather forecasting for cities with the COSMO(-CLM) model. Since version 1 (released in May 2014), it consists of the following features:

- Bulk representation of the urban canopy (*De Ridder et al.*, 2012; *Demuzere et al.*, 2008), taking appropriate parameters for albedo, emissivity, heat capacity and heat conductivity and aerodynamic roughness length.
- Anthropogenic heat emission (Flanner, 2009)
- 'Bluff-body' thermal roughness length parameterisation (*Brutsaert*, 1982; *Kanda et al.*, 2007; *Demuzere et al.*, 2008)
- Impervious water storage based on a density distribution of water puddles (*Wouters et al.*, 2015)
- A poor man's tile approach for resolving the urban canopy alongside natural land

Since version 2 (released February 2016), the following features have been added:

- Application of the Semi-empirical URban canopY dependency parameterisation SURY (*Wouters et al.*, 2016). Based on urban experimental studies, it converts urban-canopy parameters containing the three-dimensional urban-canopy information into bulk parameters, see also Table 1.
- Application of TURBTRAN, the TKE-based surface-layer transfer scheme of the COSMO model.
- Buildings and pavements are represented on top of the natural soil (instead of a separate 'paved soil-type'). It enables a comprehensive representation of the heterogeneous urban environment that consists of impervious surfaces, bare soil, vegetation, water puddles and snow.
- Inclusion of the new bare-soil evaporation resistance formulation (*Schulz and Vogel*, 2016) and the vegetation skin-temperature parameterization (*Schulz and Vogel*, 2017; *Viterbo and Beljaars*, 1995).

An overview of the urban-atmosphere interactions resolved by TERRA_URB is given in Fig. 1. The technical information of TERRA_URB can be found in the appendix of *Wouters et al.* (2016).

TERRA_URB is being applied in both offline and online applications for many cities around the world (*Demuzere et al.*, 2017; *Wouters et al.*, 2016, 2015), including Toulouse, Basel, Singapore, Vienna, Turin, and urban areas in Belgium. It has also been compared to other urban land-surface schemes for Moscow, Zürich, Basel and Berlin (*Trusilova et al.*, 2016) in the Urban Model Intercomparison project of the CLM-community.

2 Configuration

2.1 First steps

The TERRA_URB model package cclm-sp_2.4_terra_urb_2.2.tgz is available on the CLM-community project website, see http://redc.clm-community.eu/projects/wg-soilveg/files. This is basically a copy of the standard COSMO-CLM model package cclm-sp_2.4.tgz (*Rockel et al.*, 2008) - including both the INT2LM and COSMO-CLM model code cosmo5.0_clm9 - to which TERRA_URB is supplemented. As such, the TERRA_URB model package works in a similar way as the standard COSMO-CLM model package. As a first step, one requires a working setup with the standard package, see COSMO documentation (*Schättler et al.*, 2009) and the COSMO(-CLM) training courses. Afterwards, the TERRA_URB model package can be used by following the configuration steps described in the next sections. In order to have access to the TERRA_URB model package, you need to be member of the SOILVEG working group of the CLM-community (http://www.clm-community.eu).

urban-canopy parameters (input of SURY)		
parameter name	symbol	default values
substrate albedo	α	0.101
substrate emissivity	ϵ	0.86
substrate heat conductivity	λ_s	$0.777{ m Wm^{-1}K^{-1}}$
substrate heat capacity	$C_{v,s}$	$1.25 \times 10^6 \mathrm{J m^{-3} K^{-1}}$
building height		$15\mathrm{m}$
canyon height-to-width ratio	$\frac{H}{W}$	1.5
roof fraction	R	0.667
bulk j	parameters (output of SURY	<i>X</i>)
parameter name	symbol	surface-level values corre-
		sponding to urban-canopy
		defaults
bulk albedo	$\alpha_{ m bulk}$	0.081 (snow-free)
bulk emissivity	$\epsilon_{ m bulk}$	0.89 (snow-free)
bulk heat conductivity	$\lambda_{ m bulk}$	$1.55{ m W}{ m m}^{-1}{ m K}^{-1}$
bulk heat capacity	$C_{v,\mathrm{bulk}}$	$2.50 \times 10^{6} \mathrm{J m^{-3} K^{-1}}$
bulk thermal admittance	$\mu_{\text{bulk}} \left(= \sqrt{C_{v,\text{bulk}} \lambda_{\text{bulk}}}\right)$	$1.97 \times 10^3 \mathrm{Jm^{-2}K^{-1}s^{-1/2}}$
aerodynamic roughness length		$1.125\mathrm{m}$
inverse Stanton number	$ kB^{-1}$	13.2 [in case that $u_* =$
		$0.25{ m ms^{-1}}$

Table 1: The upper panel shows the urban-canopy parameters, which are taken as input for the Semi-empirical URban canopY dependency parameterisation (SURY) implemented in TERRA_URB. The default values are adopted from the medium density urban class in *Loridan and Grimmond* (2012). The lower panel shows the bulk parameters, which is the output of SURY. Herbey, u_* refers to the friction velocity. The table is adapted from *Wouters et al.* (2016).

Namelist ID	Full name	$Symbol^a$	Unit	I/O
ISA	Impervious surface area	$f_{\rm imp}$		Ι
AHF	Annual-mean anthropogenic heat flux	-	${ m Wm^{-2}}$	Ι
UCS_SALB^b	Urban-canopy substrate shortwave albedo	α	-	Ι
UCS_TALB^b	Urban canopy substrate thermal albedo	$(1-\epsilon)$		Ι
$\texttt{UCS_LAM}^b$	Urban canopy substrate heat conductivity	λ_s	$\mathrm{Wm^{-1}K^{-1}}$	Ι
UCS_RHOC^b	Urban canopy substrate heat capacity	$C_{v,s}$	${ m J}{ m m}^{-3}{ m K}^{-1}$	Ι
UC_H^b	Building height	H	m m	Ι
UC_HTW^b	Canyon height-to-width ratio	$\frac{H}{W}$	1	Ι
UC_ROOF ^b	Roof fraction	-	1	Ι
KBMO	Inverse Stanton number	κB^{-1}	-	Ο
W_IMP	Water-storage content on the impervious surface	$w_{\rm imp}$	${ m kg}{ m m}^{-2}$	Ο
	area	•		
W_ISA	Water-storage content on the impervious surface	$w_{\rm imp} f_{\rm imp}$	${ m kg}{ m m}^{-2}$	Ο
	area (weighted according to the ISA fraction)	1 - 1		
AHF_NOW	Anthropogenic heat flux of the current timestep	Q_{A}	${\rm kgm^{-2}}$	0

^asee (Wouters et al., 2016)

^bFixed values are hardcoded. For 2D varying fields, please contact Hendrik Wouters and Mikhail Varentsov.

Table 2: Additional namelist variables provided by TERRA_URB

2.2 Urban parameters with EXTPAR

TERRA_URB requires additional urban input parameters, which are listed in Table 2. These urban-canopy parameters are interpreted in TERRA_URB by means of the SURY framework. Please note that SURY is fully implemented in the TERRA_URB model code, so there is no need to apply the standalone SURY Python module (https://github.com/hendrikwout/sury).

The mandatory fields are the Impervious Surface Area (ISA) and the Annual-mean anthropogenic heat Flux (AHF). These fields can be generated with the EXTPAR Consortium version 3 through the WebPEP on http://www.clm-community.eu. Several options are available, which are listed in Table 3. Please note that the quality of these parameter fields largely depends on the region. As such, one needs to perform a quality assessment, and - when necessary - look for other (local or global) parameter databases for reliable urban-climate modelling. Still, the provided parameter fields should be suitable at least for model testing purposes. The other urban-canopy parameters provisionally obtain fixed values over the entire domain according to table 1 in TERRA_URB, and they are not provided yet by EXTPAR out-of-the-box. However, there is a TERRA_URB implementation available that allows 2D varying urban-canopy parameter fields. If you are interested, please contact Hendrik Wouters and Mikhail Varentsov. If a user know about a new (global) product on ISA or AHF, he or she can provide this information to the developers of the scheme.

		ISA: In	apervious Surface Area			
Filename	Res	Area	4	WebPEP switch	Source notes	
NOAA_ISA_16bit.nc	30	- N°57	65°S 180°W - 180°E	1 (coarse)	NOAA; Global dataset	
EEA_ISA_4_16bit.nc	10	$- N^{\circ}00$	$12.5^{\circ}N 60^{\circ}W - 60^{\circ}E$	2 (fine)	From European Environmental	
					Agency (Maucha et al., 2010); recommended for Europe	
HA	IF: An	nual-me	an anthropogenic Heat	$Flux [W m^{-2}]$		
Filename	Res	Area		WebPEP switch	Source notes	
AHF_2006_2.5min_latreverse.nc	2.5'	- N°00	90°S 180°W - 180°E		Flanner (2009); Global dataset	
AHF_2006_NDAAISAredistr.nc	30	- N°57	65°S 180°W - 180°E	1 and 2	Flanner (2009), redistributed to	
					NOAA ISA	
AHF_2006_EEAISAredistr_4_16bit.nc a	10	- $N_{\circ}06$	$12.5^{\circ}N 60^{\circ}W - 60^{\circ}E$		Flanner (2009), redistributed to	
					EEA ISA; recommended for Eu-	
					rope	
^a not available out-of-the-box in EXTPAR	 Please 	se conta	ct: Hendrik Wouters			

asets for TERRA_URB
d EXTPAR dat
verview of options
Table 3: O

2.3 Configuration of INT2LM for the additional urban parameters

Afterwards, the fields need to be transferred to the initial and boundary conditions for the COSMO(-CLM) model by INT2LM. Hereby, the following switches are required:

&CONTRL

```
...
l_isa = .TRUE.
l_ahf = .TRUE.
...
```

It should be noted that there is another switch 'lurban' in EXTPAR that generates the field called 'URBAN'. However, this field is not used by TERRA_URB.

2.4 Configuration of the COSMO(-CLM) model

2.4.1 TERRA_URB

Activation of TERRA_URB can be achieved by turning on the main switch:

&PHYCTL

```
...
l_terra_urb = .TRUE.
...
/
```

This switch automatically activates the different components of TERRA_URB listed below, so they don't have to be activated manually. These switches include:

- lurbfab: switch for taking into account the urban canopy (.TRUE. is the default setting in TERRA_URB)
- itype_kbmo_uf: $kB^{-1} = \ln(z_0/z_{0h})$ parameterisation in the surface-layer transfer scheme for the urban fabric. Options are:
 - $\circ~0$: standard from the surface-layer transfer scheme of COSMO5.0
 - 1 (TERRA_URB default): external parameterisation according to Brutsaert/Kanda (Brutsaert, 1982; Kanda et al., 2007; Demuzere et al., 2008)
 - $\circ~2:$ external from Zilitinkevich
- itype_tile. Options are:
 - \circ 0: no tiles
 - 1 (TERRA_URB default): poor man's tile approach for the separate treatment of the urban canopy alongside the natural land.
- itype_ahf. Switch for anthropogenic heat flux. Options are:

- 0: means no anthropogenic heat flux;
- 1 (TERRA_URB default): anthropogenic heat according to *Flanner* (2009); latitudinal, annual, and diurnal-dependent anthropogenic heat flux based on an annual-mean input dataset.
- itype_eisa: type of evaporation from impervious surfaces. Options are:
 - \circ 0: evaporation just like bare soil (of course, not recommended).
 - 1: no evaporation (dry impervious surface).
 - 2 (TERRA_URB default): density function of puddle depths (*Wouters et al.*, 2015).

2.4.2 additional COSMO configuration settings

The following COSMO namelist parameters are known to affect urban-climate modelling (see also *Wouters et al.* (2017)):

- itype_evsl: Parameter to select the type of parameterization for evaporation of bare soil:
 - \circ 1: Bucket version.
 - 2: BATS version (COSMO default).
 - $\circ~3:$ ISBA version.
 - \circ 4: Resistance version (recommended): calculation of bare soil evaporation using the new resistance formulation, see *Schulz and Vogel* (2016). This option is recommended for urban climate modelling.
- itype_canopy: type of vegetation-canopy parameterisation:
 - $\circ 1$: as before, basically no canopy
 - 2: skin-temperature formulation from (Schulz and Vogel, 2017; Viterbo and Beljaars, 1995). The code has been recently developed for COSMO/ICON, and has been added to the TERRA_URB package. Model sensitivity tests demonstrate that this option leads to a better representation of the nocturnal temperatures and urban heat islands (Wouters et al., 2017). Please note that this feature is still at an experimental stage.
- cimpl: value of implicitness of the vegetation-skin temperature parameterisation. The default is 120.
- calamrural: value of skin-layer conductivity for rural areas. The default is $10 \,\mathrm{W}\,\mathrm{m}^{-2}\,\mathrm{K}^{-1}$.
- calamurban: value of skin-layer conductivity for urban areas. The default is $1000 \,\mathrm{W}\,\mathrm{m}^{-2}\,\mathrm{K}^{-1}$.

- tkmmin: minimal diffusion coefficients of vertical turbulent transport for momentum (default is $0.4 \text{ m}^2 \text{ s}^{-1}$).
- tkhmin: minimal diffusion coefficients of vertical turbulent transport for momentum (default is $0.4 \,\mathrm{m^2 \, s^{-1}}$).
- pat_len: length-scale of sub-scale patterns of land, which scales the circulation term (default is 500 m).
- tur_len: maximal turbulent length scale (default is 500 m).
- hd_corr_??[_??]: reduction factors for the horizontal diffusion flux for the different model field variables

The additional information of these parameters can be consulted with the COSMO/INT2LM Namelist-Tool at http://www.clm-community.eu/namelist-tool/namelist-tool_portal/ index.htm.

2.4.3 Additional output variables

TERRA_URB provides an additional set of two-dimensional output fields, which are listed in Table 2. The poor man's tile approach in TERRA_URB provides the tile values of the different surface variables, for which the namelist IDs are T_2M, T_G, T_S, TD_2M, U_10M, V_10M, QV_S, QV_2M, RELHUM_2M, ZO, TCM, TCH, LHFL_S, W_SNOW, H_SNOW, T_SNOW, SNOW_MELT, FRESHSNOW, RHO_SNOW, H_SNOW_M, W_SNOW_M, T_SNOW_M, RHO_SNOW_M, WLIQ_SNOW, QVFL_S, W_I, T_SO, W_SO, W_SO_ICE. Hereby, the natural tile values can be attained by appending the suffix '_1' to the variable ID, whereas the urban-canopy tile value with the suffix '_2'. For example, the surface-atmosphere sensible heat exchange of the urban-canopy tile can be obtained with the namelist ID SHFL_S_2.

3 Final notes

- In case you are using TERRA_URB for your application or research, please provide a reference to *Wouters et al.* (2015, 2016) and *Schulz et al.* (2016).
- TERRA_URB brings an additional computational cost of about 7% over the original running time of the COSMO(-CLM) model. This generally stems from the implementation of the poor man's tile approach. At the moment, a more general tile approach is being developed for the COSMO model by the DWD. This is will be in accordance to the new ICON/COSMO block structure interface, and will also work with TERRA_URB. As such, the additional computational overhead with this tile implementation will be alleviated. It is expected that TERRA_URB with the ICON-based tile approach will be part of the upcoming COSMO5.6 release.

4 Known bugs

• For some model domains, there are invalid numbers for the fields ISA and AHF for some land points provided by EXTPAR, which makes TERRA_URB to stop at the first timestep. This can be easily fixed by setting all the NAN-values (-1.00000002e+20) in the ISA and AHF fields to zero.

5 Future developments

- Allow 2D variable urban canopy fields. As mentioned above, there is already a custom implementation available for that purpose, which is implemented by Mikhail Varentsov. If you are interested, please contact Hendrik Wouters and Mikhail Varentsov.
- Out-of-the-box EXTPAR availability and application of additional global urban databases (WUDAPT, Openstreetmap...). If you are interested, please contact (Hendrik Wouters) and (Matthias Demuzere).

References

- Brutsaert, W. (1982), Evaporation into the Atmosphere: Theory, History and Applications, Environmental Fluid Mechanics, Springer.
- De Ridder, K., C. Bertrand, G. Casanova, and W. Lefebvre (2012), Exploring a new method for the retrieval of urban thermophysical properties using thermal infrared remote sensing and deterministic modeling, *Journal of Geophysical Research*, 117(D17), 1—-14, doi:10.1029/2011JD017194.
- Demuzere, M., K. De Ridder, and N. P. M. van Lipzig (2008), Modeling the energy balance in Marseille: Sensitivity to roughness length parametrizations and thermal admittance, J. Geophys. Res., 113, 1–19, doi:10.1029/2007JD009113.
- Demuzere, M., S. Harshan, L. Järvi, M. Roth, C. Grimmond, V. Masson, K. Oleson, E. Velasco, and H. Wouters (2017), Impact of urban canopy models and external parameters on the modelled urban energy balance in a tropical city, *Quarterly Journal* of the Royal Meteorological Society, doi:10.1002/qj.3028.
- Doms, G., J. Förstner, E. Heise, H.-J. Herzog, M. Raschendorfer, T. Reinhardt, T. Ritter, R. Schrodin, J.-P. Schulz, and G. Vogel (2011), A description of the nonhydrostatic regional COSMO model. Part II: Physical parameterization, 153 pp., Deutscher Wetterdienst.
- Flanner, M. G. (2009), Integrating anthropogenic heat flux with global climate models, Geophysical Research Letters, 36(2), n/a-n/a, doi:10.1029/2008GL036465.
- Kanda, M., M. Kanega, T. Kawai, R. Moriwaki, and H. Sugawara (2007), Roughness Lengths for Momentum and Heat Derived from Outdoor Urban Scale Models, *Journal* of Applied Meteorology and Climatology, 46(7), 1067–1079, doi:10.1175/JAM2500.1.
- Loridan, T., and C. Grimmond (2012), Multi-site evaluation of an urban land-surface model: intra-urban heterogeneity, seasonality and parameter complexity requirements, *Quarterly Journal of the Royal Meteorological Society*, 138(665), 1094–1113, doi:10. 1002/qj.963.
- Maucha, G., G. Büttner, and B. Kosztra (2010), European validation of GMES FTS Soil Sealing Enhancement Data, Final Draft, *Tech. rep.*, European Environmental Agency.
- Rockel, B., A. Will, and A. Hense (2008), The Regional Climate Model COSMO-CLM (CCLM), *Meteorologische Zeitschrift*, 17(4), 347–348.
- Schättler, U., G. Doms, and C. Schraff (2009), A Description of the Nonhydrostatic Regional COSMO-Model Part VII: User's Guide.
- Schulz, J.-P., and G. Vogel (2016), An evaluation of the simulated bare soil evaporation of an atmospheric model, in *Geophysical Research Abstracts*, pp. 18, EGU2016–8559, European Geosciences Union General Assembly, Vienna.

- Schulz, J.-P., and G. Vogel (2017), An improved representation of the land surface temperature including the effects of vegetation in the COSMO model, in *Geophysical Research Abstracts*, pp. 19, EGU2017–7896, European Geosciences Union General Assembly, Vienna.
- Schulz, J.-P., G. Vogel, C. Becker, S. Kothe, U. Rummel, and B. Ahrens (2016), Evaluation of the ground heat flux simulated by a multi-layer land surface scheme using high-quality observations at grass land and bare soil, *Meteorologische Zeitschrift*, doi: 10.1127/metz/2016/0537.
- Steppeler, J., G. Doms, U. Schättler, H. W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric (2003), Meso-gamma scale forecasts using the nonhydrostatic model LM, *Meteorology and Atmospheric Physics*, 82(1-4), 75–96, doi:10.1007/ s00703-001-0592-9.
- Trusilova, K., S. Schubert, H. Wouters, B. Früh, S. Grossman-Clarke, M. Demuzere, and P. Becker (2016), The urban land use in the COSMO-CLM model: a comparison of three parameterizations for Berlin, *Meteorologische Zeitschrift*, 25(2), 231–244, doi: 10.1127/metz/2015/0587.
- Viterbo, P., and A. C. M. Beljaars (1995), An Improved Land Surface Parameterization Scheme in the ECMWF Model and Its Validation, *Journal of Climate*, 8(11), 2716– 2748, doi:10.1175/1520-0442(1995)008(2716:AILSPS)2.0.CO;2.
- Wouters, H., M. Demuzere, K. De Ridder, and N. P. van Lipzig (2015), The impact of impervious water-storage parametrization on urban climate modelling, Urban Climate, 11, 24–50, doi:10.1016/j.uclim.2014.11.005.
- Wouters, H., M. Demuzere, U. Blahak, K. Fortuniak, B. Maiheu, J. Camps, D. Tielemans, and N. P. M. van Lipzig (2016), The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: description and application with the COSMO-CLM model for a Belgian summer, *Geoscientific Model Development*, 9(9), 3027–3054, doi:10.5194/gmd-9-3027-2016.
- Wouters, H., J.-P. Schulz, J. Helmert, M. Raschendorfer, M. Varentsov, M. Demuzere, U. Blahak, and U. Schättler (2017), The influence of COSMO model developments and parameters affecting the boundary layer on urban climate modelling with TERRA_URB, in COSMO/CLM/ICON/ART User Seminar, Frankfurt, doi: 10.13140/RG.2.2.17160.83208.