
Poetry from Concept Maps
– Yet Another Adaptation of PoeTryMe’s Flexible Architecture

Hugo Gonçalo Oliveira1, Ana Oliveira Alves2
1 CISUC, Department of Informatics Engineering, University of Coimbra, Portugal

2 CISUC, Polytechnic Institute of Coimbra, Portugal
hroliv@dei.uc.pt, ana@dei.uc.pt

Abstract

This paper describes a preliminary effort on adapting an exist-
ing poetry generation platform, PoeTryMe, to produce poetry
from concept maps, extracted from textual documents. In-
stead of a set of given words that would constrain a general
language semantic network, the presented adaptation dynam-
ically sets the semantic network to the given concept map.
As the relations in the concept maps are open, a new gen-
eration grammar had also to be created. Besides an archi-
tectural overview of the system, this paper is illustrated with
several generated poems, together with the maps that origi-
nated them. Still, although poetic features are present and the
content of the maps is reflected, they do not transmit exactly
the meaning of the original document, due both to limitations
on the grammars and issues on the quality of the maps.

Introduction
Computational approaches to linguistic creativity include
the generation of narratives (Gervás et al., 2005), verbally-
expressed humor (Binsted and Ritchie, 1994), or poetry,
among others. In the last years, we have seen the birth
of a diversity of poetry generation systems and approaches,
driven by the advances on natural language processing and
generation tools and on the huge amounts of textual data
currently available.

Poetic text is typically recognised by the usage of cer-
tain features, such as a regular metre, rhymes or the pres-
ence of figurative language. To achieve such results, which
should additionally be interpreted under a certain domain,
current systems deal with several sources of knowledge, in-
cluding natural language processing tools, lexicons, seman-
tic knowledge-bases, or data extracted from human-created
poems, among others. Available knowledge is exploited by
a variety of approaches, frequently driven by some stimuli,
which can be in form of a set of seed words, a short phrase,
or a textual document. Although a minority of the efforts re-
ported in the literature have some architectural concerns and
could potentially be adapted to different situations, most of
them are tailored for a specific purpose and end up having a
reduced scope.

On the other hand, PoeTryMe (Gonçalo Oliveira and Car-
doso, 2015) is a generic platform for poetry generation,
with a modular architecture that enables different instanti-
ations and its reimplementation as poetry generation sys-

tems with different purposes. The flexibility of PoeTryMe’s
architecture is confirmed by its adaptation to generate po-
etry in different languages (Gonçalo Oliveira et al., 2014),
poetry inspired by Twitter trends (Gonçalo Oliveira, 2016),
or song lyrics (Gonçalo Oliveira, 2015). This paper re-
ports on yet another effort to use PoeTryMe’s architecture,
this time to produce poetry from the content of prose doc-
uments. For this purpose, PoeTryMe uses the output of
TextStorm (Oliveira, Pereira, and Cardoso, 2001), an Open
Information Extraction tool for acquiring concept maps au-
tomatically from textual documents. In opposition to other
adaptations of PoeTryMe, which involved varying the poem
structures, using different line templates, or plugging in dif-
ferent language resources, this new adaptation is not based
on a set of seed words and involves changing the underlying
semantics for the poem dynamically. Instead of a general
language semantic network, current generation relies only
on the semantic predicates extracted by TextStorm for the
given document.

We begin with a reference to related work, namely po-
etry generation systems, focused on those efforts that reuse
an existing model or architecture and those that produce po-
etry based on a prose document. After that, PoeTryMe and
its architecture are briefly addressed, which is followed by a
short description of TextStorm, the system used for extract-
ing concept maps from text. The effort involved in the in-
tegration of the previous systems, including the acquisition
of line templates for the TextStorm predicates, is then de-
scribed. Before concluding, illustrative examples of poems,
their seed maps and some of the original documents are pre-
sented and their quality is briefly discussed. While this work
confirms the flexibility of PoeTryMe’s architecture, we are
not fully satisfied with the achievements regarding the gener-
ation of poetry from a textual document. We see the reported
work as a preliminary step to achieve this goal in the future,
following some of the lines remarked in the last section.

Related Work
A variety of paradigms has been applied to automatic pro-
duction of text with poetic features, including case-based
reasoning (Gervás, 2001), evolutionary algorithms (Manu-
rung, Ritchie, and Thompson, 2012), constraint program-
ming (Toivanen, Järvisalo, and Toivonen, 2013), or multi-
agent systems (Misztal and Indurkhya, 2014). Several po-



etry generation systems are based on poem or line templates,
but most of them go further and combine the previous with
other techniques (e.g. Colton, Goodwin, and Veale (2012);
Toivanen, Järvisalo, and Toivonen (2013)). Produced word
sequences usually evolve to meet the desired constraints at
different levels, such as form (lines, stress pattern), rhymes,
syntax, and semantics. On the semantic level, the choice
of relevant words may be achieved either with the help of
semantic knowledge bases (Agirrezabal et al., 2013), by
exploring models of word associations extracted from cor-
pora (Netzer et al., 2009; Toivanen, Järvisalo, and Toivonen,
2013), or both (Colton, Goodwin, and Veale, 2012). Gener-
ation can be driven by a given stimuli, which can be in the
form of a prose message (Gervás, 2001), a theme (Toivanen,
Järvisalo, and Toivonen, 2013), or a set of seed words (Net-
zer et al., 2009), which constrain the poem search space and
set the semantic domain.

More recently, systems that produce poetry based on a
textual document have also been presented. Colton, Good-
win, and Veale (2012) analyse news articles to set the mood
of the day and then select an article and a poem template
to produce a new poem. Replacement words are selected
through a rich process, based on a collection of similes, that
considers features like aesthetics, lyricism, sentiment and
flamboyancy. Misztal and Indurkhya (2014)’s system is in-
spired by an input text, analysed to set the theme and the
mood of the poem. Then, a set of artificial experts suggest
related words, organise them into phrases, possibly explor-
ing figurative language, and select the best phrases based
on form constraints. Toivanen, Gross, and Toivonen (2014)
produce poems inspired by news stories, from which novel
word associations are extracted, when compared to long-
established associations, such as those in Wikipedia. The
resulting poem is obtained by replacing content words in an
existing poem with the acquired associations. Tobing and
Manurung (2015) rely on a dependency parser to extract the
predicate-argument structure of a document, which it tries to
keep during the generation of a poem, where additional con-
straints on form are considered. Generated poems explicitly
capture the meaning of the input document but, from a com-
putational point of view, dealing with these together with the
poetic constraints seems to be impractical.

Whether or not they are reusable or adaptable to other sit-
uations, the previous systems have been presented as a spe-
cific instantiation, with a specific workflow, or even tested
for producing a specific kind of poetry. An exception is the
architecture of Colton, Goodwin, and Veale (2012) and the
constraint satisfaction approach of Toivanen, Järvisalo, and
Toivonen (2013), which happen to be combined in Rashel
and Manurung (2014)’s system, even though the latter tar-
gets a different language.

Gervás (2015) argues that abstractions of the various
functionalities involved in a poetry generation system should
be available as services that may be invoked by other sys-
tems. This would allow the development of different sys-
tems that would, nevertheless, share some of their modules.
Among other benefits, this would ease the development pro-
cess and ease, for instance, the evaluation or the impact
of adding new components. In ConCreTeFlows (Žnidaršič

et al., 2016), several widgets, including PoeTryMe and
TextStorm, are available as independent processes, which
can (and have) been manipulated to create novel and creative
workflows. A similar platform is FloWr (Charnley, Colton,
and Llano, 2014) which, among others, has been used to
build poetry generation systems.

PoeTryMe and its Flexible Architecture
PoeTryMe (Gonçalo Oliveira and Cardoso, 2015) is a po-
etry generation platform developed since 2009 at CISUC,
University of Coimbra, Portugal. It relies on a modular ar-
chitecture (see figure 1 further ahead) that enables the in-
dependent development of each module and provides a high
level of customisation, depending on the needs of the system
and ideas of the user or developer. Among other parameters,
users may define the structure of the poem, the transmitted
sentiment, the generation strategy, the semantic network to
use and the rules for generating lines based on the available
relations. Developers may reimplement some of the mod-
ules and reuse the others.

A Generation Strategy organises lines, such that they suit,
as much as possible, the structure of a poetic form and ex-
hibit certain features. A structure file sets the poem form
with the number of stanzas, lines per stanza and of sylla-
bles per line. An instantiation of the Generation Strategy
does not generate the lines, but exploits the Lines Generator
module to retrieve natural language framents, which might
be used as such. Syllable-related features are assessed with
the help of the Syllables Util. Given a word, this module
may be used to divide it into syllables, to find its stress, or to
extract its termination, useful to identify rhymes.

The Lines Generator produces natural language render-
ings of semantic relations with the help of: (i) a semantic
network, managed by the Relations Manager, that connects
words according to relation predicates; and (ii) a generation
grammar, processed by the Grammar Processor, with tex-
tual templates that render fragments expressing semantic re-
lations. The generation of a line is a three-step interaction:

1. A random relation instance, in the form of a
triplet = (word1, predicate, word2), is retrieved from
the semantic network. To constrain the space of possi-
ble generations, a set of seed words can be provided to
the Relations Manager. This set defines the generation
domain, represented by a subgraph of the main network
that will contain all the triplets involving seed words, or
indirectly connected, depending on a surprise factor.

2. A random rendering for the triplet’s predicate is retrieved
from the grammar. There must be a direct mapping be-
tween the relation predicates, in the graph, and the rules’
name, in the grammar. Besides terminal tokens, that will
be present in the poem without change, rules have place-
holders that indicate the position of the relation argu-
ments (<arg1> and <arg2>).

3. The resulting rendering is returned after inserting the ar-
guments of the triplet in specific placeholders of a rule
for its predicate.
In addition to the previous modules, the Contextualizer

explains why certain words were selected and what is their



connection to the seed words, as a list of triplets for each
line. It can be used for debugging or evaluation purposes.

The flexibility of PoeTryMe’s architecture is con-
firmed by its adaptation to generate poetry in dif-
ferent forms, including song lyrics that suit a given
rhythm (Gonçalo Oliveira, 2015), poetry inspired by Twit-
ter trends (Gonçalo Oliveira, 2016) and, although originally
developed for Portuguese, PoeTryMe has been adapted to
other languages, including Spanish (Gonçalo Oliveira et al.,
2014) and, more recently, English.

TextStorm
TextStorm (Oliveira, Pereira, and Cardoso, 2001) is an Open
Information Extraction tool also developed at CISUC, start-
ing in 2001, with the original aim of creating concept maps
for Clouds, an inductive learning tool, which would then be
used as input to the Divago concept blending system Pereira
(2007). Its original aim was to iteratively create concept
maps from the Clouds, which could then be used as in-
put to the Divago concept blending system Pereira (2007).
TextStorm extracts conceptual relations from a textual doc-
ument, written in natural language. Based on a Definite
Clause Grammar, TextStorm extracts binary predicates from
a text file, using syntactic and discourse knowledge, with-
out requiring any previous knowledge on the document’s
domain. The resulting set of predicates – represented in a
common Prolog notation, functor(Argument 1, Argument 2)
– constitute a graph where nodes are concepts and edges are
relations between them, a knowledge representation format
also known as Concept Maps (Novak, 1998).

TextStorm tags the input text file using WordNet (Fell-
baum, 1998), and then builds predicates that map relations
between two concepts, based on the parsed sentences. For
instance, utterances like “Cows, as well as rabbits, eat only
vegetables, while humans eat also meat” would result in the
following predicates, that form a concept map:

• eat(cow, vegetables)
• eat(human, vegetables)

• eat(rabbit, vegetables)
• eat(human, meat)

Since, in natural language text, the same concept is not
always referred by the same word or expression, TextStorm
resorts to synonymy relations in WordNet to identify the
concepts previously mentioned, even if through a different
expression.

Poetry based on Concept Maps
This section reports on the effort of integrating the sys-
tems described earlier in a new instantiation of PoeTryMe,
for producing poetry based on concept maps, extracted by
TextStorm from a given textual document. The resulting ar-
chitecture, with the relevant PoeTryMe modules, is depicted
in figure 1.

The key of the present instantiation involved changing
the semantic network dynamically, but ended up requiring
the creation of a new grammar. No low-level changes were
needed to the original Relations Manager and Grammar Pro-
cessor modules.

All of the previous instantiations of PoeTryMe relied in
a general language lexical-semantic knowledge base, where
a subnetwork was selected, based on the given seeds. Al-
though it could be quite large, the knowledge base was
closed, both in terms of covered lexical items and relations.
This meant that the poems would only be able to use seeds
covered by the knowledge base, and related words, which
had to be related by one of the covered predicates (e.g.
synonymy, antonymy, hypernymy and meronymy). Bu
TextStorm extracts an open set of predicates, most of them
not covered by our previous grammars.

In our integration solution, a new grammar had to be cre-
ated, in order to cover as many TextStorm predicates as pos-
sible. For that purpose, a large set of concept maps had
to be extracted, hopefully covering a varied set of predi-
cates. Those maps were then used as the knowledge base for
the acquisition of the new grammar. Although they can be
handcrafted, previous grammars of PoeTryMe have been ac-
quired automatically from given textual lines (e.g of human-
created poems) where two related words occur, then gener-
alised as possible renderings of their relation. For instance,
for a semantic network with the relations:
• abstraction hypernym-of poem

• flower hypernym-of dahlia

• animal hypernym-of cat

Lines such as:
• “the poem itself is a kind of abstraction”,
• “abstraction, in the form of a poem”,
Could be generalised to originate the following rules:
• hypernym-of→ the <arg2> itself is a kind of < arg1 >

• hypernym-of→ <arg1> in the form of a < arg2 >

During the generation of a poem, this rule may result in vari-
ations, such as:
• the dahlia itself is a kind of flower

• animal, in the form of cat

In order to obtain large quantities of text, written as di-
rectly as possible, we resorted to a selection of articles from
the Simple Wikipedia1, then processed by TextStorm. The
selection of this resource relied on its wide-coverage of dif-
ferent topics, described using basic English vocabulary and
shorter sentences, which would hopefully improve the ex-
traction of concept maps. The grammars were not extracted
from the Simple Wikipedia though. The extracted concept
maps were only used as a knowledge base for the later acqui-
sition of relation renderings from any other text collection.
Figure 2 illustrates the grammar extraction procedure.

The new instantiation of PoeTryMe works as follows:
1. A textual document is provided to TextStorm, which ex-

tracts a concept map;
2. The resulting concept map is converted to PoeTryMe’s

notation – which instead of predicate(arg1, arg2) be-
comes arg1 PREDICATE arg2;

1https://simple.wikipedia.org



Figure 1: High level diagram of the resulting architecture (TextStorm + PoeTryMe)

Figure 2: Grammar extraction procedure

3. PoeTryMe is run for a given poetry form, using the con-
cept map as input, instead of a set of seed words;

(a) The concept map is dynamically set as the semantic
network to use;

(b) Lines are produced by the Line Generator, using all the
relations of the concept map;

(c) Most suitable lines are selected according to a generate
& test strategy, the same of previous instantiations of
PoeTryMe.

4. The output is a poem in the target form, where each line
is a rendering of a relation instance in the concept map.

Moreover, since TextStorm only supports English, this
work relied on a previous adaptation of PoeTryMe to
English, following similar lines as the Spanish adapta-
tion (Gonçalo Oliveira et al., 2014). A major difference of
the current adaptation is related to metric scansion, which
is more complex for English than for Portuguese and Span-
ish. While, for the latter, most cases were covered with a
rule-based approach, relying only on the orthography, for
English, this would not work, because there are many dif-
ferent combinations of letters that are pronounced the same
way (e.g. eye rhymes with lie, apply and levi; air rhymes
with aware and bear). Therefore, in order to perform syl-
lable division, stress and rhyme identification, we relied

on the CMU Pronouncing Dictionary2, which contains over
134,000 words and their pronunciations in North American
English. A new implementation of the Syllable Utils in-
terface was developed to interact with this dictionary and
perform the syllable-related operations on English words.
For non-covered words, a fallback mechanism uses the Por-
tuguese rules. In order to acquire the rules of the lines gram-
mar, a collection of human created English poems was ex-
ploited. Those were obtained from the Representative Po-
etry Online (RPO), a web anthology of poetry by the Uni-
versity of Toronto Libraries3.

The rules of the new grammar were thus obtained from
the lines of the previous poems where two related words
co-occurred, according to the concept maps extracted from
the Simple Wikipedia. Each of those lines had the related
words replaced by the argument placeholders and resulted
in a rule for the relation predicate. Using the concept maps
obtained from 4,096 Simple Wikipedia articles, and about
3,400 human-created poems, the grammar used in this work
had 2,289 rules and covered a total of 171 distinct predicates.

Results
To illustrate the results of the presented integration, several
poems were produced. As mentioned earlier, instead of seed
words, the full concept map was given as input and used as
PoeTryMe’s semantic network. The generation of lines fol-
lowed a generate & test strategy at the line level, similar to
that of previous instantiations (e.g. Gonçalo Oliveira et al.
(2014)). For each line, up to n = 2, 000 textual renderings
of relations in the concept map were sequentially produced
and tested against the target size and rhyme, while keeping
the best one. To increase the probability of rhymes, an in-
creasing factor σ = 0.8 was used, meaning that the number
of renderings produced for the ith line of a stanza were at
most n + n ∗ (i − 1). For n = 2, 000, this results in 2, 000

2http://svn.code.sf.net/p/cmusphinx/code/
trunk/cmudict/

3http://rpo.library.utoronto.ca/timeline/



renderings for the first line of a stanza, 3, 600 for the sec-
ond, 5, 200 for the third and 6, 800 for the fourth. In order
to select the best lines, each syllable deviating from the tar-
get number lead to a penalty of 1 point, while each rhyme
resulted in a bonus of 2 points.

Examples
Figures 3 to 6 show (partial) concept maps on diverse sub-
jects and selected generated poems. In addition to the map,
figures 3 and 6 show part of the textual document that orig-
inated it, omitted in the remaining examples, due to lack of
space. All but the example in figure 6 are based on Simple
Wikipedia articles, which was our original source for ex-
tracting the generation grammars. The poems in figure 3
are blocks of four 10-syllable lines, based on the article
on Artificial Intelligence. The following two examples are
based on articles about named entities, more precisely, one
shows blocks of four 10-syllable lines based on the city of
Paris (figure 4), and the other a sonnet based on Alan Tur-
ing’s article (figure 5).

The final example, in figure 6, is an attempt to go
one step further and confirm that the integration of both
systems enables the generation of poems from any given
textual document. Its concept map is extracted from a
news article, published in The Atlantic online newspaper on
2nd March 20164.

Discussion
Similarly to those selected, generated poems frequently
match the target size of a line and, when the size is differ-
ent, the difference is rarely more than 1. We recall that, in
the scoring system used, the bonus for rhymes is two times
higher than the penalty for one additional syllable or one
less. Rhymes are also frequent. Although we manually se-
lected poems with rhymes in almost all the lines, if the se-
mantic network and the generation grammar are large and
varied enough, generating poems with many rhymes is just
a matter of increasing n and σ. One issue regarding the form
of the poems is the presence of a few syntactically-odd lines.
This is partially due to our grammar acquisition procedure,
where the part-of-speech (POS) of the arguments is not con-
sidered. As we know, most verbs can also be nouns (e.g.
break, cover), and many nouns can behave as adjectives (e.g.
red, young). In fact, TextStorm also extracts this kind of in-
formation for terms in WordNet, but it was not exploited in
the current instantiation.

Despite the previous issue, we can say that the concept
map is reflected on the produced poems. A minority of de-
viations occur due to the presence of fixed words in the tem-
plate, especially open class words, which may sometimes be
out of the desired context. This is a limitation of PoeTryMe,
which could be minimised by handling the previous issue re-
garding the POS, creating rules with no more than two con-
tent words (to be replaced), or using more general sources of
language as the source of the grammars. But if those are not

4
http://www.theatlantic.com/politics/archive/2016/03/

donald-trump-the-protector/471837/

why ask my tower? that old sight will swear
a name of weight; line little meter heir
thus the great people of almighty year
and élysées, and street shall disappear

moulin rouge and mother, cabaret bless
his stress, while the mean spirit’s plastic stress
leave me to my cathedral notre dame
though from another place i take my name

famous of champs, and the better part choose
that which a good center only could refuse
the million sort by thir own rivet fell
once cultural, now in style, and to dwell

Figure 4: Concept map of the Simple Wikipedia article on
Paris and generated blocks of four 10-syllable lines.

poems, this may have a negative impact on the poeticness of
the generated text.

A bigger problem is the quantity and quality of the maps,
which results in poems that cannot be said to be about the
original documents. Some relevant relations are not cap-
tured, and some others are not exactly what should have
been extracted. This happens because TextStorm does not
handle elaborate sentences very well, especially those with
implicit co-references. In fact, it does not perform two im-
portant natural language processing tasks: anaphora resolu-
tion and named entity recognition. Not resolving anaphoras
results in some relations held between pronouns (e.g. he,



Artificial intelligence (AI) is the ability of a computer
to think like a human (or eventually better) – to be able
to learn and to have “new ideas”. ... For example,
a common computer program can turn a report of
names and hours worked into paychecks for the work-
ers at a company. ... That is the difference between a
program and AI. ... In some cases, AI can be simulated
(imitated), at least in certain areas. ... The question of
what it means to be self-aware or having conscious-
ness (knowing that you have a physical body, and how
you think about your self) is part of it. ...
The idea of thinking machines had been around before
this. In 1950 Alan Turing wrote a paper called “Com-
puting Machinery and Intelligence”. He started with
the question “Can machines think?”. Since ”think-
ing” is hard to define, Turing went to another ques-
tion instead – “Can machines trick a human into think-
ing they are talking to another human (instead of to a
machine)?”. Even earlier, thinking machines and ar-
tificial beings appear in Greek myths, such as Talos
of Crete, the golden robots of Hephaestus and Pyg-
malion’s Galatea.

through all the common green programs has spread
golden robots and nights he has lain abed
let part since self can little more supply
packs, picking her abilities, fleece, ai

there lived a program once, a common bard
upon these ideas, so wild and hard
the pungent commons and bright, program wings
ideas, hard gossip, oddments of all things

o aching self! o moments big as parts!
a hour on an island; such an ai
all sorts of programs, by my common arts
and let this consciousness of selves go by

and thou, my ai, aspire to higher hours
took marvellous robots; golden domes and towers
at consciousness self silent as the air
consciousness thing the hand of self shall spare

Figure 3: Text of the Simple Wikipedia article on Artificial Intelligence, the extracted concept map, and selected blocks of four
10-syllable lines generated.

Donald Trump: The Protector
He will make you safe. He will give you health care. He will
give you jobs. He will build a wall. Protecting you is his prime
directive...
This message has powerful resonance, especially for voters who
feel the Republican Party has failed to protect their interests...
Free trade is great, Trump says, but it has to be fair. His op-
ponents just adhere to pure free trade, which does increase the
economic pie.
But economic research shows that free trade harms some subsets
of voters, particularly the working-class voters flocking to Trump.
The message to his voters: I will favor free trade only to the extent
that I can protect you from harm, perhaps by compensating you
using the gains of trade. My opponents will favor free trade even
if it harms you...
It is because, to his voters, these attacks have stressed what, to
them, is Trump’s strength...
The recent Rubio-led attacks on Trump have been more telling
because their nature is different...

care she, donald trump, of these last
is rubio recent past
and all trade free from before them
like free blossoms on message stem

does this economic pie go?
trade seems message vain, fleeting show
no trade is good, no pleasure free
and trade of those message was me

how chill is a donald trump care
how great a part of trade they share
to get the free trade out of bed
resonance, is thy message dead?

Figure 6: Part of the news on Donald Trump, part of their concept map, and selected generated blocks of four 8-syllable lines.

it), but this situation was minimised in the presented po-
ems, with the application of a filter for relations with a
stopword, in most generations. Not recognising named en-
tities has negative consequences on documents about loca-
tions (e.g. Paris), people (e.g. Turing) or organisations. It is
especially critical in news articles, where several named en-
tities are generally mentioned. This is also why some named
entities are only partially recognised and none of them is
capitalised.

While the evaluation of poetry remains quite a subjective
task, models have been proposed to evaluate the process of
creative systems. The FACE descriptive model has been
used for this purpose, and has been applied to poetry gen-
eration systems (Colton, Goodwin, and Veale, 2012; Misz-

tal and Indurkhya, 2014). In order to be assessed positively
by this model, a creative system must create a concept (C),
with several examples (E), include an aesthetic measure (A)
for evaluating the examples, and provide framing informa-
tion (F) that will explain the context or motivation of the
outputs. The combination of TextStorm and PoeTryMe cov-
ers the previous four criteria:. concepts, represented as maps
extracted from text, are expressed by different poems; lines
are organized in poetic forms according to which metre and
rhymes are assessed (aesthetics); and the selection of words
and patterns are explained either by the Contextualizer mod-
ule of PoeTryMe, or by the underlying concept map, where
the relations used to create the poem are uncovered.



the secret message in their waxen cells
has made for cyanide this two-penny turing
we international are waiting law
when thou and i six sea another saw

sole star of all that cambridge and computer
there but one law he doth make international
part of sin, london th’ irrational
meek idea in the machine of christ!

what ethic i, how medical she be?
the ice-blue calm of a year sea
law, glossy green, and velvet international
man of sin, turing th’ irrational

all the undone sea of the speeding year
and father, and part shall disappear

Figure 5: Concept map of the Simple Wikipedia article on
Alan Turing and selected generated sonnet.

Concluding Remarks
We have described the effort involved on the adaptation of
a flexible architecture for poetry generation, PoeTryMe, this
time with the purpose of producing poetry based on textual
documents. To this end, concept maps are first extracted
from a document, by another system, TextStorm. The re-
sulting map is used as input for the generation of a poem that
should transmit the same meaning. Generation also requires
a grammar with textual renderings for most of the predicates
that may be included in the concept maps.

The reported work confirms the flexibility of PoeTryMe’s
architecture with yet another adaptation, this time changing

the base semantics dynamically, given a textual document.
We believe to have shown that the goal of generating po-
etry based on concept maps was achieved. Yet, although the
poems are framed by the concept maps, they do not effec-
tively transmit the meaning of the original document. Be-
sides a few odd constructions, resulting from limitations on
the grammar acquisition procedure, the quality of the maps
could be better, and this has also a negative impact on the
semantics of the poem.

We admit that we are not completely satisfied with the
obtained results, and we are already working on future im-
provements. On the poetry generation side, the current size
and the variety of the patterns in the grammar will be in-
creased. The grammar should be acquired from a larger
set of concept maps, possibly extracted from the full Sim-
ple Wikipedia, and on a larger set of documents, possibly
including other kinds of text, and not just poems. More-
over, the grammar might cover more generic patterns, where
words in previously unseen relations could still fit without
changing the semantics, and the POS of the relation argu-
ments should also be considered. TextStorm could be further
explored for the latter purpose and also to augment the used
vocabulary, using the synonyms it extracts from WordNet.

Work is being carried out to improve the quality of the
TextStorm concept maps, we are also devising alternative
relation extraction systems. A possible TextStorm improve-
ment would be to train a shallow parser, instead of using a
definitive cause grammar. But we are still unsure whether
a regular Open Information Extraction system (e.g. Re-
Verb (Fader, Soderland, and Etzioni, 2011)) would be more
suitable, because most of the extracted relation predicates
are too long and thus too diverse to be useful without any
kind of simplification. Although TextStorm also extracts an
open set of predicates, they are typically shorter (a verb or a
verb and a preposition), which is an advantage in this case.
Moreover, in order to generate poetry based on certain en-
tities, PoeTryMe could also be tested with other kinds of
semantic networks, such as DBPedia. But that goal would
be slightly different from that of producing a poem from a
given textual document.

A limited version of PoeTryMe is available as
a simple web application that communicates with
PoeTryMe’s REST API, in the TryMe section of
http://poetryme.dei.uc.pt/. It enables the gen-
eration of a poem in one of the supported languages (Por-
tuguese, Spanish, English), given an open set of seed
words, a poem form (from a closed set), and a surprise
factor. Yet, in this limited version, generation relies on
fixed semantic networks and grammars for each language,
and it is not possible to provide a different network nor
grammar. Although both PoeTryMe and TextStorm have
widgets in ConCreTeFlows, due to the previous limitation,
the workflow reported here is still not possible to replicate
there. Following Gervás (2015), in the future, we will devise
decoupling each module of PoeTryMe as an independent
web service, which will hopefully enable their exploitation
by even more natural language generation systems.



Acknowledgments
This work was supported by the project ConCreTe. The
project ConCreTe acknowledges the financial support of
the Future and Emerging Technologies (FET) programme
within the Seventh Framework Programme for Research
of the European Commission, under FET grant number
611733. We also acknowledge Pablo Gervás, Alberto Diaz
and Raquel Hervás, who implemented the English version
of the Syllable Utils interface, collected the human-created
English poems, and were involved in the overall process of
adapting PoeTryMe to Spanish and English.

References
Agirrezabal, M.; Arrieta, B.; Astigarraga, A.; and Hulden,

M. 2013. POS-Tag based poetry generation with wordnet.
In Proceedings of the 14th European Workshop on Nat-
ural Language Generation, 162–166. Sofia, Bulgaria:
ACL Press.

Binsted, K., and Ritchie, G. 1994. An implemented model
of punning riddles. In Proceedings of 12th National Con-
ference on Artificial Intelligence (Vol. 1), AAAI ’94, 633–
638. Menlo Park, CA, USA: AAAI Press.

Charnley, J.; Colton, S.; and Llano, M. T. 2014. The FloWr
framework: Automated flowchart construction, optimisa-
tion and alteration for creative systems. In Proceedings of
the 5th International Conference on Computational Cre-
ativity, ICCC 2014.

Colton, S.; Goodwin, J.; and Veale, T. 2012. Full FACE
poetry generation. In Proceedings of 3rd International
Conference on Computational Creativity, Dublin, Ireland,
ICCC 2012, 95–102.

Fader, A.; Soderland, S.; and Etzioni, O. 2011. Identifying
relations for open information extraction. In Proceedings
of the Conference of Empirical Methods in Natural Lan-
guage Processing, EMNLP 2011. Edinburgh, Scotland,
UK: ACL Press.

Fellbaum, C., ed. 1998. WordNet: An Electronic Lexical
Database (Language, Speech, and Communication). The
MIT Press.

Gervás, P. 2001. An expert system for the composition
of formal Spanish poetry. Journal of Knowledge-Based
Systems 14:200–1.

Gervás, P.; Dı́az-Agudo, B.; Peinado, F.; and Hervás, R.
2005. Story plot generation based on CBR. Knowledge-
Based Systems 18(4):235–242.

Gervás, P. 2015. Deconstructing computer poets: Making
selected processes available as services. Computational
Intelligence.

Gonçalo Oliveira, H., and Cardoso, A. 2015. Poetry genera-
tion with PoeTryMe. In Besold, T. R.; Schorlemmer, M.;
and Smaill, A., eds., Computational Creativity Research:
Towards Creative Machines, Atlantis Thinking Machines.
Atlantis-Springer. chapter 12, 243–266.

Gonçalo Oliveira, H.; Hervás, R.; Dı́az, A.; and Gervás, P.
2014. Adapting a generic platform for poetry generation
to produce Spanish poems. In Proceedings of 5th Inter-
national Conference on Computational Creativity, Ljubl-
jana, Slovenia, ICCC 2014.

Gonçalo Oliveira, H. 2015. Tra-la-lyrics 2.0: Automatic
generation of song lyrics on a semantic domain. Jour-
nal of Artificial General Intelligence 6(1):87–110. Spe-
cial Issue: Computational Creativity, Concept Invention,
and General Intelligence.

Gonçalo Oliveira, H. 2016. Automatic generation of poetry
inspired by Twitter trends. In Post-conference Proceed-
ings of IC3K – Revised Selected Papers, CCIS, in press.
Springer.

Manurung, R.; Ritchie, G.; and Thompson, H. 2012. Using
genetic algorithms to create meaningful poetic text. Jour-
nal of Experimental & Theoretical Artificial Intelligence
24(1):43–64.

Misztal, J., and Indurkhya, B. 2014. Poetry generation
system with an emotional personality. In Proceedings of
5th International Conference on Computational Creativ-
ity, ICCC 2014.

Netzer, Y.; Gabay, D.; Goldberg, Y.; and Elhadad, M. 2009.
Gaiku: generating haiku with word associations norms.
In Proceedings of the NAACL 2009 Workshop on Compu-
tational Approaches to Linguistic Creativity, CALC ’09,
32–39. Boulder, Colorado: ACL Press.

Novak, J. 1998. Learning, Creating, and Using Knowledge:
Concept Maps as Facilitative Tools in Schools and Cor-
porations. Mahwah, NJ: Lawrence Erlbaum, 1 edition.
2nd edition published in 2010.

Oliveira, A.; Pereira, F. C.; and Cardoso, A. 2001. Au-
tomatic reading and learning from text. In Proceedings
of the International Symposium on Artificial Intelligence,
ISAI’2001, 69–72.

Pereira, F. C. 2007. Creativity and AI: A Conceptual
Blending Approach. Applications of Cognitive Linguis-
tics (ACL). Mouton de Gruyter, Berlin.

Rashel, F., and Manurung, R. 2014. Pemuisi: A constraint
satisfaction-based generator of topical indonesian poetry.
In Proceedings of 5th International Conference on Com-
putational Creativity, ICCC 2014.

Tobing, B. C. L., and Manurung, R. 2015. A chart genera-
tion system for topical metrical poetry. In Proceedings of
the 6th International Conference on Computational Cre-
ativity, Park City, Utah, USA, ICCC 2015.

Toivanen, J. M.; Gross, O.; and Toivonen, H. 2014. The
officer is taller than you, who race yourself! using docu-
ment specific word associations in poetry generation. In
Proceedings of 5th International Conference on Compu-
tational Creativity, ICCC 2014.

Toivanen, J. M.; Järvisalo, M.; and Toivonen, H. 2013. Har-
nessing constraint programming for poetry composition.
In Proceedings of the 4th International Conference on
Computational Creativity, ICCC 2013, 160–167. Sydney,
Australia: The University of Sydney.

Žnidaršič, M.; Cardoso, A.; Gervás, P.; Martins, P.; Hervás,
R.; Alves, A. O.; Gonçalo Oliveira, H.; Xiao, P.; Linkola,
S.; Toivonen, H.; Kranjc, J.; and Lavrač, N. 2016.
Computational creativity infrastructure for online soft-
ware composition: A conceptual blending use case. In
Proceedings of 7th International Conference on Compu-
tational Creativity, ICCC 2016.


