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Abstract

Optimality principles are a key element in the Concep-
tual Blending (CB) framework, as they are responsi-
ble for guiding the integration process towards ‘good
blends’. Despite their relevance, these principles are of-
ten overlooked in the design of computational models
of CB. In this paper, we analyse the explicit or implicit
presence and relevance of the optimality principles in
three different computational approaches to the CB,
known from the literature. The approaches chosen for
the analysis are Divago, Blending from a generalisation-
based analogy model, and blending as a convolution of
neural patterns. The analysis contains a discussion on
the relevance of the principles and how some of absent
principles can be introduced in the different models.

Introduction

Fauconnier and Turner (2002) proposed Conceptual Blend-
ing (CB) as a general and basic cognitive mechanism that
leads to the creation of new meaning and insight. It inte-
grates (or blends) two or more mental spaces in order to
produce a new mental space, the blend(ed) space. Here,
mental space means a temporary knowledge structure cre-
ated for the purpose of local understanding as opposed to
frames, which are more stable knowledge structures (Fau-
connier 1994).

CB is not a simple combination of the initial mental
spaces; it involves a network of mental spaces in which
knowledge is transferred and meaningfully integrated (see
Figure 1). At least two of the mental spaces correspond
to the input spaces (the initial spaces). A partial matching
between the input spaces is constructed (cross-space map-
ping). The matching between elements is then reflected in
another mental space, the generic space, which contains ele-
ments common to the different input spaces. The latter space
captures the conceptual structure that is shared by the input
spaces. The outcome of the blending process is the blend,
a mental space that simultaneously maintains partial struc-
tures from the input spaces and has an emergent structure of
its own.

Integration of input elements in the blend space results
from three operations: composition, completion, and elab-
oration. Composition occurs when the elements from the
input spaces are projected into the blend space, allowing for

Generic Space

Input 1 Input 2

Figure 1: The original four-space CB network (Fauconnier
and Turner 2002).

new relations to become available in the blended space. This
implies not only the matched elements, but also other neigh-
bouring elements to be projected into the blend. Completion
occurs when existing knowledge in long-term memory, i.e.,
knowledge from background frames, is used to create mean-
ingful structures in the blend. Elaboration is an operation
closely related to completion; it involves cognitive work to
perform a simulation of the blended space.

The possibilities for blending are apparently infinite and
the quality of blends can be quite diverse. The optimality
principles (also known as optimality constraints) have a key
role in blending, namely in the integration process. They
are responsible for providing guidance towards highly inte-
grated, coherent and easily interpreted blends.

Despite the challenge in designing a computational model
of the CB mechanism, several formalisations and computa-
tional models of the CB mechanism have been proposed.
The inclusion of the optimality principles in formal and
computational models has arguably been one of the most
challenging tasks, manly due to the subjectivity and the
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computational inefficiency associated with these principles.

Bou et al. (2014) have presented a survey of computa-
tional approaches to conceptual blending where the presence
of the optimality principles was assessed. To the best of our
knowledge, the work of Bou et al. offers the most detailed
discussion on the computational modelling of the optimal-
ity principles. In this paper, we analyse the presence and
relevance of the optimality principles in three considerably
different approaches to the CB mechanism. Instead of solely
basing our analysis on the assessment of the presence or ab-
sence of the optimality principles, we discuss the relevance
of the principles and how some of the absent principles can
be introduced in the different models. We include in our dis-
cussion suggestions from our previous study on the quality
of blends (Martins et al. 2015). It is particularly relevant to
analyse the importance of optimality principles in scenarios
where creative blends are a goal.

The remainder of this paper is structured as follows. In the
upcoming section, we describe the optimality principles of
CB theory. Then, we analyse optimality principles in com-
putational models of CB. Finally, we draw the main conclu-
sions of this study and suggest lines of further research.

Optimality principles

Originally, Fauconnier and Turner (1998) have presented a
list of five optimality principles (integration, topology, web,
relevance, and unpacking). Later, the same authors have ex-
tended the list by including three more principles (maximi-
sation of vital relations, intensification of vital relations, and
pattern completion) (Fauconnier and Turner 2002). This pa-
per focuses on the latter.

The Principles

Integration The integration principle states that the blend
must be perceived and manipulated as a unit. Every ele-
ment in the blend structure should have integration.

Topology Topology acts as a force that attempts to maintain
the topological structure of the input spaces in the result-
ing blend. For any input space and any element in that
space projected into the blend, it is optimal for the rela-
tions of the element in the blend to match the relations of
its counterpart.

Intensification of Vital Relations A key characteristic of
the blending process is the ability to compress a diffuse
conceptual structure into more intelligible and manipu-
lable human-scale situations in the blended space (Fau-
connier 2005; Turner 2006). Such compression is likely
to occur when mental spaces are connected by vital re-
lations, such as time, space, cause-effect, analogy or a
part-whole relation. The principle known as intensifica-
tion of vital relations states that diffuse structures should
be compressed by scaling a single vital relation (e.g. scale
down an interval of time) or transforming vital relations
into others.

Maximisation of Vital Relations The maximisation of vi-
tal relations principle states that the number of vital rela-
tions in the blended space should be maximised in order
to create human scale.

Pattern Completion The pattern completion principle
forces the introduction of integrated patterns either from
the input spaces or from frames. The elements in the
blend should be completed using existing integrated pat-
terns as additional inputs. The principle dictates the use of
a completing frame having relations that can be the com-
pressed versions of the important outer-space vital rela-
tions (space, time, etc. ) between the inputs.

Web The web principle states that manipulating the blend
as a unit must maintain the web of appropriate connec-
tions to the input spaces easily and without additional
surveillance or computation.

Relevance (or Good Reason) The relevance principle dic-
tates that an element in the blend should be relevant,
which includes being relevant to establish links to other
spaces and for running the blend.

Unpacking The unpacking principle imposes the ability to
‘deconstruct’ the whole blending process starting from the
blended space. This principle takes exclusively the per-
spective of the ‘blend reader’, who is expected to recog-
nise the input spaces and the results of intermediate oper-
ations, namely the cross-space mappings.

Optimal blends vs. creative blends

All of the listed principles try to ensure an easy interpreta-
tion of the blend and trigger a prompt cognitive response.
Additionally, they intend to provide integrity and coher-
ence, namely by the integration, web, and topology prin-
ciples. However, there is a tension among the principles,
which includes different levels of incompatibility between
them (Grady, Oakley, and Coulson 1999). For example, an
intensification of vital relations might hinder the ability to
reconstruct the entire blending network (unpacking princi-
ple).

The aforementioned tension among principles makes the
construction of a blend satisfying all the principles impossi-
ble. However, we cannot simply regard these principles as
‘rigid laws’, but as something with a reasonable degree of
flexibility (Kowalewski 2008). Furthermore, the optimality
of a blend depends on its purpose: different purposes imply
distinct levels of priority for each principle.

While the optimality principles can provide guidance to-
wards consistent, useful, and easily interpreted blends, we
cannot ensure that they contribute to defining novel and sur-
prising blends. Thus, the criteria conveyed by the optimality
principles cannot dictate whether a blend is creative or not.
Nonetheless, they help defining other *good characteristics’
of a creative blend.

Optimality Principles and Computational
Approaches to Conceptual Blending

‘Conceptual blending is not a compositional algo-
rithmic process and cannot be modeled as such for
even the most rudimentary cases. Blends are not pre-
dictable solely from the structure of the inputs. Rather,
they are highly motivated by such structure, in har-
mony with independently available background and
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contextual structure; they comply with competing op-
timality constraints . ..and with locally relevant func-
tional goals. In this regard, the most suitable ana-
log for conceptual integration is not chemical composi-
tion but biological evolution. Like analogy, metaphor,
translation, and other high-level processes of meaning
construction, integration offers a formidable challenge
for explicit computational modeling.’(Fauconnier and
Turner 1998).

Despite the challenge in computationally modelling the
CB mechanism, several formalisations and computational
models of the CB mechanism have been proposed. The in-
clusion of the optimality principles in such models has ar-
guably been one of the most challenging tasks, manly due
to the subjectivity and the computational inefficiency asso-
ciated with these principles. According to Goguen (1999),
who proposed one of the first formalisations of CB theory,
the optimality principles are one of the components of CB
theory that cannot be formalised and straightforwardly im-
plemented, as they require human judgment.

In this section, we analyse the role implicitly or explic-
itly played by the optimality constraints in three different
computational models: (1) Divago (Pereira 2005), which
is strongly inspired by CB theory and contains quantitative
metrics for the optimality principles; (2) a model that fol-
lows a neuro-computational approach (Thagard and Stewart
2010), with blending being performed via the convolution of
mental representations; and, finally, (3) a model constructed
using a generalisation-based approach to analogy (Guhe et
al. 2011).

We have opted for these three models because they si-
multaneously illustrate the heterogeneity and the maturity of
computational approaches to CB. For an updated and a more
complete overview of computational approaches to CB, we
refer the reader to the works of Martins et al. (2014), Bou et
al. (2014), or Li et al. (2012).

When analysing the relevance of some principles, we take
into account also suggestions from our previous study in
which we investigated the quality of blends as perceived by
humans in a web-based questionnaire (Martins et al. 2015).
The participants were asked to rate criteria related to the op-
timality principles (e.g., coherence) and creativity (e.g., nov-
elty and surprise).

Divago

The Divago system (Pereira 2005) is one of the earliest com-
putational approaches to CB and is, to the best of our knowl-
edge, the only system to date that uses a thorough formali-
sation of the optimality principles. The architecture of the
system is depicted in Figure 2.

In Divago, the first step corresponds to selecting a pair
of input spaces (domains) from the Knowledge Base. The
input spaces are represented as concept maps, i.e., graphs
where vertices are concepts and edges represent relations.
The selection of such spaces is performed by the user or
randomly generated. Then, the Mapper module preforms
the selection of elements for projection. Such selection is
achieved by means of a partial mapping between the input

spaces using structural alignment. This operation looks for
the largest isomorphic pair of sub-graphs contained in the
input spaces.

For each mapping provided by the Mapper, the Blender
performs a projection into the blend space. At this stage, all
the possible projections resulting from each mapping must
be represented in the blend space. The whole set of projec-
tions summarises the Blendoid, which is the set of all possi-
ble blends.

The Factory module is responsible for exploring the space
of all possible blends provided by the Blender. The Factory
interacts both with the Elaboration and Constraints mod-
ules: it is based on a genetic algorithm (GA) that looks for
the elaborations that best fulfill the requirements dictated by
the Constraints module. At each iteration, the GA sends
each blend to the Elaboration module, which is responsible
for applying context-dependent knowledge, and then sends
the result to the Constraints module, which applies the op-
timality principles in order to evaluate the elaborated blend.
When the GA finds an adequate solution (or a pre-defined
number of iterations is reached), the Factory stops the exe-
cution of the genetic algorithm and returns the best blend.

Multi-domain Knowledge Base j :{>

Factory
Genetic Algorithm

Convergent Strategy

Constraints

\V A
Elaboration ) Goal

Figure 2: Divago architecture.

The Constraints module contains an implementation of
the optimality principles based on quantitative metrics.

Integration

The measure of integration is based on the idea of frame cov-
erage. If F is the set of frames that are satisfied in a blend,
frame coverage corresponds to the set of relations from its
concept map that belong to the set of conditions of one or
more frames in F'.

Definition 1 (Single Framelntegration). For a frame f
with a set C' of conditions, a blend b, with a concept map
C My, its blendoid with a concept map, C Mg+, and VI, the
set of integrity constraints that are violated in the frame, the
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integration value, I, is defined by:

_ _#C #CM,
T H#COM, HCMp+

where ¢ is a penalty factor between 0 and 1, a value that
penalises a frame for each violation of integrity constraints.
An integrity constraint is violated if its premises are true. In
the context of the integration measure of frame f above, f
violates integrity ic if the conditions C;. of ic are met and
CieC £ 0.

Integration is estimated through the following equation:
Definition 2 (Integration). Let F, = {f1, f2,..., fi} be
the set of the frames that have their conditions (C;) satisfied
in the blend b, «, the disintegration factor (with 0 < o < 1),
and [y, the single frame integration value, as in Eq. (1).

Iy x (1 ="V x (14

)/2, ()

K3
Integration = Iﬂé ¢, T ax Uncoverage x Z Iy, (2)
0

The Uncoverage value consists of the ratio of relations
that do not belong to the intersection of all frames w.r.t. the
total number of relations considered in the frames:

#Up Co — #M,Ci.
#Uo Ci

3)

Uncoverage =

Topology

The topology measure follows the principle that if a pair of
concepts x and y are associated in the blend by a relation r,
then the same relation must exist in the inputs between the
elements from which x and y were projected. In this case,
the relation 7(x,y) is topologically correct. The topology
measure corresponds to the ratio of topologically correct re-
lations in the concept map of the blend:

Definition 3 (T'opology). For aset TC C C' M, of topolog-
ically correct relations, defined as

TC ={r(x,y) : r(z,y) € CM; UCM,}, )
where C'M; and C'M> correspond to the concept maps of
inputs 1 and 2, respectively. The topology measure is calcu-
lated by the ratio:

#TC
#CM,

Topology = &)

Maximisation/Intensification of Vital Relations

In Divago, intensification is treated as maximisation, i.e.,
there is only one measure for the principles related to the
vital relations. To define the maximisation measure, the im-
pact of the vital relations to the blend is given by the ratio of
vital relations w.r.t. the whole set of possible vital relations,
contained within the blendoid:

Definition 4 (M aximisation_V R). Let T be a set of vital
relations. From the concept map of the blend b, we may
obtain the set of vital relations in b, By i:

Byr = {r(z,y) : r(x,y) € CMy Ar € T}

From the blendoid (the union of all possible blends), BT,
we have By} p:

B&R = {T(Iay) : T(Ivy) S CME AT € T}

Finally, the Maximisation of Vital Relations measure is cal-
culated by the ratio

#Byr
#By

Mazximisation VR =

Pattern Completion

In Divago, pattern completion is viewed as frame comple-
tion, as a pattern is described by a frame. The act of complet-
ing a frame consists in asserting the truth of the ungrounded
premises, a process that happens only after a sufficient num-
ber of premises is true (completion threshold). The mea-
sure that indicates the conditions that are actually satisfied
by a frame f in a blend b is called completion evidence of f,
e(f,b). (Frame) completion can only happen when the com-
pletion evidence is higher than the completion threshold.

Definition 5 (Completion Evidence). The Completion
Evidence e of a frame f; with regard to a blend b is cal-
culated according to the following:
#SatZ #VI
e(fi,b) = X (1—1 , 6
(fub) = 5 < (1=0) ©)
where Sat; contains the conditions of each f; that are satis-
fied in b, C; contains the conditions of f;, ¢ is the integrity
constraint violation factor and VI the set of violated in-
tegrity constraints.

In the end, pattern completion is computed by finding the
union of all the conditions contained within the patterns and
estimating its own completion evidence:

Definition 6 (Pattern Completion). The Pattern Comple-
tion measure of a blend b with regard to a set of frames F' is
calculated by

PatternCompletion = e( U fi, ). @)
fieF

Web
The web principle is not treated as an independent principle;
it is co-related to topology and unpacking. As a result, it is
given as an estimation of the strength of the web of connec-
tions to the inputs:
Definition 7 (W eb).

Web = A x Topology + B8 x Unpacking, ®)
with A\, > 0and A + 8 = 1.

Relevance

The idea of relevance is strongly associated with the goal of
blending:

Definition 8 (Relevance). Assuming a set of goal frames,
Fy, the set Iy, of the satisfied frames of blend b and the value
PC Ny for the pattern completion of a set of frames F' in
blend b, relevance is given by:

#(F, N Fy) + #F, x PCNp,
#Fy ’

Relevance =

€))
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where F,, the set of unsatisfied goal frames, consists of
F, = F, — Fy. This formula gives the ratio of satisfied and
partially satisfied goal frames w.r.t. the entire set, I, of goal
frames.

Unpacking

Unpacking is reduced to the ability to reconstruct the input
spaces. To measure it, the definition of defining frame is
required:

Definition 9 (DefiningFrame). Given a blend b and an
input space d, the element = (which is the projection of
the element x4 of input concept map d to b) has a defining
frame f, 4 consisting of

fe.a=Co,Ch,...,Cp — true, (10)

where C; € {r(x,y) : r(zq,y) € CMgy}. Assuming that k
is the number of conditions (C}) of f; 4 that are satisfied in
the blend, the unpacking value of = with regard to d (repre-
sented as £(x, d)) is

E,, (1)

f(ﬂj, d) = n

where n’ is the number of elements to which z is con-
nected. The rotal estimated unpacking value of x as being
the average of the unpacking values with regard to the input

spaces:
£z, 1) +&(x, 2
&(x) = % (12)
Definition 10 (Unpacking). Let X be the set of m elements
of the blend b, generated from input concept maps 1 and 2.
The Unpacking value of b is calculated by
ZZ‘ZO ()

Unpacking = ==—"———= z;, € X. (13)
m

Blending as a convolution of neural patterns

Thagard and Stewart (2010) propose a neuro-computational
approach based on a mechanism that combines neural ac-
tivity patterns by a process of convolution, a mathematical
operation that interweaves structures. The main idea be-
hind such approach is to build combinations of neural ac-
tivity patterns that are probably useful and novel. The work
aims at modelling the so-called AHA! moment, which occurs
when humans discover surprising relations between appar-
ently unrelated pieces of information.

Concepts are represented as activity patterns of vectors of
neurons, which are convoluted in order to combine patterns
(the use of convolution to combine neural representations
is based on the assumption that any representation can be
treated as a vector). Although the authors do not explic-
itly claim that their approach models the CB mechanism,
they highlight the similarities between the proposed account
of creativity and the blending mechanism. A key feature
of this model is the ability to combine several multimodal
representations, including information that can be sensorial,
kinesthetic, and verbal, as well as emotional (see Figure 3).
As for the latter, it is worth mentioning that emotional re-
actions play a key role in creative thought; in particular, the
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reaction of pleasure/approval that is associated with the gen-
eration of novel and surprising ideas. As a result, the AHA!
experience is presented as a convolution of a novel combined
representation with patterns of brain activity for emotion.

combined concept

L

emotional reaction

e

concept 1 concept 2 appraisal physiology

Figure 3: The AHA! experience as a convolution of neural
patterns (combination of four representations into a single
one). The arrows indicate the flow of information although
many reentry feedback loops may occur (Thagard and Stew-
art 2010).

Another relevant feature of this model is the ability to re-
verse the process of convolution, using neural connections
similar to those required for performing the convolution.
This reverse process, which is known as deconvolution, im-
plies loss of information: the output is an approximation of
the original patterns.

Blending from a Generalisation-Based Analogy
Model

Guhe et al. (2011) present an account of blending based
on the Heuristic-Driven Theory Projection (HDTP) (Schw-
ering et al. 2009; Gust, Kiihnberger, and Schmid 2006),
which was originally proposed as a framework for analogy
making. HDTP represents knowledge about the domains as
first-order logic theories, whose analogical mapping is es-
tablished via anti-unification, i.e., an analogical relation is
built by associating terms with a common generalisation.

In the HDTP framework, knowledge is mapped and trans-
ferred from a source domain S to a a target domain 7. To
create an analogy, two stages are required: mapping phase
and transfer phase. In the former, the two domains are com-
pared to find structural commonalities, leading to the cre-
ation of a generalised description G that contains the match-
ing parts of both domains. In the final phase, unmatched
knowledge in S can be mapped to the target domain to cre-
ate new hypotheses.

The first phase is similar to the cross-space mapping and
the generation of the generic space in the CB framework. In
fact, the authors turn the HDTP framework into a CB frame-
work by modifying the second phase: the knowledge trans-
fer is replaced by a process that creates a new knowledge
domain B, the blend. Knowledge from S and 7" is merged to
create B based on the following mapping: ‘in the ideal case,
B respects the shared features of S and T (those with com-
mon generalisations), and inherits independently the other
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features of S and T.".

Since unmatched parts of the domains will be transferred
into the blend, which may introduce incoherence, the frame-
work has the ability to either discard conflicting knowledge
or reduce the coverage of the generalisation.

Figure 4 depicts a diagram illustrating the extension of the
HDTP framework to CB.

In this model, the mental spaces are represented by many-
sorted first-order theories. To blend two theories, three steps
are required: (i) definition of core (blend) laws, which unite
input signatures to generate new signatures ; (ii) addition of
preferred conjectures (generation and addition of laws that
concern equality of analogous entities, functions and rela-
tions) ; (iii) definition of extra conjectures (addition of laws
from the input spaces) (Bou et al. 2014).

G

Figure 4: HDTP as a blending framework. Top arrows de-
note substitutions resulting from the computation of the ana-
logical relation m. Dashed arrows indicate the heuristic-
driven construction of the conceptual blend (Guhe et al.
2011).

Discussion

Among the three models previously described, Divago is the
one that encapsulates more elements of CB theory. Despite
the inherent subjectivity involved, the Constraints module in
Divago tries to be consistent with theory regarding the opti-
mality principles. This gives Divago a certain modularity, as
different principles and weights can be considered as a func-
tion of the task at hand. The inclusion of metrics to assess
the presence of vital relations is probably the most notewor-
thy characteristic of the constraints module. However, it is
important to note that Divago does not perform compression
(of vital relations).

The neuro-computational approach based on the convo-
lution of neural patterns is not directly inspired by CB the-
ory. Its inspiration comes from findings in the field of neuro-
science that can be related to blending (neural combination
and binding). This kind of approach does not take into con-
sideration the optimality principles. However, we believe
that the inclusion of those principles in the model of emo-
tional reactions would make the whole model more com-
plete, as it would define emotional reactions that are asso-
ciated not only with novelty and surprise but also with the
coherence and interpretation of ideas. Here, the challenging

task is to model neural processes that can generate inputs to
assess the presence of the optimality principles.

The blending model developed from a generalisation-
based analogy model is particularly suitable for generating
blends that are mostly analogical constructions. The pre-
ferred and extra conjectures that can be added during the
generation of blends share some similarities with the opti-
mality principles in terms of role in the blending process, as
they help discard unwanted blends.

While some models try to include the optimality princi-
ples, others do not take them into consideration. But are
all the principles relevant? And, when they are not an ob-
vious part of the model, could they be implicitly defined?
We present our view on these questions for each one the
optimality principles and for each one of the computational
approaches described herein.

Integration

Integration is a principle that most contributes to the in-
tegrity of a blend and it cannot be completely disregarded.
Our experiments with visual blends showed the importance
of integrity to the quality of a blend; there was a high correla-
tion between integrity (or coherence) and the overall impres-
sion of the blend (Martins et al. 2015). Figure 5 depicts two
examples of visual blends (fictional hybrid animals) used in
our survey: Guorse and Pengwhale. The former was among
the blends with the lowest overall impression and coherence
scores, whereas the latter was among the favourite blends
(with high overall impression and coherence scores).

Integration is present in each one of the models but in ap-
parently varying degrees. Divago performs integration both
in an explicit and implicit way. The former corresponds
to the maximisation of the criterion given by Equation (2).
However, integration is also achieved to some extent through
the strategy used to perform cross-space mapping, as Divago
basis its mapping on structural alignment, which ensures a
certain degree of integration.

The blending model based on the HDTP framework
tries to ensure integration by constructing the generalisation
model and in subsequent stages the integrity criterion is still
taken into consideration.

In the neuro-computational model, the convolution of
neural activity patterns is by definition an integration op-
eration. However, to ensure a higher level of integration,
it is fundamental to assess integration through the emotions
module.

Topology

As for the Topology principle, we can argue that its rele-
vance is somewhat relative. On one hand, it can ensure con-
sistency to some extent, as it contributes to the external co-
herence of the blend. On the other hand, it tends to inhibit
the inclusion of more uncommon associations. However, as
observed by Pereira (2005), the importance of maintaining
the same topological arrangement depends on the type of
the blend we are aiming at. For example, if our construction
pursues an analogy, then topology becomes crucial; if we
are pursuing less strict combinations, then it should become
secondary.
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‘ Guorse
(guinea pig, horse)

Pengwhale
(penguin, whale)

Figure 5: Two examples of fictional hybrid animals used in
the online questionnaire (Martins et al. 2015). Each sub-
caption contains the corresponding name of the blend as
well as the input spaces. The author of both blends is Arne
Fredriksen (http://gyyp.imgur.com/).

The model based on the HDTP framework follows an ap-
proach that tries to build externally coherent blends, despite
the absence of an implementation of the optimality prin-
ciples. With regard to the neuro-computational approach,
topology could be assessed via the emotions module.

Maximisation/Intensification of Vital Relations

A maximisation or an intensification of vital relations con-
tributes to make the blend easier to understand and to trig-
ger a prompt cognitive response. However, maximisation
(or intensification) is not always possible, as the mental
spaces are not always connected by vital relations. Further-
more, computationally modelling the phenomenon of com-
pression, i.e., bringing appropriate relations from different
inputs to the blend can be challenging.

Pattern Completion
We do not view pattern completion as a fundamental princi-
ple. It can enrich the blend, but it is not the type of constraint

that, by itself, contributes more to the integrity and easy un-
derstanding of a blend. However, we believe it cannot be
completely disregarded, especially when there is some in-
completeness associated with the blend. Additionally, frame
pattern completion can increase the capabilities and rele-
vance of the blend.

Any of the computational models described in this paper
can accommodate an implementation of this principle. In the
HDTP-based approach, this can be achieved via the defini-
tion of extra conjectures. In the neuro-computational model,
pattern combination could be assessed by inputs related to
the incompleteness of patterns.

Web

The web principle ensures that elaboration is performed
without removing links to the input spaces. This constraint
has a direct relation with the topology and unpacking prin-
ciples, as they try to maintain the connections to the input
spaces. More particularly, the topology principle tries to
maintain the web of relevant connections to the input spaces,
whereas unpacking tries to reduce the cognitive work asso-
ciated with the reconstruction of the input spaces.

In our view, this is a relevant principle in most of the sce-
narios, as it promotes the easy understanding of the blended
space and tends to produce an immediate cognitive effect.
However, it does not have to be directly applied, as it de-
pends on the topology and unpacking principles.

Relevance

Relevance is a principle that is associated with the useful-
ness of the blend. Since the quality of a blend depends on
its purpose, it is fundamental to understand the usefulness
of the various elements of a blend. An inexistent blending
goal can be detrimental to the assessment of the relevance. It
is therefore advantageous to have additional knowledge re-
garding the blending goal and how it relates to the elements
of the blend. This principle is usually implicitly present. For
example, the HDTP-based model can use the preferred and
extra conjectures to define goals.

Unpacking
Our previous series of experiments on the evaluation of vi-
sual blends suggested that unpacking is relevant in order to
better understand the blend. The participants tended to em-
phasise the importance of recognising the input spaces (Mar-
tins et al. 2015). However, there was also a generalised
opinion that the favourite blends were those whose unpack-
ing took some time to occur. The unpacking act can give
a hint on the level of surprise of a blend: a longer unpack-
ing tends to suggest a higher level of surprise. However, too
much surprise can be detrimental to the quality of the blend.

As for the external coherence of the blend, we believe that
unpacking is a fundamental criterion. However, for some ap-
proaches, it can become challenging to evaluate the easiness
of reconstructing the integration network or simply deter-
mining the input spaces. In those cases, a topology measure
is required to account for external coherence.

Since the convolution of neural patterns can be re-
verted (via deconvolution), we can say that the neuro-
computational approach follows the unpacking principle.
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We also argue that HDTP-based CB model tries to follow
this principle, as it tries to add the maximum number of sym-
bols of the input spaces to the blends.

Conclusions and further work

The optimality principles are a fundamental element in CB
theory. They are responsible for guiding the integration pro-
cess towards highly integrated, coherent and easily inter-
preted blends. While several computational models of the
CB mechanism have been proposed and successfully used as
creative systems, the inclusion of the optimality principles in
those models has been overlooked, manly due to the subjec-
tivity and the computational inefficiency associated with this
element of CB theory.

In this paper, we have analysed the presence as well as the
relevance of the optimality principles in three different ap-
proaches to the CB mechanism. Three substantially different
computational models were studied: Divago (explicit pres-
ence), CB as a convolution of neural patterns (implicit pres-
ence) and CB from a Generalization-Based Analogy Model
(implicit presence).

From our analysis, we believe that not all principles are
relevant. Integration, topology, unpacking, relevance, and
intensification/maximisation of vital relations appear to be
the most crucial ones. In fact, principles such as integration
and topology tend to be implicitly present in models that
apparently overlook the optimality principles.

Integration is the most vital principle to establish the in-
tegrity of the blend. Topology and unpacking are responsible
for defining the external coherence of the blend. However,
if we want to favour the introduction of uncommon associ-
ations, topology and unpacking can be treated as secondary
principles.

Maximisation (and intensification) of vital relations can
contribute to an easier understanding of the blend and a cre-
ate a more immediate cognitive effect. As such, they are also
fundamental principles.

Relevance is related to the usefulness of the blend and, as
a result, we believe it cannot be disregarded in most cases.

As future work, we will continue our investigation on the
relevance of the optimality principles. We also plan to reim-
plement the Constraints module in the Divago framework
using some of the discoveries made during our study.
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