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Abstract

We present an empirical study investigating the hypothesis
that listeners hold a bias against computer-composed music.
Presented in part as a replication study, the proposed method-
ology seeks to improve upon weaknesses found in previous
studies of the subject. Across two study periods, with approx-
imately 60 subjects each, we failed to find evidence of a sig-
nificant bias against computer-composed music. We outline
potential weaknesses in our design, and propose improve-
ments for future studies.

Introduction: Computational Creativity
A subfield of Artificial Intelligence (AI) that has recently
gained significant momentum is the exploration of compu-
tational creativity. Pasquier et al. define this as “the sci-
ence of machines addressing creative tasks” (Pasquier et
al., 2016). Musical Metacreation (MuMe) is a subfield of
computational creativity that addresses specifically musi-
cal tasks, like improvisation, composition, and performance.
MuMe systems can be classified along a continuum accord-
ing to their relative levels of autonomy, from completely
user-dependent computer music “tools,” to autonomous gen-
erative systems (Pasquier et al., 2016).

As an extension of AI, computational creativity presents
a new set of philosophical difficulties. In the case of general
intelligence, reasoning processes can often be understood
through the a posteriori analysis of solutions—i.e., a kind
of reverse engineering of thought. This phenomenon was
noted by Minsky, who pointed out that once we understand
how something is done, we no longer regard it as particularly
intelligent, but instead see it as a straightforward, mechani-
cal process (Minsky, 1982). Creative products, on the other
hand—and perhaps more specifically the products of artistic
creativity that we address here—do not necessarily obviate
the processes from which they arise. In creative “reason-
ing,” singularly optimal solutions seldom exist, and detailed
knowledge of the technical means involved in producing a
given solution cannot always account for the appropriate-
ness of the method chosen.

Evaluation of the products of human artistic creativity is
fundamentally subjective. In the field of music, the qual-
ity of works is evaluated by the artists themselves, by their
peers (fellow composers and musicians), audiences (inferred
from concert attendance and album sales), the media (pub-
lished reviews of critics and journalists), programming re-
quests from ensembles and presenters, and in some cases

by the peer-review committees organized by public funding
bodies and arts councils. In the academic world, research
is likewise evaluated by the author and her/his peers, by ac-
ceptance at academic conferences and the receipt of grants
and scholarships, but also via methods that strive for greater
scientific objectivity; i.e., the measurement of formalized in-
put/output relationships and empirical studies which record
the responses of participants.

Scientific experiments seek to infer the presence of the
investigated phenomena by contrasting an experimental ma-
nipulation with a baseline control. For metacreations, this
control is comprised of human-created artistic works. When
dealing with music composition, however, developing the
control faces two significant challenges: 1) The problem of
selecting a representative work which will contrast against
the computer-composed work, while mitigating the intro-
duction of confounding variables, and 2) The interpreta-
tional problem of presenting the music to listeners in a way
that accurately communicates its essential qualities, while
again limiting the introduction of confounding variables.

A Bias Against Musical Metacreation?
Evidence of the bias against computational creativity is
perhaps best illustrated anecdotally. When David Cope
debuted “Emmy”—Experiments in Musical Intelligence
(Cope, 1996)—before a live audience, her compositions
were reportedly panned by a critic weeks before the actual
concert (Blitstein, 2010). Emmy was not a human composer,
but rather a computer program developed by Cope to emu-
late the styles of famous composers. Poor reviews were not
the only obstruction Emmy faced: audiences often reacted
with anger to her works, record companies declined to sign
recording contracts, and musicians refused to perform her
music (Cope, 2004).

Undeterred by this negative response—some of which he
described as “racist” for its anti-machine hostility—Cope
developed the software further (Blitstein, 2010). This work
culminated in a successor to Emmy, called “Emily Howell,”
which turned away from style emulation, focusing instead
on the creation of novel works in a unique musical style.
Some reviewers complained that Emily’s works, though mu-
sically pleasing, were hollow, shallow, and lacking depth
and heart (Cope, 2004). Cope lamented the bias of his crit-
ics, and their complaints that he was taking away one of
the remaining things humans could claim was uniquely their
own: creativity (Cheng, 2009).
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Defining “Bias”
For the purposes of the current investigation, it is important
to be clear about our definition of “bias.” Explicit biases
are consciously held attitudes or preferences, that can be di-
rectly reported by individuals. Implicit biases—also referred
to as “cognitive” biases (Tversky and Kahneman, 1974)—
on the other hand, are unconsciously held beliefs or attitudes
that are not directly accessible to subjects, and thus influence
behaviours and choices without the individual’s awareness.
A typical example might be a CEO who verbally states (and
may consciously believe) that applicant gender should not
influence hiring strategy, yet whose hiring patterns show a
strong gender preference.

Through this study we seek to experimentally determine
whether there is, or is not, a bias against the notion of
computational creativity in music. We do not address ex-
plicit/implicit bias directly, but rather attempt to determine
whether a general bias exists, such that knowledge of author-
ship alone—human or computer—is enough to significantly
modify preference.

Replication Studies
Reproducibility is an essential principle of scientific re-
search. Statistical convention considers significant results
to be those that are unlikely to be attributable to sampling
error alone—e.g., the difference between the true popula-
tion mean and the mean of the sample being tested. The
significance value (p) is used to indicate whether the ob-
served effect may be attributed to sampling error alone, such
that “significant” results indicate that sampling error should
account for the effect < p ∗ 100% of the time. However,
where the responses of human subjects are involved, explicit
test methodology, experimental design, and subject selec-
tion comprise a complex web of influences and interactions,
such that it isn’t always clear that the effect being observed
is, in fact, the effect under investigation. This phenomenon
is called ”confounding,” and it plagues observational studies
especially, but also experiments with inadequate controls.
Thus, while statistical testing may suggest that an effect is
unlikely to be due to sampling error alone, it cannot rule
out alternative influences as potential causes. Replication
studies help ensure that the results found in one study can
be reproduced at a later date, thereby building confidence in
the verity of the observed result.

An example of the importance of reproducibility occurred
in 2011, when social psychologist Daryl Bem published a
study demonstrating so-called “psi” abilities in the Jour-
nal of Personality and Social Psychology (Bem, 2011). In
the study, participants appeared more likely to recall words
from a word list if they practiced typing out those words
at a later date—i.e., they seemed to demonstrate a kind
of “premonition” of the future rehearsal process that could
improve their recall scores in the present. Perhaps unsur-
prisingly, these results failed to be replicated by subsequent
studies (Young, 2012), rekindling conversation about the im-
portance of replicability in the sciences.

Aside from deliberate manipulation, fraud, and statis-
tical chance—such as that due to type-I error-rate (i.e.,
“false-positive”) inflation arising from multiple comparisons
(Garcia-Marques and Azevedo, 1995)—there are a number
of reasons for this decline in replication studies. Broadly
speaking in the contemporary research milieu, a market-

driven mentality has encouraged an over-emphasis on novel,
exciting, and often counter-intuitive results, consequently
discouraging both the submission and publication of articles
with negative findings; a phenomenon known as the “file
drawer effect” (Rosenthal, 1979). In some cases, of course,
replication studies that fail to obtain the significant results of
an original study do so as a result of methodological impre-
cision. Some argue, however, that such “conceptual” repli-
cations are preferable, as they interrogate the generalizabil-
ity of the phenomenon being studied (Young, 2012)—i.e., by
reframing the intent of the study independently of its precise
methodology. Another possibility is whether there has sim-
ply been a change in the cultural zeitgeist; i.e., is difficulty
replicating behaviour data from past decades attributable to
a genuine decline in the studied behaviour, thus indicating a
shift in attitudinal norms? For instance, we would not con-
sider the data acquired from an early 20th century study of
Western attitudes toward homosexuality to be representative
of the population today, and the inferences one could draw
from such data would be similarly inapplicable.

The Replicated Study: Moffatt and Kelly
Empirically, (Moffat and Kelly, 2006) studied the pro-
posed bias against computational creativity in the context
of computer-composed music. In this study, participants
listened to six one-minute musical excerpts, half of them
human-composed and the other half computer-composed.
The pieces were in three different “styles”: “free-form jazz”,
“strings”, and “Bach.” To minimize effects from partici-
pants’ personal preferences, the pieces were presented in
three pairs: one human- and one computer-composed for
each style. The selection of pieces was determined by their
“surface similarity”1 in an effort to conceal their authorship
(Moffat and Kelly, 2006).

A group of 20 participants were divided into “musi-
cian” and “non-musician” groups, based on their level of
formal music training and/or experience. Participants lis-
tened to each of the compositions and indicated how much
they “liked” the composition, on a 5-point Likert scale, and
whether they thought it was human- or computer-composed.
After this initial round of listening and evaluation, the ori-
gins of the pieces were revealed and the participants were
asked to evaluate the pieces again. In the second round, the
questions were disguised so as to not alert participants to the
purpose of the study—in this case asking them how willing
they would be to buy, download, or recommend the com-
positions to someone, and how much they “enjoyed” each
piece.

The experimenters noted that participants appeared to
demonstrate a prejudice against computer-composed music,
generally preferring those pieces that they believed (by their
own judgement) to be human-composed. The experimenters
dubiously called this the “free prejudice effect”: participants
were “prejudiced” in favour of pieces they freely decided
were human-composed. However, the experimenters did
not find any overt prejudice: there were no statistically sig-
nificant drops in the evaluations of the computer-composed
pieces upon revelation.

They also found that participants were able to identify the

1Details regarding their definition of surface similarity—i.e.,
the particular musical features considered—are not provided.
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computer-composed pieces as computer-composed, and that
non-musicians out-performed musicians at this task. Non-
musicians, however, were not statistically successful at iden-
tifying human-composed music as human-composed. Par-
ticipants, both musician and non-musician, also preferred
human-composed pieces over computer-composed pieces,
regardless of what they guessed their authorship to be,
with musicians preferring the human-composed pieces to a
greater degree. It is worth noting, however, that Moffat and
Kelly draw several unsubstantiated and ill-informed conclu-
sions from their data; an ethical problem we seek to avoid in
the present study.

Burnett, Khor, Pasquier, and Eigenfeldt
In a previous study, Burnett et al. (Burnett et al., 2012)
addressed similar questions in their evaluation of a sys-
tem for generating harmonic progressions (Eigenfeldt and
Pasquier, 2010). This experiment had certain methodologi-
cal aspects in common with Moffat and Kelly, dividing par-
ticipants into musician and non-musician groups, and us-
ing a Turing Test-like paradigm to determine whether par-
ticipants could discriminate between human- and computer-
composed musical excerpts. Whereas the Moffatt and Kelly
study used deception—concealing the purpose of the study
from participants—Burnett et al. explicitly informed partic-
ipants that they would be listening to a mix of human- and
computer-generated harmonic progressions and that they
would be asked to identify the source of each (thus mirror-
ing the general objective of the original Turing Test). Ad-
ditionally, Burnett et al. sought to estimate the confidence
of participant responses through the use of a 4-point Likert
scale: 1) Definitely Human, 2) Probably Human, 3) Proba-
bly Computer, and 4) Definitely Computer.

The findings of Burnett et al. echoed those of the earlier
study in a variety of ways. For example, like Moffat and
Kelly, Burnett et al. discovered that non-musicians outper-
formed musicians at discriminating between the human- and
computer-composed excerpts. However, whereas Moffatt
and Kelly found that participants more easily identified the
origin of the computer-composed works, Burnett et al. found
the opposite; participants struggled to identify computer-
composed pieces as computer-composed, but generally suc-
ceeded at identifying human-composed pieces. With regard
to the measure of participant confidence, no significant dif-
ferences were found between musicians and non-musicians,
but participants were generally more confident in their eval-
uations of pieces that were human-composed. However, it
is difficult to make direct comparisons between the studies,
given these divergent results, as aesthetic and stylistic dif-
ferences between the musical materials used in each study
throw into question the influence of authorship on listener
evaluations.

It is worth noting that both Moffat and Kelly and Bur-
nett et al. received feedback indicating that participants at-
tempted to “outsmart” the experimenters, listening for clues
that would reveal the true authorship of the excerpts. In both
cases, it was assumed that this effort mislead them into giv-
ing incorrect responses.

Experimental Methodology
With the possible exception of (Moffat and Kelly, 2006),
there is a lack experimental data corroborating the presence

of a bias against computational creativity in music. Here we
describe an experimental attempt to determine whether such
a bias exists. This experiment is, in part, a replication study,
but it also attempts to improve upon previous studies, tak-
ing into account the deficiencies of both Burnett et al. and
Moffatt and Kelly.

As indicated by participant comments, these previous
studies encountered difficulties with participants trying to
outsmart the experimenters by listening for “clues” of
authorship—a problem we attempt to reconcile with this
new procedure. Douglas Hofstadter noted that the poten-
tial for a bias against machine creativity might make it nec-
essary to purposely deceive listeners as to the origins of a
piece of music (Cope, 2004). The employment of deception
in the current experiment has been designed to determine
whether this speculation was correct. Efforts have also been
made to reduce any practice effects stemming from the non-
randomized presentation of the musical excerpts; a prob-
lem that affected previous studies. Familiarity and listening
fatigue effects were also minimized by including a control
condition, which allowed us to track changes in participant
evaluations in the absence of any experimental manipula-
tion.

To address problems of music selection, we attempted to
reduce the perceptual differences between musical pieces by
limiting them to a single instrumental timbre: contempo-
rary string quartet. The three computer-composed samples
were excerpts from two longer works and exhibited three
distinct musical textures: homophony, polyphony, and het-
erophony (the simultaneous variation of a single melodic
line). The generative systems for these works are described
in (Eigenfeldt, 2012) and (Eigenfeldt, Burnett, and Pasquier,
2012). Although both generative systems were corpus-based
in some way, many of the musical decisions (i.e. voice-
leading) were based upon an auto-ethnographic analysis.
Eigenfeldt selected two excerpts from his own music that
matched the textures and harmonic language in two of the
generative works, and composed a new excerpt to match
the missing one. We also paired computer- and human-
composed pieces based on shared structural aspects, taking
into account tempo, rhythm, and dynamics. We believe this
approach offers a significant improvement upon Moffat and
Kelly’s notion of pairing works by so-called “style”, partic-
ularly given the rather unlikely pairings they chose.

To address the “interpretational problem”, all pieces were
performed by live musicians, in an effort to normalize the
musical percepts and reduce variability. Further, in record-
ing the six excerpts, the musicians did not know which
works were human-composed or computer-composed, and
each excerpt was allocated an equal 30 minutes for rehearsal
and recording.

Methodology
Participants
Participants were recruited from SFU using dissemination
emails that were sent out to the School for the Contemporary
Arts, SIAT, Cognitive Science, and Psychology programs.
Participants were incentivized by informing them that they
would be included in a draw for four $50 cash prizes upon
completion of the study.

Unlike previous experiments which tested participants’
ability to discern the origin of a composition in a Turing-
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like test, we were now interested in whether participant be-
liefs about the origins of the pieces had an effect on their
evaluations. It was therefore no longer necessary to iden-
tify musicians and non-musicians within the pool of partici-
pants. However, we believed (as did Moffatt and Kelly) that
a participant’s cultural, academic, and musical background
might help elucidate the reasons for the extent (or presence)
of any bias they might have. Therefore, part of the experi-
ment included a demographic questionnaire requesting that
each participant indicate their age, gender, university major,
country of birth, number of years residing in Canada, num-
ber of years studying/playing music, and number of years
experience with computer programming languages (as an in-
dication of their computer literacy).

The experiment was run on two separate occasions (Stud-
ies 1 and 2 below), with 60 subjects participating in Study
1, and 62 subjects participating in Study 2. Both studies uti-
lized the same experimental design and online test interface,
and were methodologically identical.

Presentation of Musical Examples
The programme of musical works was derived from video
recordings of live musicians preforming three computer-
composed and three human-composed musical works. The
pieces presented were composed by, or generated by soft-
ware designed by, Arne Eigenfeldt. All pieces were per-
formed by the Yaletown String Quartet in Vancouver.

Participants viewed six video recordings, approximately
one minute in length each, of the quartet performing each of
the pieces. This method of presentation was used, in part,
to address a deficiency in previous experiments. Granting
the participants the ability to see human musicians perform-
ing the compositions was intended to help eliminate some
of the listening “strategies” participants had previously em-
ployed to determine composition authorship—e.g., believ-
ing that subtle variations in the quality of the audio betrayed
the composition’s origin. Having all pieces performed by
human musicians not only “normalizes” the quality of the
recordings, it also presents the excerpts in a more realistic
setting, potentially allowing us to more accurately capture
participants’ perceptions of the music.

Procedure
Participants were provided with a URL to an online survey.
The survey was built using Drupal (drupal.org), with addi-
tional modules to enable audio and video playback and time
tracking (i.e., to ensure that the participants listened to the
musical excerpts in full). Participants were then presented
with a consent page indicating that completion of the survey
would constitute consent.

Participants were presented with one piece of music at
a time. After each musical excerpt, they listened to a 10-
second “palette cleansing” recording of the musicians tuning
their instruments, to help reduce context effects that would
arise from directly following one piece with the next. Prac-
tice effect was minimized by randomizing the order of pre-
sentation.

After each video presentation, participants were asked to
indicate their impressions of each piece, on four different
attributes, by ranking them on a bipolar scale with 50 dis-
crete points, labelled only at the left and right extremes. The
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Figure 1: Experiment design using the 3 conditions. Grey shad-
ing indicates listening periods during which subjects are unaware
of authorship. The horizontal line represents the “revelation” mo-
ment, where the second round of evaluations begins. “H” and “C”
indicate (un-randomized) human- and computer-composed pieces,
respectively.

following dimensions were indicated: Good-Bad, Like-
Dislike, Emotional-Unemotional, and Natural-Artificial.
This evaluation procedure was inspired by that used to eval-
uate the BeatBender metacreation (Levisohn and Pasquier,
2008). The spreading out of evaluations in this manner (i.e.,
using a set of bi-polar pairs) was proposed to help identify
bias manifesting in a way that could have been obscured
were the evaluations condensed into a single rating variable
such as “liking” (as in previous experiments). Additionally,
past research has indicated that maintaining focused atten-
tion (along with discriminative listening and emotional in-
volvement) is critical for the accurate assessment of musical
aesthetics (Madsen and Geringer, 2008). In marketing re-
search, predictive validity has been shown to be high when
using multiple-item scales over single-item scales (Diaman-
topoulos et al., 2012). We believe having participants con-
template this variety of dimensions during the listening task
is an appropriate way to facilitate the desired level of atten-
tion and involvement.

The full set of musical excerpts was presented to partic-
ipants twice, each time under one of two experimental set-
tings. In the “naı̈ve” setting, participants were not informed
of the authorship of any of the pieces, and the experiment
was presented as an investigation of the effect that visually
witnessing a performance has on one’s aesthetic evaluation
of the music performed. In the “informed” setting, however,
participants were explicitly told (and reminded) of the au-
thorship of the pieces.

Ideally, the two exposures to the excerpts would have
taken place under all possible combinations of settings to
eliminate confounding covariates. However, we cannot de-
inform participants about piece authorship once they have
been informed. Therefore there were three different exper-
imental conditions: fully naı̈ve (N), fully informed (I), and
“revealed” (R). For the “revealed” condition, subjects start
the experiment in a naı̈ve condition, but conclude in an in-
formed condition, with a revelation occurring midway (see
Figure 1). This allows us to check for any “reaction” effect,
where the shock of the revelation inspires a drastic change
in evaluations.
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Having these three groups, each broken into two periods,
wherein the six pieces are reevaluated, also allows us to con-
trol for novelty, exposure, and fatigue effects. If we had
conducted the experiment solely with the “revealed” group,
as in Moffatt and Kelly, any increase or decrease in evalua-
tions could be attributed to a loss of novelty (i.e., becoming
bored), or an increase in familiarity (the “mere exposure” ef-
fect, leading to an increase in enjoyment). Listening fatigue
could affect the second evaluation in unpredictable ways.

Following the second round of evaluations, participants
were thanked for their participation but were asked one fi-
nal demographic question about their experience with com-
puter programming languages. This was asked at the end of
the experience so as to not rouse suspicions and tip partici-
pants to the true nature of the study during the initial demo-
graphic questions. Participants were then directed to a sepa-
rate website where they provided their email address so that
we could confirm they had finished the survey. Here they
were given the option to indicate whether they would like
to be contacted about the results of the experience and/or
be entered into the prize draw. As this section was sepa-
rate from the survey-proper, it prevented us from matching
survey answers to identifiable e-mail addresses, preserving
anonymity.

Despite the differences between our two designs, we be-
lieve the design of the present experiment is similar enough
to that used in (Moffat and Kelly, 2006) to allow for easy
comparisons: both contain three human and three computer-
composed pieces, in our case paired by composer rather than
style (all six pieces in the present experiment were com-
posed for string quartet). Our mixed (R) condition mimics
that used in Moffatt and Kelly, but our addition of the fully
naı̈ve and fully informed conditions allowed us to check
for timing and fatigue effects as well. Our experiment also
had the advantage of asking the same evaluation questions
in both rounds: Moffatt and Kelly asked participants how
much they “liked” the compositions in the first round and
how much they “enjoyed” the pieces in the second. How-
ever, the interpretation of these words is entirely subjective
and could vary widely across participants (one can “like” a
song very much, but depending on their current mood, they
may not actually “enjoy” it at that particular moment). This
was a concern that Moffatt and Kelly themselves expressed.
We attempted to devise our cover story such that we could
ask the same questions during both rounds without the sim-
ilarities cuing the participants to the true nature of our ex-
periment and compromising the validity of the results. The
Moffatt and Kelly study also suffered from a lack of random-
ization of excerpt presentation order, and this too has been
addressed for the present study. Finally, the addition of the
demographic questionnaire inquires about the age, sex, and
culture of the participants, factors which Moffatt and Kelly
believed could shed light on the proposed bias we are seek-
ing to identify.

Hypotheses
We anticipated a number of effects, both within and between
the three conditions N , I , and R. The null hypothesis is that
we should see no significant differences in the evaluation
of the pieces among the three groups; the only changes be-
tween the initial and subsequent presentations of the stimuli
should reflect novelty, exposure, or fatigue effects and have

the same influence in each condition. As for anticipated ex-
perimental effects, we formed four main experimental ques-
tions:

1) Among those who hear the pieces naively in the first
period, does the comparison of human- vs. computer-
composed music change their ratings by different amounts
when the authorship is revealed before the second hearing
than when it is not?

2) In the second hearing only, is the comparison of
human- vs. computer-composed music different when the
authorship is known than when it is not?

3) Among those who hear the pieces naively in the first pe-
riod, is the comparison of human- vs. computer-composed
music different when the authorship is known than when it
is not?

4) Does the comparison of human- vs. computer-
composed music change by different amounts when the au-
thorship is revealed partway through than when conditions
remain fixed for both hearings?

Statistical Methods
Experimental Design
We created two sets of example pieces; the Human set
(a, c, e) and the Computer set (b, d, f). These pieces were
paired, so that each human piece had a corresponding com-
puter piece: (a, b)(c, d)(e, f). Pieces (a, b) were denoted as
Pair 1, pieces (c, d) as Pair 2, and pieces (e, f) as Pair
3. These three pairs were always presented in this order,
but within each pair the order of human or computer com-
position was considered both ways, resulting in 8 different
versions of the survey.

Subjects were assigned to one of these 8 sequences upon
enrolment into the study. The experiment was therefore con-
ducted as a split-split-split plot crossover design. Group
(N , R, or I)—a fixed effect—was assigned to a subject—a
random effect. Within each subject there were 12 hearings
arranged in nested groups of decreasing size. The fixed ef-
fect Period has two levels representing the six hearings
before the potential reveal (Period= 1) or after (Period
= 2). Within each Period, the factor Pair, with levels
1, 2, and 3, is assigned to the two hearings representing the
pairs of compositions described above. We treat Pair as a
fixed effect because the order in which the pairs of pieces
are heard is always the same. Finally, within each pair, the
fixed effect Composer, with levels H or C, is assigned to
a hearing. Note that the key experimental factors, Group
and Composer, are both randomized in this design. The
fact that Pair was not randomized, but rather presented in
sequence for each subject, (1, 2, 3) is unimportant because it
represents a combination of the fatigue and other effects due
to ordering of hearings and random variation among individ-
ual compositions. There is no interest in testing any part of
this effect. Importantly, it does not confound with condition
or composer.

Statistical Analysis
We analyzed the experiment using mixed-effect linear mod-
els according to its design (Milliken and Johnson, 2009),
using JMP Version 12 software (2015, SAS Institute). We
tested for carryover effects of this factor and found no sig-
nificance.

The central questions our replication seeks to address are:
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1. Whether people enjoy human music implicitly: H vs C
in Group N

2. Whether people prefer human music when told: H vs C
in Group I

3. Whether the difference of the above reveals a human- vs
computer-music bias.

We organized our analyses into four contrasts, each de-
signed to address a specific aspect of these hypotheses as
described below. We applied the same contrasts to each re-
sponse dimension.

Let H represent the model-estimated mean of a given re-
sponse dimension for human-composed compositions, and
C the mean of the same response dimension for computer-
composed compositions. We use subscripts “1” or “2” to re-
strict these means to Period 1 or 2, respectively, and “N,”
“I,” or “R” to restrict these means to Group N , I , or R, re-
spectively. We use “∆” notation to represent the change in
mean responses before vs. after the potential reveal:

∆H = (H1 −H2) (1)
∆C = (C1 − C2) (2)

We add subscripts to these quantities to refer to these
changes under a specific Group. All contrasts are tested
against a t distribution with 714 degrees of freedom.

Results
In analyzing the data, we operated under the assumption that
if results in the naı̈ve condition showed no significant pref-
erence for either human or computer-composed music, then
discrepancies in the other conditions may indicate the pres-
ence of bias. Note, however, that our focus is on the response
to being informed of authorship, not on the estimation of au-
thorship itself.

Broadly speaking, we considered three main factors: 1)
The “pure musical impression” (represented by Group N ),
2) The influence of knowledge of authorship (Groups N
and R), and 3) The influence of the “reveal” (which takes
into account an awareness of the deception).

Four contrasts were designed (series S1 to S4), based on
the stated hypotheses above:

Series 1 isolates the difference across periods for the naı̈ve
(N ) and mixed (R) groups:

S1 = [∆HN − ∆CN ]− [∆HR − ∆CR] (3)

Since the individual terms represent changes of opinion (∆),
and each bracketed difference isolates the effect of author-
ship on that change, significant S1 values could be said to
indicate a bias—i.e., when informed of authorship, subjects
change their opinions.

Series 2 compares only the second Period differences
of I and R, to N :

S2 =
(H2 − C2)R + (H2 − C2)I

2
− (H2 − C2)N (4)

Here we attempt to account for repetition effects, by evaluat-
ing only the opinions of subjects who have already heard the
pieces. The evaluation is again between fully-informed sub-
jects (i.e., since Group R in Period 2 is also informed)

“Emotional”
S1 S2 S3 S4

t-ratio -0.57 -0.27 0.63 -0.00
p-value 0.57 0.79 0.53 1.00
Scaled
Estimate -1.5 -0.4 1.2 -0.0
Std Error 2.6 1.5 1.9 2.4

“Good”
t-ratio 0.03 -0.52 -0.29 0.33
p-value 0.98 0.61 0.77 0.74
Scaled
Estimate 0.1 -0.7 -0.4 0.7
Std Error 2.2 1.3 1.6 2.0

“Like”
t-ratio -0.28 -0.52 -0.25 0.09
p-value 0.78 0.60 0.80 0.93
Scaled
Estimate -0.8 -0.8 -0.5 0.2
Std Error 2.7 1.6 1.9 2.5

“Natural”
t-ratio 0.47 -0.17 0.51 1.21
p-value 0.64 0.86 0.61 0.22
Scaled
Estimate 1.2 -0.2 0.9 2.8
Std Error 2.5 1.5 1.8 2.3

Table 1: Summary of t-ratios, p-values, estimated contrasts, and
standard errors for each series, across studies 1 and 2.

and naı̈ve subjects, and compares the average evaluations of
all informed subjects against those of the naı̈ve subjects.

Series 3 is similar to series 2, but looking only at R vs N
(i.e., excluding I), and thereby contrasting the purely subjec-
tive, musical impression with the knowledge of authorship:

S3 = (H2 − C2)R − (H2 − C2)N (5)
Series 4 looks again at difference across periods, contrast-

ing the “control” Groups N and I , against R:

S4=
[∆HN−∆CN ]+[∆HI−∆CI ]

2
−[∆HR−∆CR] (6)

Here, we could be said to most directly isolate the deception
itself, since we normalize the change across periods for the
pure musical impression (N ) and the fully-informed evalu-
ation (I), in the absence of any form of deception. These
normalized “deception free” evaluations are contrasted with
the R case, in which subjects transition not only from the
pure musical impression to the knowledge of authorship, but
also to an awareness of the deception (i.e., in Period 2,
they become aware that half of their evaluations have been
given with incomplete information). The combined results
for both studies are given in Table 1.

We ran a Factorial ANOVA with repeated measures and
found no significance, affected primarily by small differ-
ences in means (<5 points) relative to scale size (50) and
high variability. Additionally, we ran all pairwise compar-
isons of means for the Group*Period*Composer fixed
effect, looking for patterns of possible mean differences us-
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“Like”
Group, Period,
Composer

Least Sq Mean Std Error

N , 1, C 19.5 1.3
N , 1, C 19.5 1.3
N , 1, H 20.0 1.3
N , 2, C 18.7 1.3
N , 2, H 19.5 1.3
R, 1, C 16.9 1.6
R, 1, H 17.6 1.6
R, 2, C 17.6 1.6
R, 2, H 18.0 1.6
I , 1, C 19.7 1.4
I , 1, H 21.0 1.4
I , 2, C 22.3 1.4
I , 2, H 22.0 1.4

Table 2: The Least Square Mean and Standard Error for the “Like”
evaluation.

ing Tukey’s Honestly Significant Difference (HSD) method,
which controls the type-I error-rate inflation that can occur
when multiple hypothesis tests are performed. There were
no significant differences among means, indicating that none
of the effects of these three factors, or their interactions,
were particularly important to this study. The Least Square
Mean and Standard Error results for the “Like” comparison
are given in Table 2.

Discussion
As with the Moffat and Kelly study, the current study
shows that the so-called bias against computational creativ-
ity, while observable, is mostly anecdotal and exaggerated
While our results do indicate a negative effect of the knowl-
edge of computer authorship on listener judgements, this ef-
fect is not significant.

A clear contributing factor in the failure to find signifi-
cance is the small differences in means of the evaluations
(<5 points on a 50-point scale), and the high variability
within that range (see Figure 2 of the Appendix). This would
appear to indicate a degree of uncertainty or ambivalence in
the listeners, with regard to either the musical content of the
examples, or the application of the given criteria to evaluat-
ing those examples—participants simply did not have strong
opinions, regardless of their knowledge of authorship. Thus,
although we did see the anticipated decrease in ratings on
the “good” and “like” dimensions for the R group (i.e., after
the “reveal”), the impact of this change was lost amid the
general noisiness of the data.

Unlike Moffat and Kelly, we do not see a significant
preference for human-composed music in the naı̈ve group,
N . We also found no significant decrease in preference for
computer-composed music, among fully-informed subjects
(group I). We did, however, see a slight skewing of scores
toward the “bad” dimension in group R, after the “reveal”,
though the change was not significant. A similarly antici-
pated change toward “artificial” was noted along the “natu-
ral” dimension, though in this case the nature of the eval-
uation being made is a possible factor. Specifically, it is
worth noting that this pair of labels, when compared to the
others, fails to denote a clear positive/negative opposition—

i.e., “bad” is clearly opposed to “good”, “dislike” opposed
to “like”, and “unemotional” to “emotional.” However, it is
not so clear that “artificial” should be opposed to “natural.”
Though often used in opposition colloquially, these terms
carry strong ideological associations (Žižek, 2011), and thus
represent points along an ethical continuum, perhaps more
so than extrema in a relationship of contradiction or rever-
sal. The change in response in this case may be an indication
of a cultural attitude toward these underlying ideologies—
simply put, a human is “natural” and a computer “artificial”;
the musical appraisal may be strictly coincidental.

Despite the lack of significant findings, it is worth making
a couple of further observations, with reference to Figure 3
in the Appendix. First, there are notable differences between
participant responses across the two studies. Looking at
the dimensions related most directly subjective preference—
“Good” and “Like”—we see that, while in Study 1 the re-
sults indicate a positive change in Period 2 for the N
group, supporting empirical findings on the relationship be-
tween familiarity and musical preference (Szpunar, Schel-
lenberg, and Pliner, 2004; Schubert, 2007), Study 2 opposes
this pattern. In fact, Study 2 shows (weakly) correlated neg-
ative changes of rating in Period 2 across all groups for
these dimensions, suggesting that perhaps listener fatigue is
a contributing factor.

It is also worth noting that, in Study 1, for the “Natu-
ral” dimension, participants in the R group show a posi-
tive change for the computer-composed works, and a neg-
ative change for the human-composed works. This appears
to suggest that they were pleasantly surprised at the “nat-
uralness” of the works that were revealed to be computer-
composed, and perhaps somewhat disappointed at the “un-
naturalness” of the works that were revealed to be human-
composed; an outcome that may point to the ideological un-
derpinnings of the terms “natural” and “artificial” as a con-
tributing factor, as discussed above.

Future Work
Although the sample sizes for the current study were sta-
tistically adequate, the narrow range of ratings, relatively
high variability within that range, and overall change in rat-
ings between studies 1 and 2, suggest that perhaps the study
should be re-run with a larger number of subjects. Given
the randomization of group assignment (N , I , and R), a
larger overall population would also help balance the sizes
of the different groups. We also note that use of the terms
“natural” and “artificial” should be reconsidered, so as to
indicate a clearer positive/negative opposition, in keeping
with the other dimensions (i.e., “good-bad,” “like-dislike,”
and “emotional-unemotional”). Additionally, we recognize
that the standardizing choices made in the current study also
represent a limitation, in that we have studied only these se-
lected musical conditions. Hence, it cannot be confirmed
that the results of this work would apply to other musical
genres or other circumstances that differ from the conditions
used here.

Further, we are interested in exploring the possibility of
using rank-based, as opposed to ratings-based, evaluations.
As outlined by Yannakakis and Martı́nez (Yannakakis and
Martı́nez, 2015), rank-based questionnaires can help elim-
inate some of the problems associated with ratings-based
questionnaires when evaluating subjective, psychological
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factors like emotional response, preference, or opinion. In
the case of the current study, for example, a rank-based
choice—simply ranking the works in each Pair according
to how well they represent the dimension under considera-
tion (“good”, “like”, “emotional”, “natural”)—would elim-
inate the above statistical problem of narrowly distributed
ratings, while also obviating use the word “artificial.”

Finally, we are curious whether there may be a correlation
between the rating-change across Periods (i.e., Eq. 1 and
2 above) and the musical content of the works under eval-
uation. Specifically, we are interested in knowing whether
the overall complexity of the musical examples has an influ-
ence on listeners’ ratings after the “reveal.” We suspect that
the degree of change may be correlated with the so-called
“inverted-U” pattern, proposed to govern subjective judge-
ments of aesthetic value (Walker, 1981). The inverted-U
model suggests that the subjective assignment of aesthetic
value follows an “inverted-U” pattern, such that value (or
quality) is considered highest for works that match the sub-
ject’s preferred complexity level—less complex works are
rated lower, as are more complex works. We would like to
know whether subjects that potentially hold a bias against
computer-composed music provide more sharply contrast-
ing evaluations after the “reveal” for works that match their
preferred complexity level. This would suggest that it is not
simply the fact of computers composing music that such lis-
teners take exception to, but rather that such systems com-
pose works with a complexity rivalling that of their preferred
human-composed works. Such a finding would help estab-
lish a more adequately complex understanding of listeners’
attitudes about computational creativity, while at the same
time potentially offering a benchmark for selecting works—
both human- and computer-composed—for similar studies
in the future.

Conclusion
We outlined an experimental design for investigating the
proposed bias against musical metacreativity. The experi-
ment was conducted over two studies, on approximately 120
students from Simon Fraser University. Similar to a previ-
ous study by (Moffat and Kelly, 2006), we did not find sig-
nificant support for the presence of such a bias, though our
results do suggest that this bias exists, in some listeners. As
our results were not significant, we refrained from conjec-
ture based on demographic information. We also outlined
a number of possible improvements to our design for future
studies.
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Appendix
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Figure 2: Bar graph of subject ratings on the ”Good” dimension.
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Figure 3: Mean subject ratings for all dimensions. Note that the y-axis is scaled to focus on the range of subject responses. The actual scale
range for the study was 0 to 50, with 0 on the left and 50 on the right—i.e., 0=left=“good”, 50=right=“bad”.
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