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Abstract

Soundscape composition is the creative practice of pro-
cessing and combining sound recordings to evoke audi-
tory associations and memories within a listener. We
present Audio Metaphor, a system for creating novel
soundscape compositions. Audio Metaphor processes
natural language queries derived from Twitter for re-
trieving semantically linked sound recordings from on-
line user-contributed audio databases. We used a sim-
ple natural language processing to create audio file
search queries, and we segmented and classified au-
dio files based on general soundscape composition cate-
gories. We used our prototype implementation of Audio
Metaphor in two performances, seeding the system with
keywords of current relevance, and found that the sys-
tem produced a soundscape that reflected Twitter activ-
ity and kept audiences engaged for more than an hour.

1 Introduction

Creativity is a preeminent attribute of the human condition
that is being actively explored in artificial intelligence sys-
tems aiming at endowing machines with creative behaviours.
Artificial creative systems have simulated or been inspired
by human creative processes, including, painting, poetry,
and music. The aim of these systems is to produce artifacts
that humans would judge as creative. Much of the successful
research in musical creative systems has focussed on sym-
bolic representations of music, often with corpora of musi-
cal scores. Alternatively, non-symbolic forms of music have
been little explored in as much detail.

Soundscape composition is a type of non-symbolic mu-
sic aimed to rouse listeners memories and associations of
soundscapes using sound recordings. A soundscape is the
audio environment perceived by a person in a given locale
at a given moment. A listener brings a soundscape to mind
with higher cognitive functions like template matching of
the perceived world with known sound environments and
deriving meaning from the triggered associations (Bottel-
dooren et al. 2011). People communicate their subjective
appraisal of soundscapes using natural language descrip-
tions, revealing the semiotic cues of soundscape experiences
(Dubois and Guastavino 2006).

Soundscape composition is the creative practice of pro-
cessing and combining sound recordings to evoke auditory

associations and memories within a listener. It is positioned
along a continuum with concrete music that uses found
sound recordings, and electro-acoustic music that uses more
abstracted types of sounds. Central to soundscape compo-
sition, is processing sound recordings. There are a range of
approaches to using sound recordings. One approach is to
portray a realistic place and time by using untreated audio
recordings, or, recordings with only minor editing (such as
cross-fades). Another is to evoke imaginary circumstances
by applying more intensive processing. In some cases,
these manufactured sound environments appear imaginary,
by the combination of largely untreated with more highly
processed sound recordings. For example, the soundscape
composition Island, by Canadian composer Barry Truax
(Truax 2009), adds a mysterious quality to a recognizable
sound environment by contrasting clearly discernible wave
sounds against less-recognizable background drone and tex-
ture sounds.

Soundscape composition requires many decisions about
selecting and cutting audio recordings and their artistic com-
bination. These processes become exceedingly time con-
suming for people when large amounts of audio data are
available, as is now the case with online databases. As such,
different generative soundscape composition systems have
automated many sub-procedures of the composition process,
but we have not found any systems in the literature to date
that use natural language processing for generative sound-
scape composition. Likewise, automatic audio segmentation
for soundscape composition specific categories is an area not
yet explored.

The system described here searches online for the most
recent Twitter posts about a small set of themes. Twitter pro-
vides an accessible platform for millions of discussions and
shared experiences through short text-based posts (Becker,
Naaman, and Gravano 2010). In our research, audio file
search queries are generated from natural language queries
derived from Twitter. However, these requests could be a
memory described by a user, a phrase from a book, or a sec-
tion of a research paper.

Audio Metaphor accepts a natural language query (NLQ),
which is made into audio file search queries by our algo-
rithm. The system searches online for audio files semanti-
cally related to word features in the NLQ. The resulting au-
dio file recommendations are classified and segmented based
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upon the soundscape categories background, foreground,
and background with foreground. A composition engine au-
tonomously processes and combines segmented audio files.

The title of Audio Metaphor refers to the idea that audio
representations of NL queries that the system generates may
not have literal associations. Although, in some cases, an
object referenced in the NL query may have a direct refer-
ential sound such as with “raining outside” that results in a
type of audio analogy. However, an example that is not as
direct such as, “A brooding thought struck me down” has no
such direct referent to an object in the world. In this latter
case, Audio Metaphor would create a composition by pro-
cessing sound recordings that have some semantic relation-
ship with words in the NL query. For example, the sound of
a storm and the percussive striking of an object are the types
of sounds that would be processed in this case.

Margret A. Boden actively proposes types of creativity
being synthesized by computational means (Boden 1998).
She states, that combinatorial type creativity “involves novel
(improbable) combinations of familiar ideas ... wherein
newly associated ideas share some inherent conceptual
structure.” The artificial creative system here uses semantic
inference driven by NLQs as a way to frame the soundscape
composition and make use of semantic structures inherent
in crowdsourced systems. Further to this, the system asso-
ciates words with sound recordings for combining into novel
representations of texts. For this reason, the system is con-
sidered to exhibit combinatorial creative behaviour.

Our contribution is a creative and autonomous soundscape
composition system with a novel method of generating com-
positions from natural language input and crowd-sourced
sound recordings. Furthermore, we present a method of au-
dio file segmentation based on soundscape categories, and a
soundscape composition engine that contrasts sound record-
ing segments with different levels of processing.

We outline our research in the design of an autonomous
soundscape composition system called Audio Metaphor. In
the next section, we show the related works in the domains
of soundscape studies and generative soundscape composi-
tion. We go on to describe the system architecture, includ-
ing natural language processing, classification and segmen-
tation, and the soundscape composition engine. The system
is then disused in terms of a number of performances and
presentations. We conclude with our ideas for future work.

2 Related Work

Birchfield, Mattar, and Sundaram (2005) describe a system
that uses an adaptive user model for context-aware sound-
scape composition. In their work, the system has a small
set of hand-selected and hand-labelled audio recordings that
were autonomously mixed together with minimal process-
ing. Similarly, Eigenfeldt and Pasquier (2011) employ a
set of hand-selected and hand-labelled environmental sound
recordings for the retrieval of sounds from a database by au-
tonomous software agents. In their work, agents analyze au-
dio when selecting sounds to mix based on low-level audio
features. In both cases, listening and searching for selecting
audio files is very time consuming.

Search Query Generator

Audio File Segmentation

Soundscape Engine

Audio File
Recommendations

Freesound 

TwitterNLQUser

Sourcing

Processing

Figure 1: Audio Metaphor system architecture overview.

A different approach to selecting and labelling sound
recordings is to take advantage of collaborative tagging
of online user-contributed collections of sound recordings.
This is a crowdsourcing process where a body of tags is pro-
duced collaboratively by human users connecting terms to
documents (Halpin, Robu, and Shepherd 2007). In online
environments, collaborative tags are part of a shared lan-
guage made manifest by users (Marlow et al. 2006). On-
line audio repositories such as pdSounds (Mobius 2009) and
Freesound (Akkermans et al. 2011) demonstrate collabora-
tive tagging systems applied to sound recordings.

A system that uses collaborative tags to retrieve sound
recordings is described by Janer, Roma, and Kersten (2011).
In their work, a user defines a soundscape composition by
entering locations on a map that has sounds tags associated
with various locations. As the user navigates the map, a
soundscape is produced. In related research, the locations
on a map are used as a composition environment (Finney and
Janer 2010). Their compositions use hand-selected sounds,
which are placed in close and far proximity based upon se-
mantic identifiers derived from tags.

3 System Architecture

Audio Metaphor creates unique soundscape compositions
that represent the words in an NLQ using a series of pro-
cesses as follows:

• Receive a NLQ from a user, or Twitter;

• Transforms a NLQ into audio file search queries;

• Search online for audio file recommendations;

• Segment audio files into soundscape regions;

• Process and combine audio segments for soundscape
composition.

In the Audio Metaphor system, these processes are han-
dled by sequentially as is shown in Figure 1. 1

1A modular approach was taken for the system design. Ac-
cordingly, the system is flexible to be used for separate objectives,
including, making audio file recommendations to a user from an
NLQ, and deriving a corpus of audio segments.
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rainy autumn day vancouver
rainy autumn day
autumn day vancouver
rainy autumn
autumn day
day vancouver
rainy
autumn
day
vancouver

Table 1: All sub-lists generated from a word-feature list
from the query “On a rainy autumn day in Vancouver’.

3.1 Audio File Retrieval Using Natural Language

Processing

The audio file recommendation module creates audio file
search queries given a natural language request and a maxi-
mum number of audio file recommendations for each search.

The Twitter web API (Twitter API ) is used to retrieve the
10 most recent posts related to a theme to find current asso-
ciations. The longest of these posts is then used as a natural
language query. To generate audio file search queries, a list
of word features is extracted from the input text and gener-
ates a queue of all unique sublists. These sublists are used as
search queries, starting with the longest first. The aim of the
algorithm is to minimize the number of audio files returned
and still represent all the word features in the list. When a
search query returns a positive result, all remaining queries
that contain any of the successful word features are removed
from the queue.

To extract the word features from the natural language
query, we use essentially the same method as that proposed
by Thorogood, Pasquier, and Eigenfeldt (2012), but with
some modifications. The algorithm first removes common
words listed in the Oxford English Dictionary Corpus, leav-
ing only nouns, verbs, and adjectives. Words are kept in
order and treated as a list. For example, with the word fea-
ture list from the natural language query “The angry dog bit
the crying man,” “angry dog bit crying man,” is more valid
than “angry man bit crying dog.”

The algorithm for generating audio file queries essentially
extracts all the sublists from the NLQ that have a length
greater than or equal to 1. For example, a simple request
such as “On a rainy autumn day in Vancouver” is first pro-
cessed to extract the word feature list: rainy, autumn, day,
vancouver. After that, sub-lists are generated as shown in
Table 1.

Audio Metaphor accesses the Freesound audio reposi-
tory for audio files with the Freesound API. Freesound is
an online collaborative database with over 120,000 audio
clips. The indexed data includes user-entered descriptions
and tags. The content of the audio file is inferred from user-
contributed commentary and social tags. Although there is
no explicit user rating of audio files, a download counter for
each file provides a measure of its popularity, and search re-
sults are presented by descending popularity count.

The sublists are used to search online for semantically re-

lated audio files using an exclusive keyword search. Sub-
lists are used in the order created, from largest to small-
est. A search is considered successful when it returns one
or more recommendations. Additionally, the algorithm op-
timizes audio file recommendations by ignoring future sub-
lists that contain word features from a previously success-
ful search. The most favourable result is a recommendation
for the longest sub-list, with the worst case being no rec-
ommendations. In practice, the worst case is, typically, a
recommendation for each singleton word feature.

For each query, the URLs of the recommendations are
logged in a separate list. The list is constrained to a num-
ber specified at the system startup. Furthermore, if a list
has less than the number of files requested it is considered
sparsely populated and no further modification made to its
items. For example, if the maximum number of recommen-
dations specified for each query is five, and there are two
queries where one returns nine recommendations and the
other three, the longer list will be constrained to five, and
the empty items of the second list are ignored.

The separate lists of audio file recommendations are then
presented to the audio segmentation module.

3.2 Audio File Classification and Segmentation

Audio segmentation is an essential preprocessing step in
many audio applications (Foote 2000). In soundscape com-
position, a composer will choose background and fore-
ground sound regions to combine into new soundscapes.

Background and foreground sounds are general categories
that refer to a signal’s perceptual class. Background sounds
seem to come from farther away than foreground sounds or
occur often enough to belong to the aggregate of all sounds
that make up the background texture of a soundscape. This
is synonymous with a ubiquitous sound (Augoyard and
Torgue 2006): a sound that is diffuse, omnidirectional, con-
stant, and prone to sound absorption and reflection factors
having an overall effect on the quality of the sound. Ur-
ban drones and the purring of machines are two examples
of ubiquitous or background sound. Conversely, foreground
sounds are typically heard standing out clearly against the
background. At any moment in a sound recording, there may
be either background sound, foreground sound, or a combi-
nation of both.

Segmenting an audio file is a process of listening to the
recording for salient features and cutting regions for later
use. To automate this process, we have designed an algo-
rithm to classify segments of an audio file and concatenate
neighbouring segments with the same label. An established
technique for classification of an audio recording is to use
a supervised machine learning algorithm trained with exam-
ples of classified recordings.

3.3 Audio Features Used for Segmentation

The classifier models the generic soundscape categories
background, foreground, and background with foreground.
We use a vector of the low-level audio features total-
loudness, and the first three mel-frequency cepstral coeffi-
cients (MFCC). These features reflect the behaviour of the
human auditory system, which is an important aspect of
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soundscape studies. They are extracted at a frame-level from
an audio signal with a window of 23 ms and a step size of
11.5 ms using the Yaafe audio feature extraction software
package (Mathieu et al. 2010).

MFCC audio features represent the spectral characteris-
tics of a sound by a small number of coefficients calcu-
lated by the logarithm of the magnitude of a triangular filter
bank. We use an implementation of MFCC that builds a log-
arithmically spaced filter bank according to 40 coefficients
mapped along the perceptual Mel-scale by:

M(f) = 1127 log

✓
1 +

f

700

◆
(1)

where f is the frequency in Hz.
Total loudness is the characteristic of a sound associated

with the sensation of intensity. The human auditory system
affects the perception of intensity of different frequencies.
One model of loudness (Zwicker 1961) takes into account
the disparity of loudness at different frequencies along the
Bark scale, which corresponds to the first 24 critical bands
of hearing. Bands near human speech frequencies have a
lower threshold than those of low and high frequencies. The
conversion from a frequency in Hz f to the equivalent fre-
quency in the Bark scale B is calculated with the following
formula (Traunmuller 1990).

B(f) = 13 arctan(0.00076f)+ 3.5 arctan

✓
f

7500

◆2

(2)

Where f is the frequency in Hz. A specific loudness is
the loudness calculated at each Bark band; the total loud-
ness is the sum of individual specific loudnesses over all
bands. Because a soundscape is perceived by a human not
at the sample level, but over longer time periods, we use a
so called bag of frames approach (Aucouturier and Defre-
ville 2007) to account for longer signal durations. Essen-
tially, this kind of approach considers frames that represent
a signal have possibly different values, and the density dis-
tribution of frames provides a more effective representation
than a singular frame. Statistical methods, such as the mean
and standard deviation of features, recapitulate the texture of
an audio signal, and provides a more effective representation
than a single frame.

In our research, audio segments are represented with an
eight-dimensional feature vector of the means and standard
deviations from the total loudness and the first 3 MFCC. The
mean and standard deviation of the feature vector models the
background, foreground, and background with foreground
soundscape categories well. For example, sounds distant
from the listener and considered background sound will typ-
ically have a smaller mean total loudness. Sounds that occur
often enough will have a smaller standard deviation of those
in foreground listening. MFCC takes into account the spec-
trum of the sound affected by its source placement in the
environment.

3.4 Supervised Classifier Used for Segmentation

We used a Support Vector Machine classifier (SVM) to
classify audio segments. SVMs have been used in envi-
ronmental sound classification problems, and consistently

demonstrated good classification accuracy. A SVM is a non-
probabilistic classifier that learns optimal separating hyper-
planes in a higher dimensional space from the input. Typi-
cally, classification problems present non-linearly separable
data that can be mapped to a higher-dimensional space with
a kernel function. We use the C-support vector classification
(C-SVC) algorithm shown by Chang and Lin (2011). This
algorithm uses a radial basis function as a kernel, which is
suited to a vector with a small number of features and takes
into account the relation between class labels and attributes
being non-linear.

Training Corpus The classifier was trained using feature
vectors from a pre-labelled corpus of audio segments. The
training corpus consists of 30 segments between 2 and 7 sec-
onds long. Audio segments were labelled from a consen-
sus vote by human subjects in an audio segment classifica-
tion study. The study was conducted online through a web
browser. Audio was played to participants using an HTML5
audio player object. This player allowed participants to re-
peatedly listen to a segment. Depending on the browser soft-
ware, the audio format of segments was either MP3 at 196
kps, or Vorbis at an equivalent bit rate. Participants selected
a category from a set of radio buttons and each selection was
confirmed when the participant pressed a button to listen to
the next segment.

There were 15 unique participants in the study group from
Canada and the United States. Before the study started, an
example for each of the categories, background, foreground,
and background with foreground, was played, and a short
description of the categories was displayed. Participants
were asked to use headphones or audio monitors to listen
to segments. Each participant was asked to listen to the ran-
domly ordered soundscape corpus. On completing the study,
the participant’s classification results were uploaded into a
database for analysis.

The results of the study were used to label the record-
ings by a majority vote. Figure 2 shows the results of the
vote. Results of the vote gave the labelling to the recordings.
There are a total of 10 recordings for each of the categories.

A quantitative analysis of the voter results shows the av-
erage agreement of recordings for each category as fol-
lows: background 84.6% (SD=18.6%); foreground 77.0%
(SD=10.4%), and; background with foreground 76.2%
(SD=13.4%). The overall agreement was shown to be 79.3%
(SD=4.6%).

Classifier Evaluation We evaluated the classifier, using
the training corpus, with a 10-fold cross validation. The re-
sults summary is shown in Table 2. The classifier achieved
an overall sample accuracy of 80%, which shows that the
classifier was human competitive against the overall human
agreement statistic of 79.3%.

The kappa statistic is a chance-corrected measure show-
ing the accuracy of prediction among each k-fold model. A
kappa score of 0 means the classifier is performing only as
well as chance; 1 implies a perfect agreement; and a kappa
score of .7 is generally considered satisfactory. The kappa
score of .7 in the results shows a good classification accuracy
was achieved using the described method.
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Figure 2: Audio classification vote results from human
participants for 30 sound recordings with three categories:
Background, Foreground, and Background with Foreground
(BaForound) sound.

Table 2: Summary of SVM classifier with the mean and
standard deviation for features total loudness and 3 MFCC.

Correctly classified instances 24 80%
Incorrectly classified instances 6 20%
Kappa statistic 0.7

These performance measures are reflected by the con-
fusion matrix in Table 3. All 10 of the audio segments
labelled “background” from the study were classified cor-
rectly. The remaining audio segments, labelled “fore-
ground” and “background with foreground,” were correctly
classified 7 out of 10 times, with the highest level of confu-
sion between these latter categories.

3.5 Background-Foreground Segmentation

In our segmentation method, we use a 500 ms sliding analy-
sis window with a hop size of 250 ms. We found that for our
application an analysis window of this length provided rea-
sonable information for the bag of frames approach and ran
with satisfactory computation time. The resulting feature
vector is classified and labelled as belonging to one of the
three categories. In order to create labelled regions of more
than one window, neighbouring windows with the same la-
bel are concatenated and the start and end time of the new
window are logged.

To demonstrate the segmentation algorithm, we used a 9
second audio file containing a linear combination of back-
ground, foreground, and background with foreground re-
gions. Figure 3. shows the ground truth with the solid
black line, and algorithm segmentation of the audio file with
background, foreground, and background with foreground
labelled regions applied. We use the SuperCollider3 soft-
ware package for visualizing the segmented waveform sc3.
This example shows concatenated segments labelled as re-

Table 3: Confusion matrix of SVM classifier for the cate-
gories background (BG), foreground (FG), and background
with foreground (BgFg).

Bg Fg BgFg
10 0 0 Bg
0 7 3 Fg
1 2 7 BgFg

Figure 3: Segmentation of the audio file with ground-truth
regions (black line) and segmented regions Background
(dark-grey), Foreground (mid-grey), and Background with
Foreground (light-grey).

gions. One of the background with foreground segments
was misclassified resulting in a slightly longer foreground
region than the ground truth classification.

The audio files and the accompanying segmentation data
are then presented to the composition module.

3.6 Composition

The composition module creates a layered two-channel
soundscape composition by processing and combining clas-
sified audio segments. Each layer in the composition con-
sists of processed background, foreground, and background
with foreground sound recordings. Moreover, an agent-
based model is used in conjunction with a heuristic in or-
der to handle different sound recordings and mimic the de-
cisions of a human composer. Specifically, we based this
heuristic from production notes for the soundscape compo-
sition Island, by Canadian composer Barry Truax. In these
production notes, Truax gives detailed information on how
sound recordings are effected, and the temporal arrangement
of sounds.

In our modelling of these processes, we chose to use
the first page of the production notes, which corresponds
to around 2 minutes of the composition. Furthermore, we
framed the model to comply with the protocol of the seg-
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mentation labels and aesthetic evaluations by the authors. A
summary of the model is as follows:
• Regions labelled background are played sequentially in

the order presented by the segmentation. They are pro-
cessed to form a dramatic textured background. This pro-
cessing is carried out by first playing the region at 10% of
its original speed and applying a stereo time domain gran-
ular pitch shifter with ratios 1:0.5 (down an octave) and
1:0.667 (down a 5th). We added a Freeverb reverb (Smith
2010) with a room size of 0.25 to give the texture a more
spacious quality. A low pass filter with a cutoff frequency
at 800 Hz is used to obscure any persistent high end de-
tail. Finally, a slow spatialization is applied in the stereo
field at a rate of 0.1 Hz.

• Regions labelled foreground are chosen from the fore-
ground pool by a roll of the dice. They are played individ-
ually, separated by a period proportional to the duration of
the current region played t = d.75 + d+C, where t is the
time between playing the next region, d is the duration
of the current region, and C is a constant controlling the
minimum duration between regions. In order to separate
them from the background texture, foreground regions are
processed by applying a band pass filter with a resonant
frequency 2,000 Hz and high Q value of 0.5. Finally, a
moderate spatialization is applied in the stereo field at a
rate of .125 Hz.

• Regions labelled background with foreground are slowly
faded in and out to evoke a mysterious quality to the
soundscape. They are chosen from the pool of regions
by a roll of the dice and are played for an arbitrarily cho-
sen duration of between 10 and 20 seconds. Regions with
a length less than the chosen duration are looped. In order
to achieve a separation from the background texture and
foreground sounds, regions are processed by applying a
band pass filter with a resonant frequency 8,000 Hz and
high Q value of 0.1. The addition of a Freeverb reverb
with a room size of 0.125 and a relatively fast spatial-
ization at a rate of 1 Hz was used to further add to the
mysterious quality of the sound.
This composition model is deployed individually by each

of agents of the system, who are responsible for process-
ing a different audio file. An agents decisions are, choosing
labelled regions of an audio recording, processing and com-
bining them in a layered soundscape composition according
to the composition model.

Because of the potentially large number of audio files
available to the system, and in order to limit the acoustic
density of a composition, a maximum number of agents are
specified on system start-up. If there are more audio file re-
sults than there are agents to handle them, the extra results
are ignored. Equally, if the number of results is smaller then
the number of agents, agents without tasks are temporarily
ignored.

An agent uses the region labels of the audio file to decide
which region to process. An audio file may have a number
of labelled regions. If there is no region of a type then that
type is ignored. The agent can play one of each types of
region simultaneously.

4 Qualitative Results

Audio Metaphor has been used in performance environ-
ments. In one case, the system was seeded with the words
“nature,” “landscape,” and “environment.” There were
roughly 150 people in the audience. They were told that
the system was responding to live Twitter posts and shown
the console output of the search results. During the per-
formance, there was an earthquake off the coast of British
Columbia, Canada, and the current Twitter posts focused
on news of the earthquake. Audio Metaphor used these as
natural language requests, searched online for sound record-
ings related to earthquakes, and created a soundscape com-
position. The sound recordings processed by the system in-
cluded an earthquake warning announcement, the sound of
alarms, and a background texture of heavy destruction. The
audience reacted by checking to see if this event was indeed
real. This illustrated how the semantic space of the sound-
scape composition effectively maps to the concepts of a nat-
ural language request.

In a separate performance, Audio Metaphor was presented
to a small group of artists and academics. This took place
during the height of the 2012 conflict in Syria, and the sys-
tem was seeded with the words “Syria,” “Egypt,” and “con-
flict.” The soundscape composition presented segments of
spoken word, traditional instruments, and other sounds. The
audience listened to the composition for over an hour with-
out losing its engagement with the listening experience. One
comment was, “It was really good, and we didn’t get bored.”
The sounds held peoples’ attention because they were linked
to current events, and the processing of sound recordings
added to the interest of the composition.

Because the composition model deployed in Audio
Metaphor is based of a relatively short section of a composi-
tion, there was not a great deal of variation in the processing
of sound recordings. The fact that people were engaged for
such long periods of time suggests that other factors con-
tributed to the novel stimulus. Our nascent hypothesis is
that the dynamic audio signal of recordings, in addition to
the processing of audio files contributed to listeners ongoing
engagement. 2

5 Conclusions and Future Work

We describe a soundscape composition engine that chooses
audio segments using natural language queries, segments
and classifies the resulting files, processes them, and com-
bines them into a soundscape composition at interactive
speeds. This implementation uses current Twitter posts as
natural language queries to generate search queries and re-
trieves audio files that are semantically linked to queries
from the Freesound audio repository.

The ability of Audio Metaphor to respond to current
events was shown to be a strong point in audience engage-
ment. The presence of signifier sounds evoked listeners’ as-
sociations of concepts. Listener engagement was further re-
inforced through the artistic processing and combination of
sound recordings.

2Sound examples of Audio Metaphor using the composition en-
gine can be found at http://www.audiometaphor.ca/aume
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Audio Metaphor can be used to help sound artists and
autonomous systems retrieve and cut sound field record-
ings from online audio repositories. Although, its pri-
mary function, as we have demonstrated, is autonomous
machine generated soundscapes for performance environ-
ments and installations. In the future, we will evaluate peo-
ple’s response to these compositions by distributing them to
user-contributed music repositories and analyzing user com-
ments. These comments can then be used to inform the Au-
dio Metaphor soundscape composition engine.

Although the system generates engaging and novel sound-
scape compositions, the composition structure is tightly reg-
ulated by the handling of background and foreground seg-
ments. In future work, we aim toward equipping our sys-
tem with the ability to evaluate its audio output, in order to
make more in-depth composition decisions. By developing
these methods, Audio Metaphor will be not only be capable
of processing audio files to create novel compositions, but,
additionally, be able to respond to the compositions it has
made.
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