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Abstract 

We present GESMI (Generative Electronica Statistical 
Modeling Instrument) – a computationally creative mu-
sic generation system that produces Electronic Dance 
Music through statistical modeling of a corpus. We dis-
cuss how the model requires complex interrelationships 
between simple patterns, relationships that span both 
time (horizontal) and concurrency (vertical).  Specifi-
cally, we present how context-specific drum patterns 
are generated, and how auxiliary percussion parts, 
basslines, and drum breaks are generated in relation to 
both generated material and the corpus. Generated 
audio from the system has been accepted for perform-
ance in an EDM festival. 

 Introduction 
Music consists of complex relationships between its con-
stituent elements. For example, a myriad of implicit and 
explicit rules exist for the construction of successive 
pitches – the rules of melody (Lerdahl and Jackendoff 
1983). Furthermore, as music is time-based, composers 
must take into account how the music unfolds: how ideas 
are introduced, developed and later restated. This is the 
concept of musical form – the structure of music in time. 
As these relationships are concerned with a single voice, 
and thus monophonic, we can consider them to be horizon-
tal1. 
 Similarly, relationships between multiple voices need to 
be assessed. As with melody, explicit production rules ex-
ist for concurrent relationships – harmony – as well as the 
relationships between melodic motives: polyphony. We 
can consider these relationships to be vertical (see Figure 
1). 
                                                             
1 The question of whether melody is considered a horizon-
tal or vertical relationship is relative to how the data is pre-
sented: in traditional music notation, it would be horizon-
tal; in sequencer (list) notation, it would be vertical. For the 
purposes of this paper, will assume traditional musical no-
tation. 

 Music has had a long history of applying generative 
methods to composition, due in large part to the explicit 
rules involved in its production. A standard early reference 
is the Musikalsches Würfelspiel of 1792, often attributed to 
Mozart, in which pre-composed musical sections were as-
sembled by the user based upon rolls of the dice (Chuang 
1995); however, the “Canonic” compositions of the late 
15th century are even earlier examples of procedural com-
position. In these works, a single voice was written out, 
and singers were instructed to derive their own parts from 
it by rule: for example, singing the same melody delayed 
by a set number of pulses, or at inversion (Randel 2003).  

 

Figure 1. Relationships within three musical phrases, a, a1, b: 
melodic (horizontal) between pitches within a; formal (horizon-

tal) between a and a1; polyphonic (vertical) between a and b. 

 Exploring generative methods with computers began 
with some of the first applications of computers in the arts. 
Hiller’s Illiac Suite of 1956, created using the Illiac com-
puter at the University of Champaign-Urbana, utilized 
Markov chains for the generation of melodic sequences 
(Hiller and Isaacson 1979). In the next forty years, a wide 
variety of approaches were investigated – see (Papadopou-
los and Wiggins 1999) for a good overview of early uses of 
computers within algorithm composition. However, as the 
authors suggest, “most of these systems deal with algo-
rithmic composition as a problem solving task rather than a 
creative and meaningful process”. Since that time, this 
separation has continued: with a few exceptions (Cope 
1992, Waschka 2007, Eigenfeldt and Pasquier 2012), con-
temporary algorithmic systems that employ AI methods 

a 
a1 

b 
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remain experimental, rather than generating complete and 
successful musical compositions. 
 The same cannot be said about live generative music, 
sometimes called interactive computer music due to its 
reliance upon composer or performer input during per-
formance. In these systems (Chadabe 1984, Rowe 1993, 
Lewis 1999), the emphasis is less upon computational ex-
perimentation and more upon musical results. However, 
many musical decisions – notably formal control and poly-
phonic relationships – essentially remain in the hands of 
the composer during performance. 

Joel Chadabe was the first to interact with musical 
automata. In 1971, he designed a complex analog system 
that allowed him to compose and perform Ideas of Move-
ment at Bolton Landing (Chadabe 1984). This was the first 
instance of what he called interactive composing, “a mutu-
ally influential relationship between performer and instru-
ment.” In 1977, Chadabe began to perform with a digital 
synthesizer/small computer system: in Solo, the first work 
he finished using this system, the computer generated up to 
eight simultaneous melodic constructions, which he guided 
in realtime. Chadabe suggested that Solo implied an inti-
mate jazz group; as such, all voices aligned to a harmonic 
structure generated by the system (Chadabe 1980). 

Although the complexity of interaction increased be-
tween the earlier analog and the later digital work, the con-
ception/aesthetic between Ideas of Movement at Bolton 
Landing and Solo did not change in any significant way. 
While later composers of interactive systems increased the 
complexity of interactions, Chadabe conceptions demon-
strate common characteristics of interactive systems:  
1. Melodic constructions (horizontal relationships) are not 

difficult to codify, and can easily be “handed off” to 
the system; 

2. harmonic constructions (vertical relationships) can be 
easily controlled by aligning voices to a harmonic 
grid, producing acceptable results; 

3. complex relationships between voices (polyphony), as 
well as larger formal structures of variation and repeti-
tion, are left to the composer/performer in realtime. 

 These limitations are discussed in more detail in Eigen-
feldt (2007). 
 GESMI (Generative Electronica Statistical Modeling 
Instrument) is an attempt to blend autonomous generative 
systems with the musical criteria of interactive systems. 
Informed by methods of AI in generating horizontal rela-
tionships (i.e. Markov chains), we apply these methods in 
order to generate vertical relationships, as well as high-
level horizontal relationships (i.e. form) so as to create 
entire compositions, yet without the human intervention of 
interactive systems.  
 The Generative Electronica Research Project (GERP) is 
an attempt by our research group  – a combination of sci-
entists involved in artificial intelligence, cognitive science, 
machine-learning, as well as creative artists  – to generate 
stylistically valid EDM using human-informed machine-
learning. We have employed experts to hand-transcribe 

100 tracks in four genres: Breaks, House, Dubstep, and 
Drum and Bass. Aspects of transcription include musical 
details (drum patterns, percussion parts, bass lines, melodic 
parts), timbral descriptions (i.e. “low synth kick, mid 
acoustic snare, tight noise closed hihat”), signal processing 
(i.e. the use of delay, reverb, compression and its alteration 
over time), and descriptions of overall musical form. This 
information is then compiled in a database, and analysed to 
produce data for generative purposes. More detailed infor-
mation on the corpus is provided in (Eigenfeldt and Pas-
quier 2011). 
 Applying generative procedures to electronic dance mu-
sic is not novel; in fact, it seems to be one of the most fre-
quent projects undertaken by nascent generative musi-
cian/programmers. EDM’s repetitive nature, explicit forms, 
and clearly delimited style suggest a parameterized ap-
proach. 
 Our goal is both scientific and artistic: can we produce 
complete musical pieces that are modeled on a corpus, and 
indistinguishable from that corpus’ style? While minimiz-
ing human/artistic intervention, can we extract formal pro-
cedures from the corpus and use this data to generate all 
compositional aspects of the music so that a perspicacious 
listener of the genre will find it acceptable? We have al-
ready undertaken empirical validation studies of other 
styles of generative music (Eigenfeldt et al 2012), and now 
turn to EDM.  
 It is, however, the artistic purpose that dominates our 
motivation around GESMI. As the authors are also com-
posers, we are not merely interested in creating test exam-
ples that validate methods. Instead, the goals remain artis-
tic: can we generate EDM tracks and produce a full-
evening event that is artistically satisfying, yet entertaining 
for the participants? We feel that we have been successful, 
even at the current stage of research, as output from the 
system has been selected for inclusion in an EDM concert2 
as well as a generative art festival3. 

Related Work 
Our research employs several avenues that combine the 
work of various other researchers. We use Markov models 
to generate horizontal continuations, albeit with contextual 
constraints placed upon the queries. These constraints are 
learned from the corpus, which thus involve machine-
learning. Lastly, we use a specific corpus, expert-
transcribed EDM in order to generate style-specific music. 

Markov models offer a simple and efficient method of 
deriving correct short sequences based upon a specific cor-
pus (Pachet et al. 2011), since they are essentially quoting 
portions of the corpus itself. Furthermore, since the models 
are unaware of any rules themselves, they can be quickly 
adapted to essentially “change styles” by switching the 
corpus. However, as Ames points out (Ames 1989), while 
simple Markov models can reproduce the surface features 
                                                             
2 http://www.metacreation.net/mumewe2013/  
3 http://xcoax.org/ 
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of a corpus, they are poor at handling higher-level musical 
structures. Pachet points out several limitations of Markov-
based generation, and notes how composers have used heu-
ristic measures to overcome them (Pachet et al. 2011). 
Pachet’s research aims to allow constraints upon selection, 
while maintaining the statistical distribution of the initial 
Markov model. We are less interested in maintaining this 
distribution, as we attempt to explore more unusual con-
tinuations for the sake of variety and surprise. 
 Using machine-learning for style modeling has been 
researched previously (Dubnov et al. 2003), however, their 
goals were more general in that composition was only one 
of many possible suggested outcomes from their initial 
work. Their examples utilized various monophonic cor-
pora, ranging from “early Renaissance and baroque music 
to hard-bop jazz”, and their experiments were limited to 
interpolating between styles rather than creating new, artis-
tically satisfying music. Nick Collins has used music in-
formation retrieval (MIR) for style comparison and influ-
ence tracking (Collins 2010). 
 The concept of style extraction for reasons other than 
artistic creation has been researched more recently by Tom 
Collins (Collins 2011), who tentatively suggested that, 
given the state of current research, it may be possible to 
successfully generate compositions within a style, given an 
existing database.  
 Although the use of AI within the creation of EDM has 
been, so far, mainly limited to drum pattern generation (for 
example, Kaliakatsos-Papakostas et al. 2013), the use of 
machine-learning within the field has been explored: see 
(Diakopoulos 2009) for a good overview. Nick Collins has 
extensively explored various methods of modeling EDM 
styles, including 1980s synth-pop, UK Garage, and Jungle 
(Collins 2001, 2008). 
 Our research is unique in that we are attempting to gen-
erate full EDM compositions using completely autono-
mous methods informed by AI methods. 

Description 
We have approached the generation of EDM as a producer 
of the genres would: from both a top-down (i.e. form and 
structure) and bottom-up (i.e. drum patterns) at the same 
time. While a detailed description of our formal generation 
is not possible here (see Eigenfeldt and Pasquier 2013 for a 
detailed description of our evolutionary methods for form 
generation), we can mention that an overall form is 
evolved based upon the corpus, which determines the 
number of individual patterns required in all sixteen in-
strumental parts, as well as their specific relationships in 
time. It is therefore known how many different patterns are 
required for each part, and which parts occur simultane-
ously – and thus require vertical dependencies – and which 
parts occur consecutively, and thus require horizontal de-
pendencies. 
 The order of generation is as follows: 
1. Form – the score, determining which instruments are 

active for specific phrases, and their pattern numbers;  

2. Drum Patterns – also called beats4 (kick, snare, closed 
hihat, open hihat); 

3. Auxiliary percussion – (ghost kick/snare, cymbals, tam-
bourine, claps, shakers, percussive noises, etc.) gen-
eration is based upon the concurrent drum patterns; 

4. Bassline(s) – onsets are based upon the concurrent drum 
pattern, pitches are derived from associated data; 

5. Synth and other melodic parts – onsets are based upon 
bassline, pitches are derived from associated data. All 
pitch data is then corrected according to an analysis of 
the implied harmony of the bassline (not discussed 
here); 

6. Drum breaks – when instruments stop (usually immedi-
ately prior to a phrase change, and a pattern variation 
(i.e. drum fill) occurs; 

7. One hits – individual notes and/or sounds that offer col-
our and foreground change that are not part of an in-
strument’s pattern (not discussed here). 

Drum Pattern Generation 
Three different methods are used to generate drum pat-
terns, including: 
1. Zero-order Markov generation of individual subparts 

(kick, snare, closed hihat, and open hihat); 
2. first-order Markov generation of individual subparts; 
3. first-order Markov generation of combined subparts. 
 In the first case, probabilities for onsets on a given beat 
subdivision (i.e. sixteen subdivisions per four beat meas-
ure) are calculated for each subpart based upon the selected 
corpus (see Figure 2). As with all data derived from the 
corpus, the specific context is retained. Thus, if a new 
drum pattern is required, and it first appears in the main 
verse (section C), only data derived from that section is 
used in the generation. 

Figure 2. Onset probabilities for individual subparts, one measure 
(sixteenth-note subdivisions), main verse (C section),  

“Breaks” corpus. 
 

 In the second case, data is stored as subdivisions of the 
quarter note, as simple on/off flags (i.e. 1 0 1 0) for each 
subpart, and separate subparts are calculated independ-
                                                             
4 The term “beat” has two distinct meanings. In traditional 
music, beat refers to the basic unit of time – the pulse of 
the music – and thus the number of subdivisions in a meas-
ure; within EDM, beat also refers to the combined rhyth-
mic patterns created by the individual subparts of the 
drums (kick drum, snare drum, hi-hat), as well as any per-
cussion patterns. 
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ently. Continuations5 are considered across eight measure 
phrases, rather than limited to specific patterns: for exam-
ple, the contents of an eight measure pattern are considered 
as thirty-two individual continuations, while the contents 
of a one measure pattern that repeats eight times are con-
sidered as four individual continuations with eight in-
stances, because they are heard eight separate times. As 
such, the inherent repetition contained within the music is 
captured in the Markov table. 
 In the third case, data is stored as in the second method 
just described; however, each subpart is considered 1 bit in 
a 4-bit nibble for each subdivision that encodes the four 
subparts together:  

bit 1 = open hihat;  
bit 2 = closed hihat;  
bit 3 = snare;  
bit 4 = kick. 

 This method ensures that polyphonic relationships be-
tween parts – vertical relationships – are encoded, as well 
as time-based relationships – horizontal relationships (see 
Figure 3). 

Figure 3. Representing the 4 drum subparts (of two beats), as a 4-
bit nibble (each column of the four upper rows), translated to 

decimal (lower row), for each sixteenth-note subdivision. These 
values are stored as 4-item vectors representing a single beat. 

 
 It should be noted that EDM rarely, if ever, ventures 
outside of sixteenth-note subdivisions, and this representa-
tion is appropriate for our entire corpus. 
 The four vectors are stored, and later accessed, contex-
tually: separate Markov tables are kept for each of the four 
beats of a measure, and for separate sections. Thus, all vec-
tors that occur on the second beat are considered queries to 
continuations for the onsets that occur on the third beat; 
similarly, these same vectors are continuations for onsets 
that occur on the first beat. The continuations are stored 
over eight measure phrases, so the first beat of the second 
measure is a continuation for the fourth beat of the first 
measure. We have not found it necessary to move beyond 
first-order Markov generation, since our data involves 
four-items representing four onsets. 
 We found that the third method produced the most accu-
rate re-creations of drum patterns found in the corpus, yet 
the first method produced the most surprising, while main-
                                                             
5 The generative music community uses the term “con-
tinuations” to refer to what is usually called transitions 
(weighted edges in the graph). 

taining usability. Rather than selecting only a single 
method for drum pattern generation, it was decided that the 
three separate methods provided distinct “flavors”, allow-
ing users several degrees of separation from the original 
corpus. Therefore, all three methods were used in the gen-
eration of a large (>2000) database of potential patterns, 
from which actual patterns are contextually selected. See 
(Eigenfeldt and Pasquier 2013) for a complete description 
of our use of populations and the selection of patterns from 
these populations. 

Auxiliary Percussion Generation 
Auxiliary percussion consists of non-pitched rhythmic ma-
terial not contained within the drum pattern. Within our 
corpus, we have extracted two separate auxiliary percus-
sion parts, each with up to four subparts. The relationship 
between these parts to the drum pattern is intrinsic to the 
rhythmic drive of the music; however, there is no clear or 
consistent musical relationship between these parts, and 
thus no heuristic method available for their generation. 
 We have chosen to generate these parts through first-
order Markov chains, using the same contextual beat-
specific encoding just described; as such, logical horizontal 
relationships found in the corpus are maintained. Using the 
same 4-bit representation for each auxiliary percussion part 
as described in method 3 for drum pattern generation, ver-
tical consistency is also imparted; however, the original 
relationship to the drum pattern is lost. Therefore, we con-
strain the available continuations.  

Figure 4. Maintaining contextual vertical and horizontal relation-
ships between auxiliary percussion beats (a) and drum beats (b).  

 
 As the drum patterns are generated prior to the auxiliary 
percussion, the individual beats from these drum patterns 
serve as the query to a cross-referenced transition table 
made up of auxiliary percussion pattern beats (see Figure 
4). Given a one measure drum pattern consisting of four 
beats b1 b2 b3 b4, all auxiliary percussion beats that occur 
simultaneously with b1 in the corpus are considered as 
available concurrent beats for the auxiliary percussion pat-
tern’s initial beat. One of these, a1, is selected as the first 
beat, using a weighted probability selection. The available 
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continuations for a1 are a2-a6. Because the next auxiliary 
percussion beat must occur at the same time as the drum 
pattern’s b2, the auxiliary percussion beats that occur con-
currently with b2 are retrieved: a2, a3, a5, a7, a9. Of these, 
only a2, a3, and a5 intersect both sets; as such, the avail-
able continuations for a1 are constrained, and the next aux-
iliary percussion beat is selected from a2, a3, and a5.  
 Of note is the fact that any selection from the con-
strained set will be horizontally correct due to the transi-
tion table, as well as being vertically consistent in its rela-
tionship to the drum pattern due to the constraints; how-
ever, since the selection is made randomly from the prob-
abilistic distribution of continuations, the final generated 
auxiliary percussion pattern will not necessarily be a pat-
tern found in the corpus.  
 Lastly, we have not experienced insufficient continua-
tions since we are working with individual beats, rather 
than entire measures: while there are only a limited number 
of four-element combinations that can serve as queries, a 
high number of 1-beat continuations exist. 

Bassline Generation 
Human analysis determined there were up to two different 
basslines in the analysed tracks, not including bass drones, 
which are considered a synthesizer part. Bassline genera-
tion is a two-step process: determining onsets (which in-
clude held notes longer than the smallest quantized value 
of a sixteenth note); then overlaying pitches onto these 
onsets. 

 
Figure 5. Overlaying pitch-classes onto onsets, with continua-
tions constrained by the number of pitches required in the beat.  

 
 Bassline onset generation uses the same method as that 
of auxiliary percussion – contextually dependent Markov 
sequences, using the existing drum patterns as references. 
One Markov transition table encoded from the corpus’ 
basslines contains rhythmic information: onsets (1), rests 

(.), and held notes (-). The second transition table contains 
only pitch data: pitch-classes relative to the track’s key (-
24 to +24). Like the auxiliary percussion transition tables, 
both the queries and the continuations are limited to a sin-
gle beat. 
 Once a bassline onset pattern is generated, it is broken 
down beat by beat, with the number of onsets occurring 
within a given beat serving as the first constraint on pitch 
selection (see Figure 5). Our analysis derived 68 possible 
1-beat pitch combinations within the “Breaks” corpus. In 
Figure 5, an initial beat contains 2 onsets (1 – 1 .) 
Within the transition table, 38 queries contain two values 
(not grayed out in Figure 5’s vertical column): one of these 
is selected as the pitches for the first beat using a weighted 
probability selection (circled). As the next beat contains 2 
onsets (1 1 . . ), the first beat’s pitches (0 -2) serve as 
the query to the transition table, and the returned continua-
tions are constrained by matching the number of pitches 
required (not grayed out in Figure 5’s horizontal row). One 
of these is selected for the second beat (circled) using addi-
tional constraints described in the next section. This proc-
ess continues, with pitch-classes being substituted for onset 
flags (bottom). 
 
Additional Bassline Constraints 
Additional constraints are placed upon the bassline genera-
tion, based upon user set “targets”. These include con-
straints the following: 
– Density: favouring fewer or greater onsets per beat; 
– straightness: favouring onsets on the beat versus synco-

pated; 
– dryness: favouring held notes versus rests; 
– jaggedness: favouring greater or lesser differentiation 

between consecutive pitch-classes. 
 Each available continuation is rated in comparison to the 
user-set targets using a Euclidean distance function, and an 
exponential random selection is made from the top 20% of 
these ranked continuations. 
 This notion of targets appears throughout the system. 
While such a method does allow some control over the 
generation, the main benefit will be demonstrated in the 
next stage of our research: successive generations of entire 
compositions – generating hour long sets of tracks, for 
example – can be guaranteed to be divergent by ensuring 
targets for parameters are different between runs.  

Contextual Drum-fills  
Fills, also known as drum-fills, drum-breaks, or simply 
breaks, occur at the end of eight measure phrases as varia-
tions of the overall repetitive pattern, and serve to highlight 
the end of the phrase, and the upcoming section change. 
Found in most popular music, they are often restricted to 
the drums, but can involve other instruments (such as aux-
iliary percussion), as well as a break, or silence, from the 
other parts.  
 Fills are an intuitive aspect of composition in pattern-
based music, and can be conceptually reduced to a rhyth-
mic variation. As such, they are not difficult to code algo-
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rithmically: for example, following seven repetitions of a 
one measure drum pattern, a random shuffle of the pattern 
will produce a perfectly acceptable fill for the eighth 
measure (see Figure 6). 
 

 
Figure 6. Left: drum pattern for kick, snare, and hihat; right: 

pattern variation by shuffling onsets can serve as a fill. 
 
 Rather than utilizing such creative “shortcuts”, our fill 
generation is based entirely upon the corpus. First, the lo-
cation of the fill is statistically generated based upon the 
location of fills within phrases in the corpus, and the gen-
erated phrase structure. Secondly, the type of fill is statisti-
cally generated based upon the analysis: for example, the 
described pattern variation using a simple onset shuffle has 
a 0.48 probability of occurring within the Breaks corpus – 
easily the most common fill type. Lastly, the actual varia-
tion is based upon the specific context. 

 
 

Figure 7. Fill generation, based upon contextual similarity 
 
 Fills always replace an existing pattern; however, the 
actual pattern to be replaced within the generated drum 
part may not be present in the corpus, and thus no direct 
link would be evident from a fill corpus. As such, the 
original pattern is analysed for various features, including 
density (the number of onsets) and syncopation (the per-
centile of onsets that are not on strong beats). These values 
are then used to search the corpus for patterns with similar 
features. One pattern is selected from those that most 
closely match the query. The relationship between the da-
tabase’s pattern and its fill is then analysed for consistency 
(how many onsets remain constant), density change (how 
many onsets are added or removed), and syncopation 
change (the percentile change in the number of onsets that 

are not on strong beats). This data is then used to generate 
a variation on the initial pattern (see Figure 7). 
 The resulting fill will display a relationship to its origi-
nal pattern in a contextually similar relationship to the cor-
pus. 

Conclusions and Future Work 
The musical success of EDM lies in the interrelationship of 
its parts, rather than the complexity of any individual part. 
In order to successfully generate a complete musical work 
that is representative of the model, rather than generating 
only components of the model (i.e. a single drum pattern), 
we have taken into account both horizontal relationships 
between elements in our use of a Markov model, as well as  
vertical relationships in our use of constraint-based algo-
rithms. Three different methods to model these horizontal 
and vertical dependencies at generation time have been 
proposed in regards to drum pattern generation (through 
the use of a combined representation of kick, snare, open 
and closed hihat, as well as context-dependent Markov 
selection), auxiliary percussion generation (through the use 
of constrained Markov transitions) and bassline generation 
(through the use of both onset- and pitch-constrained 
Markov transitions. Each of these decisions contributes to 
what we believe to be a more successful generation of a 
complete work that is stylistically representative and con-
sistent. 
 Future work includes validation to investigate our re-
search objectively. We have submitted our work to EDM 
festivals and events that specialize in algorithmic dance 
music, and our generated tracks have been selected for 
presentation at two festivals so far. We also plan to pro-
duce our own dance event, in which generated EDM will 
be presented alongside the original corpus, and use various 
methods of polling the audience to determine the success 
of the music. 
 Lastly, we plan to continue research in areas not dis-
cussed in this paper, specifically autonomous timbral selec-
tion and signal processing, both of which are integral to the 
success of EDM. 
 This research was created in MaxMSP and Max4Live 
running in Ableton Live. Example generations can be 
heard at soundcloud.com/loadbang.  

Acknowledgements 
This research was funded by a grant from the Canada 
Council for the Arts, and the Natural Sciences and Engi-
neering Research Council of Canada. 

References 
Ames, C. 1989. The Markov Process as a Compositional 
Model: A Survey and Tutorial.  Leonardo 22(2). 
Chadabe, J. 1980. Solo: A Specific Example of Realtime 
Performance. Computer Music - Report on an International 
Project. Canadian Commission for UNESCO. 

database'

(feature'analysis)'
query'for'similarity'

selection'

similar'

patterns'

related'

fills'

generated'pattern'

(feature'analysis)'

generated'fill'

Proceedings of the Fourth International Conference on Computational Creativity 2013 77



Chadabe, J. 1984. Interactive Composing. Computer Music 
Journal 8:1. 
Chuang, J. 1995. Mozart’s Musikalisches Würfelspiel, 
http://sunsite.univie.ac.at/Mozart/dice/, retrieved Septem-
ber 10, 2012. 
Collins, N. 2001. Algorithmic composition methods for 
breakbeat science. Proceedings of Music Without Walls, 
De Montfort University, Leicester, 21-23. 
Collins, N. 2008. Infno: Generating synth pop and elec-
tronic dance music on demand. Proceedings of the Interna-
tional Computer Music Conference, Belfast. 
Collins, N. 2010. Computational analysis of musical influ-
ence: A musicological case study using MIR tools. Pro-
ceedings of the International Symposium on Music Infor-
mation Retrieval, Utrecht. 
Collins, T. 2011. Improved methods for pattern discovery 
in music, with applications in automated stylistic composi-
tion. PhD thesis, Faculty of Mathematics, Computing and 
Technology, The Open University. 
Cope, D. 1992. Computer Modeling of Musical Intelli-
gence in EMI. Computer Music Journal, 16:2, 69–83. 
Diakopoulos, D., Vallis, O., Hochenbaum, J., Murphy, J., 
and Kapur, A. 2009. 21st Century Electronica: MIR Tech-
niques for Classification and Performance. In: Proceedings 
of the International Society for Music Information Re-
trieval Conference (ISMIR), Kobe, 465–469. 
Dubnov, S., Assayag, G., Lartillot, O. and Bejerano, G. 
2003. Using machine-learning methods for musical style 
modeling. Computer, 36:10. 
Eigenfeldt, A. 2007. Computer Improvisation or Real-time 
Composition: A Composer's Search for Intelligent Tools. 
Electroacoustic Music Studies Conference 2007, 
http://www.ems-network.org/spip.php?article264 Accessed 
3 February 2013. 
Eigenfeldt, A. 2012 Embracing the Bias of the Machine: 
Exploring Non-Human Fitness Functions. Proceedings of 
the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, Palo Alto. 
Eigenfeldt, A. 2013. Is Machine Learning the Next Step in 
Generative Music? Leonardo Electronic Almanac, Special 
Issue on Generative Art, forthcoming. 
Eigenfeldt, A., and Pasquier, P. 2011. Towards a Genera-
tive Electronica: Human-Informed Machine Transcription 
and Analysis in MaxMSP. Proceedings of the Sound and 
Music Computing Conference, Padua. 
Eigenfeldt, A., and Pasquier, P. 2012. Populations of 
Populations - Composing with Multiple Evolutionary Algo-
rithms. P. Machado, J. Romero, and A. Carballal (Eds.). In: 
EvoMUSART 2012, LNCS 7247, 72–83. Springer, Hei-
delberg. 

Eigenfeldt, A., Pasquier, P., and Burnett, A. 2012. Evaluat-
ing Musical Metacreation. International Conference of 
Computational Creativity, Dublin, 140–144. 
Eigenfeldt, A., and Pasquier, P. 2013. Evolving Structures 
in Electronic Dance Music, GECCO 2013, Amsterdam.  
Hiller, L., and Isaacson, L. 1979. Experimental Music; 
Composition with an Electronic Computer. Greenwood 
Publishing Group Inc. Westport, CT, USA. 
Kaliakatsos-Papakostas, M., Floros, A., and Vrahatis, M.N. 
2013. EvoDrummer: Deriving rhythmic patterns through 
interactive genetic algorithms. In: Evolutionary and Bio-
logically Inspired Music, Sound, Art and Design. Lecture 
Notes in Computer Science Volume 7834, 2013, pp 25–36. 
Lerdahl, F., Jackendoff, R. 1983. A generative theory of 
tonal music. The MIT Press. 
Lewis, G. 1999. Interacting with latter-day musical auto-
mata. Contemporary Music Review, 18:3. 
Pachet, F., Roy, P., and Barbieri, G. 2011. Finite-length 
Markov processes with constraints. Proceedings of the 
Twenty-Second international joint conference on Artificial 
Intelligence Volume One. AAAI Press. 
Papadopoulos, G., and Wiggins, G. 1999. AI methods for 
algorithmic composition: A survey, a critical view and 
future prospects. In: AISB Symposium on Musical Crea-
tivity, 110–117, Edinburgh, UK. 
Randel, D. 2003. The Harvard Dictionary of Music. 
Belknap Press.  
Rowe, R. 1993. Interactive Music Systems. Cambridge, 
Mass., MIT Press. 
Waschka, R. 2007. Composing with Genetic Algorithms: 
GenDash. Evolutionary Computer Music, Springer, Lon-
don, 117–136. 
 

Proceedings of the Fourth International Conference on Computational Creativity 2013 78


