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Abstract—This paper presents a new direct Fourier-based algo- ~ Townshendet al. [1] make a case for subpixel accuracy of
rithm for performing image-to-image registration to subpixel accu-  registration in their studies of vegetation changes because the
racy, where the image differences are restricted to translations and changes that they are trying to measure are on the order of the

uniform changes of illumination. The algorithm detects the Fourier introd d by mi istration by | th ivel. The lit
components that have become unreliable estimators of shift due to €Irors introduced by misregistration by less than a pixel. 1he lit-

aliasing, and removes them from the shift-estimate computation. €rature contains image-to-image registration algorithms of var-
In the presence of aliasing, the average precision of the registra- ious precision that operate in the pixel (signal) domain [2]-[22]

tion is a few hundredths of a pixel. _ and in the Fourier domain [2], [5], [23]-[36].
Experimental data presented here show that the new algorithm Among the authors who report subpixel registration preci-

yields superior registration precision in the presence of aliasing . . f
when compared to several earlier methods and has comparable SIO™; Shekarforouset al.[34] describes an algorithm that uses

precision to the iterative method of Thévenazt al.[21]. the cross-power spectrum of the Fourier transforms (FTs) of
Index Terms—Aliasing, Fourier transform, image registration, WO ideally bandlimited images. The Fourier inverse of the
spline interpolation, subpixel. cross-power spectrum is a sinc function displaced from the

origin by the amount of the translation. Abdou [2] describes
three algorithms that use various interpolation schemes to find
the translational difference between images. Kim and Su [30]
MAGE registration is an important preprocessing operatiggrtesent a Fourier-based algorithm that estimates translation
that aligns the pixels of one image to corresponding pixels cfianges by modifying the phase of one FT to make it as similar
a second image. Registration is the primary tool for compari@g possible to a second FT. The phase change corresponds
two or more images to discover the differences in the imagtss the translational difference. To eliminate aliasing effects
or to fuse multiple modalities to create a composite that revediieir algorithm relies on the low frequency components of the
information not easily accessible within individual images. It i#Fansforms. Thévenaet al. [21] report an elegant pixel-based
used in the remote sensing community to study satellite imagtesative algorithm that is able to register to high precision,
of the earth, and in the medical community to enhance the dizatd can deal with rotation, translation, changes of scale, and
nostic capability of radiological imagery. illumination changes. Of the schemes mentioned here, it is the
Registration algorithms typically assume that images diff@nost general.
by some transformation from a given family, and they find the Algorithms reported to have subpixel image-to-image regis-
transform within that family that optimizes a particular critetration precision for ideally bandlimited images typically have
rion. Transformation families include rigid transforms (transseduced precision in the presence of aliasing. Kim and Su’s al-
lation, rotation, and rescaling), linear and affine (skewed amggrithm [30] treats aliasing explicitly, but [2], [21], [34] do not.
perspective transforms), and nonlinear warping. Optimization The main result of this paper is the development of a direct al-
criteria include minimizing the sum of squares of pixel differgorithm for image-to-image registration that achieves high pre-
ences, maximizing the normalized correlation coefficient arailsion in the presence of small amounts of aliasing. This paper
maximizing the mutual information of the joint pixel-distribu-models the aliased frequency components of the two images
tions of two images. For this paper, we assume that two obsengal predicts how this aliasing affects the phase relationships be-
sampled images represent the same scene sampled on idertticen their FTs. Aliasing causes some frequency components
grids but offset from each other by an unknown translationaf the scene to be unreliable, and the new algorithm masks
shift, as well as differing by a uniform change of intensity, petthem out of the registration process. The new algorithm resem-

. INTRODUCTION

haps also disturbed by independent additive noise. bles [30] because it eliminates certain frequency components
from the calculations, but it eliminates more than do Kim and
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Section |l reviews theoretical issues related to aliasing and
its effect on Fourier spectra, particularly on the phase of FTs.
Section Il describes the new algorithm, and how it deals with . .
aliasing. The ground-truth model and experimental results ap- i FW('Q) T B
pear in Section IV. A summary appears in the final section. o

(@)
Il. MATHEMATICAL BACKGROUND

The basic idea behind the new registration algorithm is that ,'»\". Flw)
the phase of the Fourier spectra of an image pair contains suffi- 4 » '
cient information to determine the translation offset difference Cre . NPT
of the images. This section reviews how this can be exploited Ceett L ete " .. .
in the absence of aliasing, as described by [34], and then shows | —
why aliasing causes problems that reduce the registration preci- N2 I
sion of this method. (b)

Given a two-dimensional (2-D) imag&(z, ¥) and a trans- Fig. 1. (a) Spectrum of image after prefiltering. (b) Downsampling and
lated version of the image(x, y) = f(z — xo, y — yo), We resulting aliasing of prefiltered image.
wish to find an efficient algorithm that gives the displacement

vector(zo, o). In the remainder of the discussion, we reducgn is the function obtained from the algorithm of [34]. Equa-

the problem to one dimension and note that all the results 9fns (1) and (2) differ in their summation limits and in the sub-

eralize to two-dimensions straightforwardly. stitution of Dirichlety (272 /N) for sinc(z). [A reviewer noted
Let f.(x) denote a continuous function with F.(2). The  that (1) converges with equality to (2) foF odd, but not forV

FT of the shifted functiory.(z) = fe(z — @o) Is Ge(§2) = even]

F.(Q)e7%=_ This is the key relationship for all Fourier-based The periodicity off(n) implies that its FTF(S) is discrete,

image-registration algorithms. In the ideal case of continuoysich we represent as'(w) for integersw, —N/2 < w <

transforms of noiseless imag_es, for gniythe Fqurier COMpo- /2 — 1. Let F(w), G(w), andD(w) be the respective discrete

nents.(2) and G.(Y') provide a perfect estimate af, ©0  FTs of f(n), g(n), and Dirichle, (2rn/N). Then the convolu-

within an integer multiple of2x/Q’). tion in (2) corresponds to
Now consider digital images, which are sampled versions of
continuous images. Assume th@tzx) is continuous and peri- G(w) = F(w)D(w). (3)

odic, andF.(2) = 0 for |Q2] > Q. Sampled versions of this : . . Lo
image aref(n) = f.(nT) andg(n) = fo(nT — o), whereT . Th|s;xpla|niyvrr]1¥ the |I?vc(jartie FT ofthe spectraltr@((_nu) =
is asampling interval ang, is an arbitrary real-valued displace- (w)./ Ewl), W.'C fls C? c di e:lross(—jpl?wer tshpec r.ur.ms; P
ment with a magnitude less thars7". Let N be the number of 2:1?;(::?12;6[?3/ 4?81?(} (ua:r;Cislosnamlps)IZ gcbeelovrvoi?; Nyeqlc:irslglrr;te){chaem

. _ 0 . c
samples per period g¢f.(z), so thatf.(z) = f.(x + NT). its continuous transform has energy in frequencies higher than

In this formulation, the value af, is the residual that re- in which case (2) is not guaranteed to be a good approxima-
mains after registering images to the nearest pixel by using agﬁg’ inwhi ' gu 9 Pproxi

one of the several algorithms reviewed in [5]. Our goal is to fin n because the perfect reconstruction of (1) no longer holds.

zo. (Becausdro| < 0.5T, we eliminate a phase ambiguity of To estimate the phase of an aliased cross-power spectrum

27 /€Yo in ratios of Fourier components in the algorithm develwhenfc(x) is sampled below its Nyquist rate, we assume that

oped later in this section.) the optical prefilte_r is not an ideal Iow—pass filter, and that t_he
If the sampling intervall” is less thanr /€, then the Sam- spectral leakage is most likely to be in the frequencies ].USt
pling Theorem [37] states that gbove the sampling c;utoff frequency. Also, the attenuat|'on
increases strongly with frequencies higher than sampling
cutoff, with essentially no energy at frequencies above twice
the sampling cutoff. Fig. 1(a) illustrates this situation. The
o figure shows a Fourier spectrum plotted against normalized
for any » and for integer values of. Recall thatsinc(z) =  ontinuous frequenc, —2r < < 2, which represents
sin(mz)/(7x). The registration method of [34] uses discretghe gpectrum in a one-dimensional image after prefiltering
FTs of finite sampled images for which the reconstruction Qfocording to our assumptions. Sampling the image at one half
(1) is approximated by the finite sum the Nyquist rate with an interval @ produces théV spectral

+oo
Jel@)= > f(n)sinc(z/T —n) @

ge(x) = folz — m0) = values shown in Fig. 1(b). The spectra Bfw) andG(w) in

N—1 Fig. 1(b) are sums of phase-shifted components of frequencies
Z f(n) - Dirichlety ((27/N)((x — x9)/T —n)). (2) Fe(Q)inFig. 1(a). Forintegew intheinterval-N/2 < w < 0

n=0 we have

The Dirichlet function is a periodic approximationdimc, and _
is defined to be Dirichlet (z) = sin(Nz/2)/(N sin(z /2)) for Flw) = F(2nw/N) + F g”/(jf +N)/N)

# not a multiple of2r, and issign(cos(z)) otherwise. It is the G(w) = Fe(2rw/N)e =/ ’

inverse discrete FT of a sampled window in the Fourier domain, + Fo(27(w + N)/N)e 24Nz /N) = (g)
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; F@2r(@+N) IN) 2) Apply a Blgckmap or BIa_ckman—Harris window iq the
d P pixel domain to eliminate image-boundary effects in the
/\ Fourier domain [38].
(\@\@/ """" 3) Calculate the discrete FTs #tz, y) andg(z, y).
Q?é Qno N} 'y, G 2n(@+N)/N) 4) Mask out spectral components that lie outside a radius of
P Z?xi R from the central peak. A suitable value 8fis 0.6 N /2
2nx,, where/N is the minimum of the number of samples in the
z andy dimensions.
Fig. 2. Vector illustration of aliasing. 5) Mask out spectral components for which eit#&r., »/)
Forw in the intervald < w < N/2 — 1, replace{w + N) by ?r:reirngdz) have magnitudes less than a specified

(w — N) in the second term of (4).
The aliasing terms in (4) creaf&w) andG(w) such that the Ny :
vector ratioG(w) /F(w) is not equal ta—27«=e/N as required least-squares estimate afo, yo).

" . o . The windowing operation is well known and eliminates the
for (1) and (2). A graphic illustration of this situation appearsin s introduction of high-frequency spectral eneray due
Fig. 2. The complex vectaF(w) is shown to be the sum of two b g q y SP 9y

complex components df.(€2). The complex vectaf(w) is the to edge effects. We found that a separable Blackman window

T ‘aa well as a separable Blackman—Harris window) worked
complex sum of those same components, one of which is rotate . .
by 2rwzo/N, and the other is rotated By (w+ N)zo /N. The quite well [38]. We also tested a radially symmetric Blackman

. ) window and several other windows that are flatter than the
vectorG(w) is not a rotation of'(w) by 2mwzo/N because of Blackman window in the middle of the image. The radially

the excess phase ®f x( in the second component of the sum. In L
o . s\;;mmetnc window gave results comparable to the separable
general, the aliasing caused by the excess rotational phase leave

G(w) with an amplitude different from that af(w) whereas wmaow, bl.n IS more complex to create. The _flatter windows
oo . . - use more information from the center of the image, but they
bandlimited images experience no change of amplitude in the Lo T . .
- : end to be less effective in eliminating spurious high frequency
frequency domain after translation. energy from the edges of the images. The separable Blackman
Our problem is to estimate the phakevxq /N as a function 9y 9 ges. P

) I and Blackman—Harris windows yielded the best results for the
of w from observations of the vector sums shown in Fig. 2. qu .
X ._|east computation.

components of, are not directly observable. The next section The use of radius? = 0.6N/2 constrains the frequencies

shows how we can eliminate badly aliased frequency compg- S . 9
. . . 0 be close to the origin. Under the assumption that the under-

nents from further consideration, and thereby estimgtiom |

frequency components whose phases yield accurate estimé’

of zg.

6) Using the frequencies that remain after masking, find a

igg spectrum has most of its energy in the low frequencies as
own in Fig. 1(a), aliasing effects are smaller in this region as
indicated in Fig. 1(b). We found empirically that the constant
factor 0.6 can be as small as 0.5 or as large as 0.7 without ma-
terially affecting the algorithm.

Examination of Fig. 2 shows that the observed relative phaseThe choice of threshold warrants a brief discussion. The
of G(w)/F(w) for a specific value o is likely to be a good es- algorithm sorts the frequencies by magnitude and retain&the
timate ofz, if the magnitude of the alias compondnt2=(w+ largest in the spectrum, for some value f In the absence
N)zo/N) is small compared to the magnitude of the in-bandf other information, a good way to choog¢ is to vary K
componentt,(2rwzo/N). Fig. 1(b) shows that this is likely to over a range of values, and observe the estimated translation
occur under our assumptions at frequencies near the origin be-a function ofK. Experimental data in the next section show
cause of the attenuation of aliasing magnitude with increasittuat there is a region where the estimated translation is virtually
frequency by the prefilter. Hence, we should limit the frequendgdependent of. The displacement estimate producediy
range to frequencies near the origin [30]. in this region is the one to use. This approach works very well,

But this is not sufficient to attain high precision in registraso we did not pursue other possible approaches.
tion, as indicated by the experimental data later in the paperTo estimate translation displacements from the Fourier
There usually exist highly aliased frequency components nesuectra, let’5 denote the set of frequency coordinate pairs
the origin. Using these frequencies greatly reduces the precisian 1) that survive the masking operations. L#tase(w, /)
of the estimate of,. The frequencies that are most likely to bde the phase of the complex rati®(w, )/ F(w, 1#) at point
corrupted are those for which the spectral magnitude is smdll., ) € B. In the absence of aliasinghase(w, ) hasz and
Therefore, the algorithm masks out contributions from spectraklopes equal t@rzo/N and2wyo /N, respectively. The least
components whose magnitudes are small relative to the ressqbiares estimate of the slope of a plane that passes through the
the magnitudes, regardless of whether they occur at low or highigin is
frequencies. _

The full algorithm for 2-D data is very simple and consists of 2o = <£> <Wu phase- 12w phase)
these major steps. 2

1) Use any image registration algorithm to find a translation ) <

Ill. FREQUENCY MASKING SUBPIXEL SHIFT ESTIMATION

w2 — w212

that registers the two images to the nearest integral pixel Yo = <N
27

w2 — w22

wrw phase- w2 phase
coordinates.
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where the quantities with overbars are the means of the resp
tive products taken over all frequency pairs that survive tr
masking operation. Note that any uniform change of intensi
of the formp’ = Ap + B for constants4d and B has no effect
on the registration process becausehanges the magnitudes g
of the FT by a factor of4, leaving phase unchanged, Wherea§
B changes only the spectral coefficient at the origin, leaving i
phase unchanged.

The insensitivity to uniform changes of intensity is quite pow
erful. Artigaset al.[39] showed that by factoring out uniform
changes of illumination, a set of two cloudfree AVHRR image

Is)

Case Absolute

g

0.200
0.175
0.150
0.1 23

0.100

0.075,
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Worst-Case Error vs. Filter ¢

Abdou, polynomial fit
Shekarforoush et al.
Abdou, Gaussian fit
Abdou, freq interpolation
Kim and Su

Frequency Masking

of Long Island can be registered to all other cloudfree images £ o050 %\ —
Long Island, (98 images) from the same five-month period, ar JN
thereby can be used as an image-search key for Long Island ~ *%*[" \/
This completes the description of the registration algorithrr 0 ‘
2 3 4 5

IV. EXPERIMENTAL DATA

A. Ground Truth

In order to measure the precision of the registration algc
rithm, we prepared ground truth using a scheme described
[34]. The idea is to use a single high-resolution image to ref
resent the actual scene, and to create an image pair from tg

0.08

Filter ¢
(@

Average Error vs, Filter ¢

0.06

Abdou, polynomial fit
Abdou, Gaussian fit
Shekarforoush et al.
Abdou, freq interpolation
Kim and Su

Frequency Masking

scene by filtering and downsampling the high-resolution imags
in two ways. The downsampled images are shifted with resped
to each other by integer amounisandy, in the high-resolution
grid. After downsampling by a factor @/ in each dimension,
the relative shifts become fractional shifts of sizg/A/ and
yo/ M, respectively. One downsampled image optionally has ilz
intensity values rescaled to new values by means of the formt
o' = Ap + B for fixed constantsA and B. The rescaled inten-
sities allow us to investigate the effect of such rescaling on tr
registration precision. 0 |
For the detailed analysis of the frequency-masking algorithn s
we used 52 aerial photos of various urban and agricultural land-
scapes for this study. Each of the images is 102W)24 pixels,
and was downsampled by a factor &f = 8 in each dimen- b
sion. Note that there are 64 distinct phases for a downsampi@
image depending on how it is shifted inandy with respect
to the origin before downsampling. Shifts of greater than eigbbmpresses an 8 8 region of pixels into a single pixel, a ban-
pixels in either coordinate direction produce the same phased#igniting filter must have a central peak at leask83 to keep
a shift of 8 fewer pixels in the same direction. (The phases agkasing small. Our experiments changeffom 2 to 5 in steps
equal, but the images are displaced by an integral numbergsfl. The width of the central peak is approximatey, so that
low-resolution pixels.) Each of the two images was shifted by — 2 produces substantial aliasing and= 5 produces a very
integer amounts ranging from4 to +3 pixels in each dimen- small amount of aliasing. The support of the filter was»x117
sion, thereby creating all 64 distinct phases of each image. Regr-the data reported here. We also explored other ranges of sup-
istering the two sets of 64 image-phases in all possible waysrt ando to confirm that the registration algorithm behaves as
created 4096 registration tests for each image and over 200 @@@ected as we move outside the parameter region studied in
registrations overall. The Blackman window was positioned at@tail, and found that the results were consistent with the data
fixed position, and the registration pairs varied over all possibleported here.
phase-pairs relative to that fixed position. Our results show that
t_he algorithm exhibits yirtually no _bias with respect to the posig_ Experimental Results
tion of the Blackman window relative to the images for our data.
For the comparisons of the frequency-masking algorithm with The firstexperimentis a comparison of the precision of our al-
other algorithms, we used a single aerial photo in 4096 relatigerithm and other algorithms as a functiorvofor these exper-
pairs of shifts. iments, we used a single image, and no change of illumination.
To control the amount of aliasing, we used a Gaussian filt€éhese results appear in Fig. 3 for worst-case errors over both in-
prior to downsampling. The filter was characterized by a sugividual coordinates and average errors per coordinate direction.
port area and a filter half-width. Since downsampling by eight The mean-square error in two-dimensions is approximat@y

rage Absolut

Filter ¢
(b)

Fig. 3. (a) Comparison of worst-case error per coordinate for six direct
ixel registration algorithms. (b) Comparison of average error per
dinate for the same six algorithms.
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although the paper did indicate that windowing should be con-
sidered. When we tried this algorithm without windowing, the
results tended to be more accurate than with windowing, but
were highly dependent on how the boundaries of the ground
truth were prepared for the experiment. Windowing removes
this dependence and removes artifacts of spectral leakage. The
frequency region to which we restricted the algorithm had a size
89 x 89 forafrequency domain of size 128128. We found ex-
perimentally that this size yields the most precise results for the
experiment. Our implementation of the algorithm uses iterative
hill-climbing to locate the optimal value of the Fourier phase.
All of the algorithms except Kim and Su’s produce higher reg-
istration precision as aliasing decreases.

The Shekarforoush algorithm estimates the displacements by
fitting points to a sinc function, but when the points are cor-
rupted by aliasing, the algorithm produces poor estimates. We
found a slight instability in the implementation when the ratio
G(w)/F(w) became large because of a small valuelgf),
which we removed by artificially setting'(w) to unity at this
frequency.

The plot shows three different algorithms proposed by Abdou
[2]. The first fits a polynomial curve through points that lie on
a correlation peak. The second fits a Gaussian through those
points, and the third linearly interpolates the spectra at integer
offsets to find the closest approximation to the observed spec-
trum. The first two algorithms are direct algorithms. The third
algorithm iterates a search over the interpolation coefficients.
Because the third algorithm operates in the Fourier domain, we
used a Blackman window on the images prior to registration. We
did not window the data when applying the first two algorithms.

Abdou’s [2] spectral interpolation algorithm required special
treatment and some maodifications. This algorithm computes the
spectra of four copies of one image, each displaced relative
to the other by displacements that lie on the corners of a unit
square in the pixel-domain grid. The algorithm interpolates the
cross products of each of these with the spectrum of the second
image and finds the interpolation closest to the cross product
of the spectra of the two images. Since the central peak dom-
inates the spectral magnitudes, virtually the entire estimate of
displacement is due to interpolation of the central peaks. To
avoid this dependency, we zeroed out the central peaks in the
spectra, which is equivalent to normalizing the images to the

(b) same average intensities. Nevertheless, the spectral magnitudes
Fig. 4. Aerial photograph used in the comparisons. (a) Original figure. (&ear the central peak are very large compared to magnitudes
Figure after applying frequency masking. (Courtesy of Positive Systems, In€lsewhere in the frequency plane, so that the interpolation de-
pends on relatively few of the frequency coefficients.
times the average error per coordinate. Fig. 4 shows the imagé& he iterative algorithm of [21] was studied somewhat differ-
used to compare the algorithms. Fig. 4(b) is the same image a#tatly from the other algorithms. The important aspect of this al-
applying frequency masking to illustrate the low-pass behavigorithm is that it drives toward a minimum sum of squared pixel
of the operation. differences between two images by performing a sequence of

The algorithm of Kim and Su is most like ours because it r&pline interpolations in the image domain. The spline interpola-
stricts its attention to low frequencies in the Fourier domain. fions are very close to sinc interpolations, and therefore they
seeks a phase for which the sum of squares differences betwesnl to affect the phase of the corresponding Fourier spectra
the spectrum of the first image and the phase-shifted spectrwithout changing the magnitudes. Hence, the interpolations do
of the second image is minimal. Our implementation usedr®t remove aliasing artifacts that may exist in one or both im-
Blackman window to eliminate spectral leakage, and affirmexes as they interpolate one image into the other. For this reason,
that windowing made the registration robust with respect the iterations are unlikely to be able to drive the differences in
boundary effects. The data in [30] were taken without a windohe images to zero. In the absence of aliasing, it is clear that the
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iterations can reduce the sum of squares to near zero, and 006 Computed Displacement vs. Threshold o
point at which this occurs corresponds to the subpixel transl

tion difference of the images. In the presence of aliasing, it
not clear that the subpixel coordinates of the minimum sum «
squared pixel differences are the same as those that minim
the subpixel translational difference of the images.

We studied this gquestion both analytically and experimer2
tally. The analysis shows that both the frequency maskirg
and sum-of-squares of pixel differences lead to approximate g
equal solutions. To see this observe that in the pixel domag ., Filter o= 3
one wants to find\z that minimizesy__(f(z) — g(z + Az))?.
By Parseval's Theorem, this is the same as findin
Az, which minimizes }_ |F(w) — Gw)ed*22 =
S F@P + Y, 1G@)P — 23 [F.] Gol cos(6, — wAx) | | | ‘
whered,, is the phase angle betweéi{w) andG(w). Hence, % 0.01 0.02 0.03 0.04 0.05
the Az that minimizes the sum of squares of pixel differences Threshold o
maximizes2}_ |F,,| [|Go|cos(f, — wAz). Our algorithm (g 5 piot of displacement as a function of threshold variable
selects a set af for which both|F,,| and|G..| are large relative
to other components. Because real images tend to have their Brecision vs. Noise. Filter o = 3.0

energy concentrated in the lower frequencies, the algorithr oz —
b

Filter 6 =2

xels)

tends to choose a set of frequencies that dominate the full sur 5~ o WorstCase Error ~

By selecting aAx that maximizesF,,| |G| cos(f, — wAx) N

for these components, the algorithm tends to maximize thesu ~~ *"*~ " T Averege Enor -

over all components, and thus finds\a: that tends to be one g o1~ \\ -

that minimizes the sum of squares of pixel differences. E o> N g -
Experiments confirmed that the minimum occurs at a registra & oo \ N\ -

tion point consistent with our ground truth. Hence, the iterative ' \’\

algorithm can achieve comparable precision if it can drive interg %%~ ,‘ -

polations to the minimum sum of squares value. This was teste< g - .

and confirmed by Thévena al.[21], who graciously ran their oot ha S —

code on a sample image pair supplied by the authors. The o Worst-case error, no nolse Bttt Y e

served precision for an image pair filtered withof 3.0 was 9927 varage emor,no noise , o

approximately 0.005 pixels, which is approximately the same 0. ; = -

as the frequency masking algorithm on the same image pair. Signal-to-Noise Ratio

We also attempted to do registration by blind matching of the _ _ . . :
. . . . Fig. 6. Plot of displacement as a function of SNR for additive white Gaussian

centers-of-gravity of an image pair. The process failed badly ggise.

satellite images. The center of gravity for such images is essen-

tially unchanged by shifts when the distribution of pixel values ) ) L
is similar throughout an image. The center-of-gravity algorithﬁ‘?'ned essentially the same results. Hence, the algorithm is in-

has been used successfully in the literature in contexts in whignsitive to such changes of intensity, as the theory suggests it

the center of gravity of specific regions or features drive th%mu'd be.

registration [40]-[43]. This requires region or feature identifi-l-l;O (ilre]al ;\_/ithlthe questtiont_of htOW 0 se;the?resrcll(i)qld, Fri]g.ls
cation, which is not required by “blind” algorithms like ours. plots The displacement estimate as a functionvahresho

To check th b ¢ laorith qi for the registration of a specific image for one offset with
~o chec ,t ero us_tness ot our a_go“t m, we tested It ONR 5 ang 3. The figure verifies that there is a region of the
suite of 52 images with @& = 3. In this study,

_ _ - 1N IS two of the 52 yeshold parameter space for which the displacement is almost
images were outliers, and had insufficient detail in their reSp‘%ﬁdependent of threshold. In this case, we thresholded magni-

tive centers to give good worst-case registrations. The Blackmggies by eliminating frequency components whose magnitudes
window weighs the center of the images very strongly, and fgg|| pelow « - pras, whereprus is the RMS magnitude of this
these images, not enough detail was left after windowing &ectrum at frequencies that lie in ax55 region around the
yield very precise results at the subpixel level. The worst cagentral peak (any threshold function that orders the magnitudes
registrations for these two images had errors that lay betwegi accepts th& largest can be substituted here).

0.1 and 0.2 pixels in at least one dimension. The remaining 50The algorithm also performs well in the presence of noise.
had worst-case errors that did not exceed 0.067 pixels in Big. 6 plots the precision of the algorithm for an image filtered
ther dimension. The average error in each dimension was onith « = 3 in the presence of additive white Gaussian noise
order of 0.0055 pixels. We repeated the experiment with urer various SNRs. The horizontal lines in the plot indicate the
form changes of intensity applied to one of the images, and girecision in the absence of noise. The performance is excellent
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TABLE | linear to quadratic, the number of required iterations remaining
COMPLEXITY OF REGISTRATION ALGORITHMS falls very quickly, and is essentially a constant in practice. The
complexity of the full registration algorithm thus may be as high
Algorithm Iterative/Direct | Complexity Major Cost . i
Abdou. polynomial fit Direct, O(Nlog N} Correlations via FFTs. as OW log N) OI_‘ as |0W as OZ(\T) dep.endlng on Whether the
:{)zlou, gxaussian fit Direct ow:og N Correlations via FFTs. number of iterations grows dsg V or is constant. We do not
N Iterati O(N N e, Five FFT: 3 . . .
nterpolation e e e products have data on which to base fair estimates of the constant factors
per iteration. I 1 1 101 1 1
Shokarforoush of al Disect O(Vlog M) e anq relative running times for efficient implementations of the
Kim and Su Iterative O{Nlog N) once, | Two FFTs once, several image various algorlth ms.
O(N) per iteration | interpolations per iteration.
Thévenaz et al. Iterative O(N) per iteration | One or more image
interpolations per iteration
Frequency Masking Direct O(Nlog N) 2 FFTs and 1 sort. V. SUMMARY AND CONCLUSIONS

The subpixel registration algorithm presented here enjoys

for both the average and worst-case errors. This performanc®¥esy high precision in the presence of aliasing. It is concep-
comparable to the performance reported for the iterative alggally simple to implement and is very efficient because its
rithm in [21]. complexity is essentially that of two FTs. Also the algorithm
We also applied the algorithm to examples of multispectrdfes only the frequencies in the central quadrant, and it is
images to measure its ability to register satellite images takerPi@ssible to speed the computation by producing only those
different spectra. URLs of the sample images are [44]-[46]. feequencies when computing the FT. The new algorithm is
test the algorithm we registered the three color planes to edghinpetitive with the algorithm of [21] in registration precision.
other in pairs. The expected result is that, + 6> 3 = & 3 Relative computation times are difficult to compare because
whereé; ; is the measured displacement between color plargr algorithm is direct and the other algorithm is iterative.
i andj. We found that this equation was satisfied to within Our algorithm can be adapted to deal with rotations and scale
a few hundredths of a pixel when the common features of glanges by using Fourier—Mellin invariants as described in [33],
image planes were plentiful and accounted for most featufigt to do so requires interpolations either in the Fourier or in the
present, and is not satisfied when the registration fails becai@@ge domain. The algorithm becomes iterative in that setting
of the absence of common features. The algorithm is sensitivé@her than direct.
edges, and is not very sensitive to actual intensity values. How-The new algorithm is useful in applications in which illumi-
ever, mutlispectral images do not always share features acrggion and translational differences between images have to be
spectra. For images in which there were significant differencéliscovered accurately and efficiently. It also may have applica-
in features among the color planes, the algorithm failed to yieli@ns to multispectral registration when image pairs from dif-
consistent pairwise registrations. We do not recommend the fggent spectra have many edge features in common.
of the algorithm in such cases.
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