
Abstract— A method for estimating unknown node positions
in a sensor network based exclusively on connectivity-induced
constraints is described. Known peer-to-peer communication in
the network is modeled as a set of geometric constraints on the
node positions. The global solution of a feasibility problem for
these constraints yields estimates for the unknown positions of the
nodes in the network. Providing that the constraints are tight
enough, simulation illustrates that this estimate becomes close to
the actual node positions. Additionally, a method for placing
rectangular bounds around the possible positions for all unknown
nodes in the network is given. The area of the bounding
rectangles decreases as additional or tighter constraints are
included in the problem. Specific models are suggested and
simulated for isotropic and directional communication,
representative of broadcast-based and optical transmission
respectively, though the methods presented are not limited to
these simple cases.

Index terms— position estimation, location, sensor networks,
convex optimization

I. INTRODUCTION

The maturing of integrated circuitry,
microelectromechanical systems (MEMS) and communication
theory has fomented the emergence of wireless sensor
networks and precipitated the economic and computational
feasibility of networks of hundreds or thousands of self-
sufficient sensor nodes. Each node has the ability to sense
elements of its environment, perform simple computations, and
communicate either among its peers or directly to an external
observer. Larger node numbers allow for sensing over larger
geographical regions with greater accuracy than previously
possible.

The work in this paper is principally motivated by the
Smart Dust project, aiming to scale sensing communication
platforms down to cubic millimeter volume [1]. The most
promising methods for short and long range peer-to-peer
communications are RF and optical media [2], respectively.
Progress is being made to integrate both of these media at the
chip level [3], while macroscopic sensor node systems have
been demonstrated [4]. Ad hoc routing protocols have been
developed – information theoretic bounds are explored in [5]
and protocols are detailed in [6], [7].

In a network of thousands of nodes, it is unlikely that the
designer will determine the position of each node. In an
extreme case, nodes may be dropped from the air and scattered
about an unknown area. To process sensor data, however, it is
imperative to know where the data is coming from. Nodes
could be equipped with a global positioning system (GPS) to
provide them with knowledge of their absolute position, but
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this is currently a costly (in volume, money, and power
consumption) solution. Instead, positional information can be
inferred from connection-imposed proximity constraints. In
this model, only a few nodes have known positions (perhaps
equipped with GPS or placed deliberately) and the remainder
of the node positions are computed from knowledge about
communication links. A less general attempt at solving for
node positions relative to beacons is proposed by Estrin et al.
[8] while hardware-implemented systems are described in [9]
and [10].

 This paper describes feasible solutions to the position
estimation problem using convex optimization. If one node can
communicate with another, a proximity constraint exists
between them. As a physical example, if a particular RF
system can transmit 20m and two nodes are in communication,
their separation must be less than 20m. These constraints
restrict the feasible set of unknown node positions. Only planar
networks are considered, but augmenting the methodology to
3-D is straightforward. In summary as illustrated in Figure 1:

Given: positions of solid nodes
Find: a possible position for each open node
Subject to: proximity constraints imposed by known

connections

Known position
Unknown position

Connection constraint

(x1,y1) (x3,y3)(x2,y2)

Figure 1. Graph illustrating data and variables as vertices,
constraints as edges.

Formally, the network is a graph with n nodes at the
vertices (each node having a Cartesian position) and with bi-
directional communication constraints as the edges. Positions
of the first m nodes are known (x1, y1, ... xm, ym,) and the
remaining n-m positions are unknown. The feasibility problem
is then to find (xm+1, ym+1, ... xn, yn) such that the proximity
constraints are satisfied. Note that there are constraints among
open nodes though their positions are unknown. Connections
that are not reported are not detrimental to the performance of
the algorithm.

The position estimation methodology developed herein
requires centralized computation. Namely, all nodes must
communicate their connectivity information to a single
computer to solve the optimization problem. The feasibility of
such a paradigm has been demonstrated by Culler et al. [11],
generating an RF ad hoc network with the ability to relay
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connection statistics to a centralized PC. This system consists
of a custom operating system running on sensor nodes and
suggests a concrete example of a sensor network in the context
of this paper. We focus exclusively on the position estimation
aspect and no further consideration is given to communication
protocols though bandwidth constraints may be the
fundamental limitation to sensor network size.

II.  MATHEMATICAL FORMULATION

Efficient polynomial-time algorithms based on interior-
point methods exist for solving linear programs [12] and
semidefinite programs [13]. A linear program (LP) is a
problem of the form:

Minimize cTx (1)
Subject to: Ax < b

Geometrically, this amounts to minimizing a linear function
over a polyhedron.

A generalization of the LP is the semidefinite program
(SDP) of the form:

Minimize  cTx
Subject to: F(x) = F0 + x1F1 + … + xnFn < 0

Ax < b
Fi = Fi

T (2)

The first inequality represents a matrix inequality on the
cone of positive semidefinite matrices, i.e. the eigenvalues of
F(x) are constrained to be nonpositive. This is known as a
linear matrix inequality (LMI). Again the objective function
must be linear for SDP. Constraints can be stacked in either
method. SDP will be sufficient to solve all the numerical
problems in this paper though LP will be used where
applicable because of superior computational efficiency.

In two dimensions, each node has a position (x,y). For
position estimation, a single vector with all the positions is
formed:

x =[x1  y1 ... xm  ym... xm+1  ym+1 ... xn yn]
T

The first m entries are fixed as data and the remaining n-m are
computed by the algorithm.

In general, efficient computational methods are available
for most convex programming problems. Geometrically, a
convex set is one for which any two points in the set can be
connected with a line entirely contained in the set. Convex
constraint models for RF and optical communication systems
are presented in the following section. Other convex
constraints are also computable with the same algorithms.

The solution methods are not approximate; providing that
the experimenter believes in the validity of the constraint
model, position estimation as developed herein is the best that
can be accomplished. Results indicating performance below
the desired level for a particular application reflect limitations
imposed by uncertainty in the constraint models, not by the
position estimation methodology.

III. CONVEX CONSTRAINT MODELS

A. Connections as convex constraints

Providing that the connectivity of the network can be
represented as a set of convex position constraints, the
mathematical methods outlined in the preceding section can be
utilized to generate feasible positions for all the nodes in the
network. It is sufficient to consider connection constraints
individually as both programming methods allow for
constraints to be collected into a single problem. The question
becomes: “given the position of node A, what is the set of
possible positions for node B?” The remainder of this section
is devoted to two models of this feasible set.

B.  Radial constraint – RF communication

The RF transmitter of a wireless sensor node can be
modeled as having a rotationally symmetric range as illustrated
in Figure 4a. This is not an accurate physical representation of
what is often a highly anisotropic and time-varying
communication range, but a circle that bounds the maximal
range can always be used. Furthermore, the proceeding
methods apply equally well to ellipses without increased
complexity should it become evident that an elliptical
communication model is more relevant.

In this symmetric model, a connection between nodes can
be represented by a 2-norm constraint on the node positions.
Specifically, for a maximum range R and node positions a and
b, the equivalent LMI is given by:

0
)(

2
2

≥







−

−
⇒≤−

Rba

baRI
Rba T         (3)

For a two-dimensional problem, using Schur complements
[14] transforms the quadratic inequality into an LMI with a
3x3 matrix in (3) with I2 representing the two-dimensional
identity. Multiple LMIs can be stacked in diagonal blocks to
form one large SDP for the entire network. Hence, each bi-
directional proximity constraint contributes one convex 3x3
LMI to the system.

A variant of this problem is to use the exact distance
between nodes as the outer distance bound in the above LMI:
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For emphasis, in the former case all constraints are
bounded with a circle with the same radius R, in the latter case,
each constraint is assigned the smallest radius rab possible
(Figure 2). Physically, transmitters varying their output power
during an initialization phase could obtain an estimate of rab. If
a connection is first obtained at a power Po, the receiver
calculates the maximum possible separation for reception at
Po. This maximum separation rab < R can be used to determine



a tighter upper bound on each individual connection in the
network.

Fixed radius Variable radius

R

A

B

C

rab

rac

Figure 2. In the fixed radius case, both constraints AB and
AC are circles of radius R. In the variable radius case,
constraint AB has a radius rab and constraint AC has a
radius rac. There would also be a constraint BC in each
scenario.

Note that neither of the following are convex constraints:

Rbarba ab >−=−
22

;  (5)

The latter would be useful in “pushing away” nodes that are
not connected in the algorithm as in Figure 3. This constraint
is not physically realistic either – nodes within a certain range
may not be able to communicate due to a physical barrier or
transmission anisotropy. Even more precision could be
obtained if some lower bound on separation was known and
the former constraint in (5) was formulated as a set of robust
convex constraints.

A
A

B

 C

D Known position
Unknown position

Connection constraint

Feasible solutionActual positions

Figure 3. There is no mechanism in the radial constraint
model for bounding nodes away from known positions. As
illustrated, the entire node chain could feasibly collapse to
a point as the unknown nodes B, C and D lie in a feasible
set of circles of radii R, 2R, and 3R centered at A.

C. Angular constraint – optical communication

Consider sensor nodes with laser transmitters and
receivers that scan through some angle. The receiver rotates its
detector coarsely until a signal is obtained, and then finely to
get the maximum signal strength. By observing the angle at
which the best reception occurs, we can form an estimate of
the relative angle to the transmitter and a vague estimate of the
maximum distance between them. This results in a cone
(triangle in 2D) for the feasible set as in Figure 4b. This cone
can be expressed as the intersection of three half-spaces – two
to bound the angle and one to place a distance limit. The
intersection of half-spaces is still an LP.

A node connected to plural neighbors will have a cone for
each neighbor pointed in the appropriate direction, but all
cones have the same half-angle and length.

D. Other convex constraints

Any combination of the SDP and LP constraints can be
used to define individual feasible position sets. Some study
was devoted to a quadrant detector scheme (Figure 4c)
involving one LMI and two scalar linear constraints. In a more
general case, for a trapezoid with variable angles and width
(Figure 4d), four linear constraints can approximate a segment
of an annulus that might represent uncertain knowledge of both
position and angle. There are other non-LMI constraints that
may also prove useful.

R θ

(a) (b) (c) (d)

2

Figure 4. Geometrical interpretation of single constraints.
Given that the solid and open nodes are connected, the
open node must lie in the shaded region anchored by the
solid node position. Constraint shown in (a) radial, (b)
angular, (c) quadrant and (d) trapezoid. The outer bound
in (b) is optional.

E. Combining Individual Constraints

Node positions in the network are often constrained by
connections to several other nodes. Satisfying plural
constraints means that the feasible set becomes the intersection
of the individual constraint sets, necessarily making the
feasible region smaller with each added constraint as in Figure
5. This decreasing area is precisely the mechanism behind the
position estimation. The intersection of convex sets is itself a
convex set, so our search methodology continues to be
sufficient.

(a) (b) (c)

Figure 5. Combination of radial constraints. The shaded
region represents the feasible set for the light node,
constrained by the dark node positions. From (a)-(c), the
intersected constraints yield progressively smaller feasible
sets.

Though only connections between known positions and
unknown positions are illustrated in Figure 5, unknown-
unknown connections are equally important to the problem
solution. In this case, both a and b are variables in the SDP or
LP. All unknown positions are solved simultaneously using a
single global program.



TABLE 1
Summary of constraint types.

Method Allowable
 angle

Allowable
 distance

Linear
inequalities

Fixed
radial

0 – 2π Fixed 1 LMI

Variable
radial

0 – 2π Variable 1 LMI

Angular Variable Fixed 3 scalar
Quadrant One

quadrant
Fixed 1 LMI,

2 scalar
Trapezoid Variable Variable 4 scalar

IV. SIMULATION

A. Computation Time

All simulation is computed on an AMD K6-2 400 MHz
processor with 64 MB of RAM. Code is executed from the
MATLAB environment using the Mosek Optimization
Toolbox [15] to solve the LP and SDP problems. When
restricted to a circular region, the radial case can be solved as
a second-order cone problem (SOCP). This software uses
interior-point methods for efficient solution of both LPs and
SOCPs. Sparse arrays are used to store variables and
connectivity information throughout.

As an experiment to determine computation time and
scaling, two toy problems are solved: one for the radial
constraint method and one for angular constraints (Figure 6).
The first consists of n nodes arranged in a vertical chain
separated by a distance R with only the top and bottom nodes
in known positions. In the radial case, the only feasible
solution is the actual solution. The second places the n nodes
in a staircase pattern, again with the first and last nodes in
known positions. In the angular case, the feasible solution is
very close (and dependent on theta) to the actual solution.
Every unknown node is connected to exactly two other nodes.

(a) Radial toy problem

R

(b) Angular toy problem

R

Figure 6. Node positions for toy problems. Shaded nodes at
the end of the chains are known, all other nodes have
unknown positions.

In all cases, the number of fixed nodes, m = 2, while the
middle node positions are estimated. Computation times are
shown in Figure 7 and include only the time spent in the
solver, not the time to simulate the network connectivity.
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Figure 7. Computation time in seconds required to solve
the SOCP and LP toy problems.

Over the range of the presented data, the SOCP scales better
than O(k3) and the LP scales better than O(k2) where k is the
number of connections.

B. Network simulation

Unless otherwise specified, networks used in the
simulations were formed by placing nodes randomly and
uniformly in a square region of side length 10R. 200 nodes are
placed, then connectivity is determined by examining each
pairwise distance; if the distance between two nodes is less
than R, the nodes are labeled as connected. Finally, the largest
connected subnetwork of the 200 node network is extracted
and the node labels are randomly permuted as in Figure 8. 10
such networks are used for simulation, the average node
number is 194 and the average connectivity of each node is
5.7.
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Figure 8. Test network generated from 200 randomly
placed nodes. Numbers indicate node labels and position.

C. Performance metric



As mentioned in section II, both the SDP and LP
admit linear objectives (cTx) exclusively. However, there is no
readily apparent linear objective that would provide any sort of
“optimal” solution to the placement problem. Instead, the
objective function is left blank in the solver. This has the effect
of selecting a random feasible point xest = (xest, yest)  from the
solution space – this point represents a (n-m) entry set of (x,y)
pairs, one for each unknown position. The most precise
statement of a node’s position that can be made is that the
node lies somewhere in the intersection of the allowable
regions. Providing that these regions are small enough, finding
a feasible position for all the nodes may be close enough for
the required estimation.

The performance of the algorithm is defined as the
mean error from the computed to the actual unknown
positions. This mean error provides a measure of the size of
the feasible set.
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The same metric is utilized for both the radial and angular
problems. While it is not the most intuitively satisfying for the
angular case, the problem we are interested in is position
estimation and as such the deviation of actual position is still
the best variable for minimization.

D. Bounding the feasible set

To effectively exploit the utility of the objective
function cTx, the algorithms can be run multiple times. This
provides a mechanism for bounding the feasible set with a
rectangle parallel to the axes. The computation proceeds as
follows for each unknown position k:

1) Set c2k-1 = 1 and all other ci = 0 for c in (1) or (2)
2) Solve the original SDP/LP → yields xk

min

3) Set c2k-1 = -1 and all other ci = 0
4) Solve original SDP/LP → yields xk

max

5) Repeat steps 1-4 for c2k to get yk
min and yk

max

This procedure defines the smallest such rectangle
that bounds the feasible set as in Figure 9. By selecting the
center of this rectangle as the most likely solution, we can
expect some improvement in mean error over the randomly
selected case.

(1)
(2)

(3)

(4)

y

x

Figure 9. The shaded region represents the feasible set for
this problem. The procedure finds points 1-4 that define
the tight rectangular upper bound shown in dots. This
rectangle runs parallel to the axes shown.

For the price of a 4(n-m) times increase in the number of
problems solved, an increase in estimation performance and an
outer bound on the solution is obtained.

Another possibility is to find the minimum measure
elliptical bound on the solution space for each unknown
position as discussed in [14]. This does not, in general,
provide a tight upper bound due to the problem relaxation, but
may provide numerically similar results requiring the solution
of a single SDP for each unknown position instead of four.
However, the problem no longer falls into the simpler SOCP
framework.

V. RADIAL CONSTRAINT RESULTS

A. Comparison of two radial constraint methods

The performance difference between the fixed radius and
variable radius RF location methods is analyzed and explained
in this section. Using an n node network, the following test is
performed:

1) Select node 1 as a known position (m = 1)
2) Solve for the remaining n-m unknown positions
3) Compute the mean error for these n-m positions from the

actual network with (6)
4) Increase the number of known positions by 1 (hence

decreasing the unknowns by 1, m = m + 1)
5) Repeat steps 2-4 until m = 100

The trials cease at m = 100 as the implementation of
position calibration in more than half of the nodes would
obviate the intended cost savings. Results of these trials are
summarized in Figure 10.
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Figure 10. Fixed and variable radius estimation methods
with errors averaged over the 10 test networks.

At low values of m, the estimation performs as poorly as a
random guess at the node locations. It is useful to compare the
performance against a naïve beacon system in which the
environment is covered by a grid of known node positions. If a
node is within communication range of the beacon, a random
guess within this radius of R would result in a mean error of



2/3 R for the network. For our 10Rx10R network, this
performance would require over 100 beacon nodes; this
accuracy is achieved with 26 nodes in the variable radius case
and 33 for fixed radii with randomly chosen known positions.

There is a significant performance increase with the
variable radius method, suggesting that efforts to improve
distance sensing either by measuring power directly or by
modulating the transmission power through a few discrete
steps will ameliorate position estimation. The error decreases
monotonically with m, the more known positions, the better the
performance.

B. Intelligent selection of known nodes

As expounded in section III.B, the radial constraint has no
propensity for pushing nodes away. Unknown positions will
not be placed beyond the convex hull of the known positions
in this estimation methodology. Hence, the best results should
be obtained when the known node locations are found on the
perimeter of the network, especially at the corners.

In this experiment, the 4 nodes closest to the corners of
the test network are chosen as the known positions. Referring
to Figure 8, this is the set of nodes {17,34,119,153}. Averaged
over the 10 test networks, corner node selection reduces mean
error in the variable radius case from 2.4R to 1.2R. Selecting
the additional nodes closest to the middle of the external edges
for a total of 8 known positions reduces mean error from 1.7R
to 0.72R. With 8 known positions placed at the network
perimeter, the 100+ beacon network performance is matched.

C. Rectangular bounds

The solution of the radial SDP with a linear objective
yields an extremum of one unknown variable. Repeating this
procedure 4(n-m) times yields a rectangular bound on all
unknown node positions. An example of the outcome for a
simple network with 3 known positions is shown in Figure 11.
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Rectangular bounds on radial estimation, m = 3

Figure 11. Numbers indicate actual node positions.
Rectangles illustrate the uncertainty in the positions of
nodes 4 through 7 with node 4 having the largest
uncertainty. Lines between nodes indicate connectivity.

The smallest rectangle is associated with node 6,
connected to two known positions. Node 5 is connected only
to one known position, node 1, but additional constraints
imposed by node 6 aid in reducing the feasible position set.
The allowable set for node 7 is the circle of radius R = 1
around node 2, as illustrated by the bounding rectangle of side
length 2. Finally, node 4 can lie anywhere within the circle of
radius 2R = 2 centered at node 2 and has the biggest rectangle.

The outer bounds provide a convenient means of assessing
the effect of connectivity on the measure of the feasible
position sets. Intuitively, it is expected that nodes with more
neighbors will have smaller feasible sets because of the
intersection property. To validate this claim, the bounding
algorithm is tested with the variable radius case on a single test
network with eight perimeter known positions. Results appear
in Figure 12.
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Figure 12. Correlation between connectivity and bounding
rectangle area. Only nodes not connected to known
positions are considered. The dotted line is drawn at 4R2.

As a comparison, recall that nodes with connections to
known positions have a rectangle area bounded above by 4R2.
About eight connections to unknown positions are required to
achieve this level of certainty.

The same set of results are used to determine the effect
that the distance from a known node has on the precision of the
unknown solutions. The raw data for each node is given in
Figure 13.

Two effects are evident. Nodes within a distance R from a
known position must have a rectangle area less than 4R2.
Beyond this, there is a full range of rectangle sizes up to a
distance of 3R. At this point, the only nodes with such distance
properties are the ones situated at the center of the network,
those with the highest connectivity. This high connectivity is
responsible for the reduction in feasible set area near the right
of the plot.

Additionally, the selection of the rectangle centroids for
the unknown positions does improve the accuracy of the
estimation as speculated. The mean error drops from 0.72R (as
given in section V.B) to 0.64R.
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Figure 13. Rectangle sizes for unknown nodes with
different minimum distances to known nodes.

VI. ANGULAR CONSTRAINT RESULTS

A. Variation in cone half-angle

The same 10 networks and error metric are employed to
test the angular estimation model. More information is
required from the nodes: not only does the centralized
computer need a binary value representing each pairwise
connection, but also the angle between each connected pair.
Two parameters are varied in the experiments: the half-angle
of uncertainty (θ in Figure 4b), and the distance to the outer
bound of the cone.

In the first experiment, θ is reduced from π/4 to π/10 and
to   π/100. The first case is an outer approximation to the more
complicated quadrant constraint discussed earlier. Again, the
number of known positions is increased from 1 to 100 and the
mean error is computed over the 10 test networks. As
anticipated, the smaller individual constraints lead to better
position estimates as plotted in Figure 14.
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Figure 14. The half-angle of the connectivity cones is
varied and error is averaged over the 10 test networks.

The three curves follow a similar pattern as they use the
same node ordering during solution of the test networks. As m
increases, the mean error will decrease in jumps when an
"important" node becomes known. Such nodes are often
located at the perimeter of the network or serve to link two
parts of the network. The overall error does not increase as
quickly as the area of the constraint cone.

B. Variation in cone outer bound

To determine the sensitivity of the results to the
uncertainty in the length of the cone, the outer bound is varied
in this experiment as shown in Figure 15.

d 2d

(a) (b)

Figure 15. The outer bound in (b) is twice as long as that in
(a) while the half-angle remains constant.

The connectivity of the network is determined using the
same distance as previously; the nodes have no more
connections than before, but the positional uncertainty of
neighboring nodes has increased. If no distance information
was available, the cone would have an infinite length. Results
are shown in Figure 16 for increased outer bound lengths.

0 10 20 30 40 50 60 70 80 90 100
10-1

100

101
Comparison of cone length

Number of known positions (m)

M
ea

n 
er

ro
r 

[R
]

Standard cone
2x length cone
4x length cone
10x length cone

Figure 16. Cone length is increase beyond the connection
radius R. The mean error is an average over the 10 test
networks. A half-angle of π/100 is used in all three trials.

The cone length of 10R essentially robs the solver of any
distance information as the simulation environment has a side
length of 10R. Even with many known positions, this large
cone constraint does not perform well, suggesting that some
distance information is a necessity in a practical application.
At low values of m, the cone length does not matter as the
position estimation is little better than a random guess. The



parameters cause divergence in the results as the known nodes
increase and smaller intersections of feasible sets are obtained.
Again, the overall error increases more slowly than the area of
the cone.

C. Increased node density

By artificially increasing the connectivity distance,
increased node density can be simulated. Using the same 10
networks, the connectivity matricies are reconstructed using
thresholds of 1.25R, 1.5R, 1.75R, and 2R. From the original
mean of 5.8 connections/node, the connectivity rises to 8.5,
12.2, 16.1 and 20.4. This grows approximately as the circular
area of connectivity; the slight discrepancy is likely due to
network edge effects. This increased connectivity betters the
position estimation as seen in Figure 17.
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Figure 17. Different node density based on a single test
network. Error levels decrease as node density increases.

The jumps in the mean error are more evident in this trial
as only one test network is used. The labels of the "important"
nodes can be read off from the plot. Higher connectivity
results in more such breakthrough nodes. At 50% known
nodes, the four-fold increase in connectivity results in a two
order of magnitude decrease in position estimation error.

VII. CONCLUSIONS

A methodology for formulating a sensor network position
estimation problem as a linear or semidefinite program is
proposed. This formulation is based on connectivity and
pairwise angles between nodes. It was shown that a rapid
solution of the problem for networks with several hundred
nodes is possible, and that this technique is directly extensible
to networks of thousands of nodes.

In the case of radially constrained connections, using a
variable radius constraint improves performance over a
globally fixed radius. The placement of known positions
around the perimeter of the network results in small errors with
as few as four known positions. While requiring significant
computational overhead, rectangles placed around the feasible
set not only bound the possible positions of the unknown

nodes, but also provide a better estimate.
For angle constrained conections, decreasing uncertainty

through a reduction in half-angle or cone length reduces the
mean position estimation error over the network. In a practical
optical communication scenario, the angle might be known
precisely while a conservative distance approximation (long
outer cone bound) would be required. Simulation shows that
neglecting distance information entirely adversely impacts
performance. Increases in graph connectivity improve
performance dramatically, but would require significant
increases in communication in the network to transmit all the
required connectivity information to the central computer.
Obtaining the connectivity information will require a number
of messages linear in the average network connectivity and the
solution of the problem will scale polynomially as appropriate
for the LP or SOCP formulation.

Results for the angular and radial methods should not be
compared directly as different numerical solvers with disparate
initializations and random objective functions are used.

VIII. APPLICATIONS AND FUTURE WORK

A. Tracking through the sensor network

A specific application of the procedures described is
tracking of an object through the sensor network. The sensing
radius can be modeled as in the radial constraint case. If
multiple nodes can sense the object, the same set intersection
methods via SDP can be utilized to estimate the object’s
position and provide an upper bound. This is a problem with
only one unknown – the position of the tracked object – and n
known node positions. The solution should hence be rapid and
possibly simple enough to accomplish using the
microprocessor of a sensor node. Of course, this can be
extended to track k objects concurrently, analogous to the k
unknown node positions developed previously.

Acoustical data is used by Yao et al. [16] to locate an
object using sensors. Yao’s method uses more specific (phase-
related) data and provides more precise results.

B. Hierarchical solution for large networks

As networks scale beyond the demonstrated 2000 nodes,
the problems (particularly the radial constraint method)
become computationally intensive. This is an inauspicious
result for scaling to networks of hundreds of thousands of
nodes. We propose two possibilities: limit the number of
constraints on each node or solve the problem hierarchically.

The first option is to impose an upper bound on the
number of constraints that will be considered for each node. A
performance level can be chosen such that the rectangular
outer bounds average to a certain value by designing the
network for a particular node density. In essence, we keep the
same number of connections in our problem while dividing
them up among more nodes. For example, a halving of the
mean connectivity of a network allows for twice as many
nodes to be positioned for the same number of constraints.
This does not, however, provide for scaling the solution



through orders of magnitude.
The second option is to first divide a large network into

smaller subnetworks based on connectivity data – nodes
connected to one another will likely be members of the same
subnetwork. Position estimation can be carried out for each
member of the subnetwork based on an unknown centroid of
this region. Following the individual estimations, the
subnetwork centroids can be abstracted to nodes in the larger
network and placed accordingly with another iteration of
position estimation. This method mirrors Lagrangian
Decomposition for the solution of large optimization problems
on multiple processors. With plural hierarchical steps, this
computational method scales linearly to arbitrarily large
problems.

C. Implementing continuous distributions

The feasible sets are currently defined as binary fields –
either a node is permitted to be at a position (x,y) or it is not.
An extension of this theory could be made to continuous
distributions. Based on a certain power reading, there may be a
Gaussian distribution of the most likely distance between
nodes. Solution of the placement problem would then give
probabilistic distributions for all unknown node positions.
From this, the most likely position can be determined as well
as confidence intervals.

D. Combination of angular and radial constraints

A practical model of a heterogenous system might
incoporate both radial and angular constraints in the same
network. Some nodes might receive optical signals from
precise angles with poor distance information, while others
might receive precise distance information in the absence of
any directional knowledge. The combination of the two types
of constraints could result in a hybrid with better overall
performance. Another scenario involves nodes with both RF
capabilities and beam steering mechanisms that could combine
constraint types at the node level.

E. Erroneous data management

There is currently no faculty for detecting erroneous
connections. If a proximity constraint is fallaciously reported,
the algorithm will, in general, fail. Testing for such an error is
as difficult as solving the position estimation problem outright.

F. Modeling uncertainty in "known" positions

Throughout this paper, it has been assumed that the
"known" node locations have been precisely determined. It is
simple to introduce some uncertainty in this model by adding a
single convex constraint. For example, suppose that node A is
positioned at the origin, uncertain to within a unit distance. By
adding a virtual node position at the origin, node V, and
connecting this node to node A with a radial constraint of rAV =
1, the uncertainty will be accounted for by the global problem
solution.

This methodology simultaneously allows for a sensitivity
study on the known positions. By varying the uncertainty on
the known node positions and measuring the corresponding
variation in network error, the importance of precise
positioning can be inferred.
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