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Predictive Distance-Based Mobility Management for
Multi-Dimensional PCS Networks
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Abstract— This paper presents a mobile tracking scheme that
exploits the predictability of user mobility patterns in wireless
PCS networks. In this scheme, a mobile’s future location is
predicted by the network, based on the information gathered
from the mobile’s recent report of location and velocity. When a
call is made, the network pages the destination mobile around the
predicted location. A mobile makes the same location prediction
as the network does; it inspects its own location periodically
and reports the new location when the distance between the
predicted and the actual locations exceeds a threshold. To more
realistically represent the various degrees of velocity correlation
in time, a Gauss-Markov mobility model is used. For practical
systems where the mobility pattern varies over time, we propose
a dynamic Gauss-Markov parameter estimator that provides the
mobility parameters to the prediction algorithm.

Based on the Gauss-Markov model, we describe an analytical
framework to evaluate the cost of mobility management for the
proposed scheme. We also present an approximation method
that reduces the computational complexity of the cost evaluation
for multi-dimensional systems. We then compare the cost of
predictive mobility management against that of the regular, non-
predictive distance-based scheme, for both the case with ideal
Gauss-Markov mobility pattern and the case with time-varying
mobility pattern.

The performance advantage of the proposed scheme is demon-
strated under various mobility patterns, call patterns, location
inspection cost, location updating cost, mobile paging cost, and
frequencies of mobile location inspections. As a point of reference,
prediction can reduce the mobility management cost by more
than 50% for all systems, where a the mobile users have moderate
mean velocity and where performing a single location update is
as least as expensive as paging a mobile in one cell.

Index Terms— predictive mobility management, Gauss-
Markov model, distance-based location management, mobility
pattern, random walk, fluid flow, dynamic parameter estimation,
wireless networking

I. INTRODUCTION

In the operation of wireless personal communication service
(PCS) networks, mobility management deals with the tracking,
storage, maintenance, and retrieval of mobile location infor-
mation. Two commonly used standards, the EIA/TIA Interim
Standard 41 in North America [1] and the Global System
for Mobile Communications in Europe [22], partition their
coverage areas into a number of location areas(LA), each
consisting of a group of cells. When a mobile enters an LA,
it reports to the network the information about its current new
location (location update). When an incoming call arrives, the
network simultaneously pages the mobile (terminal paging)
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in all cells within the LA, where the mobile currently resides.
In these standards, the LA coverage is fixed for all users and
cannot adapt to different and differing user traffic and mobility
patterns.

Dynamic LA management schemes have been proposed in
[15], [18], and [32], where an LA is defined per mobile, as
to adapt to its traffic and mobility patterns. However, when a
call arrives, the system still needs to page the mobile in all
cells within the LA, operation that is costly in most cases.

Dynamic mobility management schemes [2], [3], [5], [8],
[14] [19], [21] discard the notion of LA borders altogether.
A mobile in these schemes updates its location1 based on
either elapsed time, number of crossed cell borders, or traveled
distance. All these parameters can be dynamically adapted to
each mobile’s traffic and mobility patterns, hence providing
better cost-effectiveness than the LA scheme. In schemes
that do not rely on LAs, upon call arrival, the network
pages the destination mobile using a selective paging scheme
[24], starting from the cell location where the mobile last
updated and outwards, in a shortest-distance-first order. With
the assumption of a random-walk mobility model, this paging
scheme is equivalent to the highest-probability-first algorithm,
which, indeed, incurs the minimum paging cost. In particular,
in the distance-based scheme, a mobile performs location
update whenever it is some threshold distance away from
the location where it last updated. For a system with the
memoryless random-walk mobility pattern, the distance-based
scheme has been proven to result in less location updating and
paging costs than schemes based on time or number of cell
boundary crossings [5].

However, in systems where a user’s future velocity is corre-
lated with its past and current velocity (i.e., non-memoryless),
the highest-probability location of a mobile is generally not
the cell where the mobile last reported. Thus, predicting the
mobile’s current location when a call arrives would result
in less paging traffic. Consequently, a mobility management
scheme that takes advantage of the predictability of the mo-
biles’ location can lower the mobility management cost.

In our proposed predictive distance-based mobility manage-
ment scheme, the future location of a mobile is predicted based
on the probability density function of the mobile’s location,
which is given by a Gauss-Markov mobility model based on

1We do not address in this paper the exact mechanism by which a mobile
monitors its location and velocity. A mobile may determine its location
through a variety of methods, including the Global Positioning System,
signal triangulation, base-station self-identifying beacons, or a combination
of the above. It may then average position displacement over time to find its
velocity. Other methods and related references on mobile location and velocity
determination can be found in [13].
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its location and velocity at the time of the recent location
updates. The prediction information is made available to both,
the network and the mobiles. Therefore, a mobile is aware of
the network’s prediction of its location. The mobile checks
its position periodically (location inspection) and performs
location update whenever it reaches some threshold distance
(updating distance) away from the predicted location. To
locate a mobile, the network pages the mobile starting from
the predicted location and outwards, in a shortest-distance-first
order, and until the mobile is found.

Besides the application of prediction, another feature that
sets our work apart from the original investigation of distance-
based mobility management is the notion of sporadic location
inspections. In a distance-based updating scheme, a mobile
needs to monitor its location and/or velocity. In practical
systems, this cannot be done continuously due to bandwidth
and computation power limitations. We assume that a mobile
measures its location and velocity periodically, at the loca-
tion inspection instants. We further study how the optimal
location inspection period is affected by the mean, variance,
and memory level of a mobile’s velocity. Previous work on
distance-based mobility management schemes [2][5][14][21]
do not incorporate this assumption.

Summaries of many aforementioned mobility management
schemes can be found in the survey papers [4] and [30]. A
preliminary version of the predictive distance-based mobility
management scheme, based on a one-dimensional system
and without considering the cost of location inspections, is
presented in [20] and summarized in [30]. Other related work
include the combination of timer, movement, and distance
approaches into a general state-based framework in [26], and
an information-theoretic approach in [6]. Most recently, a cell-
shape independent stochastic model has been proposed in [31],
which provides an iterative algorithm to compute the optimal
updating threshold for distance-based mobility management.

The rest of this paper is organized as follows. In Section
II, we describe the Gauss-Markov mobility model and the
prediction algorithm. We demonstrate the broad applicability
of the Gauss-Markov model, derive the optimal location pre-
diction, and introduce an algorithm to dynamically estimate
the Gauss-Markov parameters when the mobile movement
pattern is time-varying. Section III presents the analytical
framework for evaluating the cost of the predictive distance-
based scheme. This cost is defined as the sum of a mobile’s
location inspection cost, location updating cost, and the cost
incurred in paging the mobile. The numerical results are
presented in Section IV. We study how the optimal location
inspection period and updating distance are affected by the
traffic pattern, the mobility pattern, and the relative costs of
location inspection, location updating, and paging. To evaluate
the performance gain of the predictive scheme, the cost of
the non-predictive distance-based scheme is measured through
simulations, and is compared with the predictive scheme. Our
results indicate that, in general, prediction can significantly
lower the mobility management cost. We show that the pro-
posed scheme performs well, even when used in conjunction
with a suboptimal parameter estimation algorithm, in systems
with time-varying mobility pattern. Furthermore, we explain

why the performance gain of the predictive scheme does
not necessarily increase as the memory level of a mobile’s
movement increases. Finally, the concluding remarks are given
in Section V.

II. SYSTEM DESCRIPTION

A. The Gauss-Markov Mobility Model

A mobile user usually travels with a destination in mind.
Furthermore, the change of mobile’s velocity within a short
time is limited due to physical restrictions. Therefore, a
mobile user’s future location and velocity are likely to be
correlated with its past and current location and velocity. Thus,
the memoryless nature of the random-walk model makes it
unsuitable to represent such behavior. Another widely used
mobility model in cellular network analysis is the fluid-
flow model [32][33]. The fluid-flow model is suitable for
vehicle traffic on highways, but not pedestrian movements
with frequent “stop-and-go” behavior. A discrete Markovian
model is reported in [5]. However, in this model, the velocity
of the mobiles is overly simplified and characterized by three
states only. A memoryless Brownian motion with drift model
is used in [25] and [8]. It is an improvement to the random-
walk model, but still cannot represent the time correlation
in mobile’s velocity. In this work, we introduce a mobility
model based on the Gauss-Markov process [11][23][29]. The
Gauss-Markov process has appeared in diverse fields, such as
the theory and applications of signal estimation and economic
forecast. We postulate that it can be used to model the mobile
movement in a PCS network, since it captures the essence of
the correlation of a mobile’s velocity in time. Furthermore, the
Gauss-Markov model represents a wide range of user mobility
patterns, including, as its two extreme cases, the random-walk
and the constant velocity fluid-flow models.

1) The One-Dimensional Case: For simplicity, we first
illustrate the Gauss-Markov mobility model in a one-
dimensional system. In this model, a mobile’s velocity is
assumed to be correlated in time and modeled by a Gauss-
Markov random process. In continuous-time, a stationary
Gaussian process v(t) is a Gauss-Markov process if it has
the autocorrelation function [11][23][29]

Rv(τ) = E[v(t)v(t + τ)] = σ2e−β|τ | + μ2 , (1)

where σ2 is the variance of v(t), μ is its mean, and β ≥ 0
determines the degree of memory. When μ = 0, equation (1)
is also sometimes called the Ornstein-Uhlenbeck solution of
the Brownian motion with zero restoring force [23].

We define a discrete version of the mobile velocity with
vn = v(nΔt), and the memory level α = e−βΔt, where Δt is
normalized to unity throughout this paper.2 Then the discrete
Gauss-Markov process described by (1) can be represented by
the following recursive realization:

vn = αvn−1 + (1 − α)μ + σ
√

1 − α2wn−1 , (2)

2In a practical system design, the value of Δt should match the parameters
of each individual system. It should not be too small, such that the model
identification and system optimization become intractably complex. It also
should not be too large, such that the details of a user’s movement is lost.
However, an investigation into the optimal selection of Δt is outside the scope
of this paper.
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where {wn} is an uncorrelated Gaussian process with zero
mean and unit variance and is independent of {vn}.

If the initial velocity v0 is Gaussian with mean μ and
variance σ2, from equation (2), we clearly have Rv(k) =
σ2e−βk + μ2. Therefore, equation (2) satisfies the definition
(1). However, since there is no guarantee that v0 has mean
μ and variance σ2, or even that v0 is Gaussian, the process
described by (2) is generally not stationary. In this case, μ is
the asymptotic mean of vn, and σ is the asymptotic standard
deviation of vn, when n approaches infinity.

Clearly, as α approaches zero, or β approaches infinity, (2)
represents a drifting random-walk mobility pattern with mean
μ and standard deviation σ, and that as α approaches one,
or β approaches zero, (2) represents a constant velocity fluid-
flow mobility pattern with vn = v0 for all n. Therefore, not
only does the Gauss-Markov model represents a wide spectrum
of mobility patterns with various degree of memory, it also
includes the random-walk and fluid-flow models as its two
extreme cases.

2) The Multi-dimensional Case: It is straight forward to
extend the Gauss-Markov mobility model to the two or three-
dimensional systems by using vectors of Gauss-Markov pro-
cesses. In what follows, we use a two-dimensional system to
illustrate how this is done.

In the 2-D case, the location and velocity of a mobile
is represented by the random vectors sn = [sx

n, sy
n]T and

vn = [vx
n, vy

n]T , respectively, where the superscripts denote
the dimensions. Similarly, we define ᾱ = [αx, αy]T , μ̄ =
[μx, μy]T , and σ̄ = [σx, σy]T . Then, the 2-D velocity process
can be expressed as follows:

vn = ᾱ�vn−1 + (1− ᾱ)� μ̄ + σ̄�
√

1 − ᾱ2 �wn−1 , (3)

where � denotes element-by-element multiplication, and
{wn} = [{wx

n}, {wy
n}]T is a 2-D uncorrelated Gaussian

process with zero mean and unit variance and is independent of
{vn}. In (3), we have made an important assumption that the
velocity processes in both dimensions are uncorrelated. It is
easy to rewrite (3) to represent the more general case of corre-
lated dimensions. However, as will become obvious in Section
III, the cost analysis with even the simpler, uncorrelated
model can be highly computationally intensive. The additional
dimension of conditional probabilities in the correlated model
would render the model practically intractable.

For simplicity of presentation, one may further assume that
the velocity has the same memory level, α, the same asymp-
totic mean, μ, and the same asymptotic standard deviation,
σ, in both dimensions. In this isotropic case, equation (3)
becomes

vn = αvn−1 + (1 − α)μ + σ
√

1 − α2wn−1 . (4)

3) Duplicating Other Mobility Models: To our knowledge,
no real data are available in the public domain that describe
the user mobility pattern in the desired granularity to validate
a mobility model. For example, mobile traces reported in [27]
and [28] only give coarse movement patterns between large
areas, in hourly to daily time-frames, and aggregated among
many users. Therefore, none of the commonly used mobility
models in literature can be validated against real user data.

Nevertheless, the wide applicability of the proposed Gauss-
Markov model can still be demonstrated. We illustrate how
the parameter set (α, μ, σ) can be tuned such that the Gauss-
Markov model can duplicate the mobile movements described
by three of the most popular mobility models: the random-
walk model [25][8], the fluid-flow model [32], and the random
way-point model [7][9].3 By showing this, we demonstrate that
the Gauss-Markov model is, indeed, a mobility model that can
represent a variety of mobility models.

1) The random-walk model (with drift) has no memory. It
can be represented by

v(RW )
n = μ̄(RW ) + σ̄(RW ) � w(RW )

n , (5)

where μ̄(RW ) is a vector of drift velocities, σ̄(RW ) is a
vector of velocity standard deviations, and {w(RW )

n } is
a vector of uncorrelated Gaussian processes with zero
mean and unit variance. Comparing this with (3), the
corresponding sub-family of the Gauss-Markov model
has the parameters {ᾱ = 0, μ̄ = μ̄(RW ), σ̄ = σ̄(RW )}.

2) The fluid-flow model has constant velocity in all dimen-
sions. It can be represented by

v(FF )
n = c(FF ) , (6)

where c(FF ) is a vector of constant velocities. Comparing
this with (3), there are several sub-families of the Gauss-
Markov model that generate movement patterns the same
as those described by the fluid-flow model. They are
{ᾱ = 1,v0 = c(FF )}, {ᾱ = 0, μ̄ = c(FF ), σ̄ = 0},
and {μ̄ = c(FF ), σ̄ = 0,v0 = c(FF )}.

3) The random way-point model is the most prevalent
mobility model in mobile ad hoc network (MANET)
simulations. In this model, a mobile cycles through two
phases: constant-velocity and motionless. In each cycle,
it randomly selects a destination, moves toward the desti-
nation at a randomly selected velocity until it reaches the
destination, stays at the destination for a randomly chosen
amount of time, and starts a new cycle by randomly
selecting a new destination. Therefore, the movement
of a mobile under this model consists of segments of
fluid-flow with various level of velocity (including zero
velocity).

Since the stochastic process of mobile velocity under
the random way-point model is non-stationary, it cannot
be obtained by direct application of the Gauss-Markov
model. However, with the Gauss-Markov model, one
only needs to employ an additional random number
generator to generate movement patterns that follow the
random way-point model description. This random num-
ber generator determines the duration of each segment of
movement. In each segment, the Gauss-Markov model, as
shown in 2), generates fluid-flow-like movement patterns.

B. Predictive Distance-Based Mobility Management

In what follows, we describe the predictive mobility man-
agement scheme in the context of 1-D and 2-D systems. This

3A comparative study of various mobility models, including random-walk,
Gauss-Markov, and random way-point, in the context of mobile ad hoc
network routing, can be found in [16].
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Fig. 1. Predictive Location Updating and Selective Paging: (a) One-
Dimensional System (b) Two-Dimensional System

can easily be extended to systems of three dimensions, such
as those in an office building, for example.

1) Predictive Location Updating and Selective Paging: As
explained in Section I, a mobile cannot monitor its location
continuously. Here, we assume that location inspections are
performed by the mobiles periodically, at every m units of
time.

The proposed predictive distance-based scheme has the
following components:

• prediction: The PCS network makes predictions of the
mobile’s location pn, at time instants of mobile location
inspections and call arrivals to the mobile, based on the
history of the mobile’s reported location and velocity.
The mobile is made aware of the network’s prediction,
either by information transfer from the network during the
last location updating or by local, concurrent computation
using the same prediction algorithm as the network.

• updating: At the kth location inspection instant, a mobile
observes its current location skm. It transmits a location
update to the PCS network if |skm−pkm| is greater than
the distance threshold.

• paging: When a call is made to a mobile at time n,
the system pages the mobile in cells at and around the
predicted location pn, in a shortest-distance-first order,
and until the mobile is found.4

Figures 1 illustrates the predictive updating and paging
schemes for the 1-D and 2-D cases, respectively.

4A time or distance threshold may be imposed, beyond which the paging
terminates, in case the sought mobile has detached from the network.

In paging a mobile, there exists a trade-off between the
paging traffic bandwidth usage and the time delay in locating
the mobile (e.g., a full system paging scheme incurs maximum
bandwidth usage and minimum delay). There is a spectrum
of means to trade off between bandwidth usage and paging
delay. In the rest of this paper, for both the predictive and
the non-predictive cases, we have assumed a sequential, ring-
by-ring paging scheme, where all cells of equal distance to
the predicted location or the last reported location, respec-
tively, are paged at the same time. For systems with different
bandwidth and delay constraint requirements, the proposed
predictive scheme can be easily extended using the methods
similar to those reported in [14], [3], and [24].

The updated mobile location and velocity are assumed to
be contained in location databases residing in the wireline
network (e.g., Home Location Registers). The reliability issues
of location databases are not addressed in this paper. For
reliability considerations, methods similar to those described
in [12] could be employed.

2) Location Prediction: Next, we derive a formula for the
predicted location of a mobile as a function of time, when
its last reported location and velocity are given. Let n = 0
be the initial time when a mobile last updates its location
and velocity. We can recursively expand (4) to express vn

explicitly in terms of the initial velocity v0,

vn = αnv0 + (1 − αn)μ + σ
√

1 − α2

n−1∑
i=0

αn−i−1wi . (7)

Define s0 = 0, and sn = sn−1 + vn−1, we have

sn =
n−1∑
i=0

vi =
1 − αn

1 − α
v0 +

(
1 − 1 − αn

1 − α

)
μ

+ σ
√

1 − α2

n−1∑
i=0

i−1∑
j=0

αi−j−1wj .

(8)

It’s easy to show that any linear combination of s0, s1, . . .,
and sn is Gaussian. Hence, s Δ= {sn} is a Gaussian process.

Let zn be the displacement of a mobile at time n from
its last updated location, given that no location updating is
performed up to time n − 1, i.e.,

|skm − pkm| ≤ N , (9)

for k = 1, 2, . . . , �n/m�−1, where N is the updating distance

threshold. The joint PDF of z Δ= {zn} is

fz(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fs(ξ)∫
|ξkm−pkm|≤N

fz(ξ)dξ
,

|ξkm − pkm| ≤ N , k = 1, 2, . . . , �n/m� − 1 ;
0 , otherwise ,

(10)
where ξ

Δ= {ξn}, and fs(ξ) is the joint PDF of s.
Since {sn} is a Gaussian process, the maximum-likelihood

estimation of sn is E[sn]. Due to symmetry in the definition of
{zn}, as shown in (10), the maximum-likelihood estimation
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of zn is

pn = E[zn] = E[sn]

=
1 − αn

1 − α
v0 +

(
1 − 1 − αn

1 − α

)
μ .

(11)

Furthermore, since the PDF of zn is concave and sym-
metrical, the proposed shortest-distance-first paging scheme
conforms with the highest-probability-first rule for optimal
selective paging. Therefore, we can expect the predictive
scheme to incur lower mobility management cost than the non-
predictive distance-based scheme.

C. Gauss-Markov Model Parameter Estimation

In a practical system, the mobility pattern can be ap-
proximated by the Gauss-Markov model with varying mean,
variance, and memory level. Applying the algorithm in Section
II-B, the movement of a mobile is predicted based on the
estimated parameters μ̂, σ̂, and α̂, obtained at the previous
location updates. Therefore, the accurate location prediction
depends upon the accurate dynamic estimation of the Gauss-
Markov parameters, as well as the degree of variations in these
parameters between location updates.

The topic of dynamic parameter estimation has seen many
contributions within the signal-processing community. In this
work, we propose a simple estimator that computes the mean,
variance, and memory level of a mobile, separately, in each
dimension. We define a parameter estimation window west.
In practice, west is chosen such that it is small enough for
the mobile movement to remain approximately stationary but
large enough to provide sufficient amount of data samples.
Given the previous west samples of the mobile velocity {vi},
the Gauss-Markov parameters are estimated by

μ̂ =
1

west

west∑
i=1

vi (12)

σ̂2 =
1

west − 1

west∑
i=1

(vi − μ̂)2 (13)

σ̂2
1 =

1
west − 1

west−1∑
i=1

(vi − μ̂)(vi+1 − μ̂) (14)

α̂ =

{
1, if σ̂ ≈ 0

max{0,
σ̂2
1

σ̂2 }, otherwise .
(15)

In the above estimation, both σ̂2 and σ̂2
1 are biased because

of the correlation between elements in {vi}. Despite this
drawback, the reasons that we have chosen this algorithm
are two-fold. First, this estimator is simple to implement in
practice. Second, a sub-optimal parameter estimator does not
invalidate the correctness of the proposed predictive location
updating and paging scheme.

With correlated data and limited estimation window size,
an optimal estimator has not been found. However, it is stated
in [17] that the above estimator can out-perform an unbiased
estimator.

Thus, the Gauss-Markov parameter estimates of each mobile
are recomputed at each of its location updating events. These
estimates are used by the mobile and the system to predict the

future location of the mobile. Section IV-C demonstrates the
effectiveness of combining the above estimator with distance-
based predictive mobility management.

III. COST EVALUATION OF THE PREDICTIVE

DISTANCE-BASED MOBILITY MANAGEMENT SCHEME

In this section, we describe an analytical framework to eval-
uate the mobility management cost of the predictive distance-
based scheme, assuming ideal Gauss-Markov mobility pattern.
The performance of the proposed scheme in the non-ideal,
time-varying case is studied in Section IV.

The total cost of mobility management per call arrival is
defined as

Ctotal = Cinspect + Cupdate + Cpage , (16)

where Cinspect, Cupdate, and Cpage are the average location
inspection cost per call arrival, the average updating cost
per call arrival, and the average paging cost per call arrival,
respectively.

Clearly, there exists a tradeoff between location updating
and mobile paging. The more often a mobile terminal updates
its location, the more precise is the network’s knowledge of its
location when a call arrives, which could lead to lower paging
cost. However, location updating drains the limited energy
supply of a mobile terminal, takes away part of the precious
wireless channel capacity, and induces access to potentially
far-away and heavily-loaded location databases. Therefore,
the rate of location updating, which depends on the location
updating threshold in this case, should be optimized to reduce
the total cost.

Furthermore, the frequency of location inspection is another
design parameter that needs to be optimized. On the one hand,
location inspection takes up the limited processor power and
energy supply of a mobile terminal. On the other hand, it
improves the mobile’s awareness of its location for timely
location updating, which is particularly important when the
frequency of call arrivals is high.

In order to determine the optimal location inspection fre-
quency and the optimal location updating threshold, we pro-
pose the following framework for evaluating the cost of
mobility management. We first describe the cost evaluation
framework of a 1-D system. We then extend that to 2-D
and 3-D systems, and follow that with an approximation
scheme, which reduces the computational complexity of multi-
dimensional cost evaluation to that of a 1-D system.

A. 1-D Cost Evaluation

Since the position of a mobile (e.g., the residence cell
identity) is closely monitored by the network within a phone
call duration, a call arrival has the same effect as a mobile
location update. To distinguish the two types of location
updating, we refer to a location update based on distance as
autonomous update. Furthermore, we can view a call duration
as a point in time, where a location update is performed, and a
new cycle of location inspection, location updating, and mobile
paging starts.
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Suppose calls arrive with the inter-arrival time PDF fcall(n).
The average location inspection cost per call is

Cinspect = Ci

∞∑
n=0

fcall(n)�n/m	 , (17)

where Ci denotes the cost of a single location inspection. If we
assume that the call arrival times are exponentially distributed
with arrival rate λ, we can simplify (17) to

Cinspect = Ci
(1 − λ)m

1 − (1 − λ)m
. (18)

The detailed derivation is presented in Appendix A.
To determine Cupdate, we first consider the time interval

between two consecutive autonomous location updates without
the interruption of phone calls. We compute the PDF of time
between a location update (autonomous update or call-arrival
update) and the next autonomous update, denoted fupd(n).

Let ηn and zn be the velocity and displacement of a
mobile at time n, respectively, given that no location updating
is performed up to the location inspection at time km =
�n/m	m. Shifting the center of the PDFs of ηn and zn to
the origin, we define

un = ηn − μηn
(19)

rn = zn − μzn
. (20)

Then, we have u0 = r0 = 0, and for n 
= km,

un = αun−1 + σ
√

1 − α2wn−1 , (21)

and
rn = rn−1 + un−1 . (22)

We further define u′
km and r′km as the mean-shifted velocity

and displacement of a mobile at the kth location inspection,
respectively, given that no location updating is performed up
to the (k−1)th location inspection (i.e., r′km could be greater
than N ). Obviously, ukm is u′

km conditioned on |r′km| ≤ N ,
and rkm is r′km conditioned on |r′km| ≤ N .

In order to compute the probability of an update at the
kth location inspection, we need to compute the PDF of
rkm. It’s easy to see that the statistics of (rkm, ukm) is
completely determined by (r(k−1)m, u(k−1)m). Therefore, we
can compute the joint PDF frkm,ukm

(r, u), through a recursion
on k as follows.

Let

yk =
(k+1)m−1∑

i=km

ui . (23)

Then,
r′(k+1)m = rkm + yk . (24)

By the Markovian property of un, we have

fyk|(ukm,u′
(k+1)m

)(y, ξ1, ξ2)

=fy0|(u0,u′
m)(y, ξ1, ξ2) =

1
σy0|u0

√
2π(1 − γ2)

· exp

⎧⎪⎨
⎪⎩−

[
(y − μy0|u0) − γ

σy0|u0
σu′

m|u0
(ξ2 − μu′

m|u0)
]2

2σ2
y0|u0

(1 − γ2)

⎫⎪⎬
⎪⎭ ,

(25)

where
μu′

m|u0 = αmξ1 , (26)

μy0|u0 =
1 − αm

1 − α
ξ1 , (27)

σ2
u′

m|u0
= (1 − α2m)σ2 , (28)

σ2
y0|u0

=
−(1 − αm)2 + m(1 − α2) − 2α(1 − αm)

(1 − α)2
σ2 ,

(29)

γ =
C(u′

m,y0)|u0

σu′
m|u0σy0|u0

, (30)

and

C(u′
m,y0)|u0 =

(1 − αm)(α − αm)
1 − α

σ2 . (31)

The derivation of fy0|(u0,u′
m)(y, ξ1, ξ2) is presented in Ap-

pendix B.
Since rkm and yk are independent given ukm, we have,

from (24),

fr′
(k+1)m

|(ukm,u′
(k+1)m

)(r, ξ1, ξ2)

=frkm|ukm
(r, ξ1) ∗ fykm|(ukm,u′

(k+1)m
)(r, ξ1, ξ2)

=frkm|ukm
(r, ξ1) ∗ fy0|(u0,u′

m)(r, ξ1, ξ2) ,

(32)

where ∗ denotes linear 1-D convolution over the variable r.
Then, by Bayes rule and taking the marginal density, we

have

fr′
(k+1)m

,u′
(k+1)m

(r, ξ2)

=
∫ ∞

−∞
fr′

(k+1)m
|(ukm,u′

(k+1)m
)(r, ξ1, ξ2)fukm,u′

(k+1)m
(ξ1, ξ2)dξ1

=
∫ ∞

−∞
fr′

(k+1)m
|(ukm,u′

(k+1)m
)(r, ξ1, ξ2)fu′

(k+1)m
|ukm

(ξ2, ξ1)

·
∫ ∞

−∞
frkm,ukm

(ζ, ξ2)dζdξ1 ,

(33)

where

fu′
(k+1)m

|ukm
(ξ2, ξ1) = fu′

m|u0(ξ2, ξ1)

=
1

σu′
m|u0

√
2π

exp

[
− (ξ2 − μu′

m|u0)
2

2σ2
u′

m|u0

]
.

(34)

Because of the distance-based updating, we obtain

fr(k+1)m,u(k+1)m
(r, u)

=
fr′

(k+1)m
,u′

(k+1)m
(r, u)PN (r)∫ ∞

−∞

∫ N

−N

fr′
(k+1)m

,u′
(k+1)m

(r, u)drdu

, (35)

where

PN (r) =

{
1, −N ≤ r ≤ N

0, otherwise .
(36)

Let Rupd(k) be the probability that there is no update up
to and including the kth location inspection instant. We have
Rupd(0) = 1, and

Rupd(k + 1)

=Rupd(k)
∫ ∞

−∞

∫ N

−N

fr′
(k+1)m

,u′
(k+1)m

(r, u)drdu .
(37)
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The above iteration to compute frkm
(r) can be terminated

either when Rupd(k) is sufficiently small, or when the series
of PDFs frkm,ukm

(r, u) converges, e.g., in terms of normalized
squared error,∫∞
−∞

∫ N

−N

[
frkm,ukm

(r, u) − fr(k−1)m,u(k−1)m
(r, u)

]2
drdv∫∞

−∞
∫ N

−N
[frkm,ukm

(r, u)]2 drdv
< ε ,

where ε is a pre-defined threshold. Suppose the iteration is
terminated at the qth step. Since frkm,ukm

(r, u) uniquely deter-
mines fr′

(k+1)m
,u′

(k+1)m
(r, u), for k ≥ q, Rupd(k+1)/Rupd(k)

is essentially constant and

Rupd(k + 1) ≈ Rupd(q)
Rupd(q − 1)

Rupd(k) . (38)

Thus, we can compute Rupd(k) successively for all k ≥ q.
We carry out this computation until Rupd(k) is small enough.

Thus, we obtain the PDF of the time between a location
update to the next autonomous update by

fupd(km) = Rupd(k−1)−Rupd(k) k = 1, 2, . . . , (39)

and fupd(n) = 0 for n not a integer multiple of m. Since
fupd(km) is not dependent on the history of a mobile’s
location or velocity before time k = 0, the time between con-
secutive autonomous updates is independent and identically
distributed.

Next, we consider the location updates between two succes-
sive call arrivals. Since a call arrival has the same effect as a
location update, the time between the first call arrival and the
first autonomous update has PDF fupd(n). The i.i.d. location
update time intervals comprise a renewal process with the
probability density function fupd(n).

Let U(n) denote the number of location updates within the
time interval of length n between two successive call arrivals.
Then,

Pr[U(n) = i] = F (i)(n) − F (i+1)(n) , (40)

where

F (i)(n) Δ=
n∑

l=0

f (i)(l) , (41)

and f (i)(n) is the PDF of time between a location update
and the ith autonomous update in the future, as given by the
following recursive relation

f (1)(n) = fupd(n) (42)

f (i)(n) = f (i−1)(n) ∗ fupd(n) , (43)

where ∗ denotes the discrete convolution.
Let M(n) be the expected value of U(n). Then,

M(n) =
∞∑

i=1

i(F (i)(n) − F (i+1)(n))

=
∞∑

i=1

iF (i)(n) −
∞∑

i=2

(i − 1)F (i)(n)

=
∞∑

i=1

F (i)(n) .

(44)

Using (44), the average updating cost per call arrival can
be obtained by

Cupdate = Cu

∞∑
n=0

fcall(n)M(n) , (45)

where Cu is the cost of a single autonomous location update.
To find Cpage, we first need to determine the distribution

of rn, for n = km + 1, km + 2, . . . , km + m − 1, given
frkm,ukm

(r, u). Let

δk,i =
km+i−1∑

j=km

ukm+j , i = 1, 2, . . . , m . (46)

Similar to the mean and variance of y0|v0 derived in Appendix
B, we can show that δk,i|ukm is Gaussian with mean 1−αi

1−α ukm

and variance −(1−αi)2+i(1−α2)−2α(1−αi)
(1−α)2 σ2. Then, since

rkm+i = rkm + δk,i , (47)

and rkm and δk,i are mutually independent given ukm, we
have

frkm+i
(r) =

∫ ∞

−∞
frkm,ukm

(r, u) ∗ fδk,i|ukm
(r, u)du , (48)

where ∗ denotes convolution in terms of r.
Let Kp(r) be the number of cells in which the network

needs to page a mobile when the mobile is at a displacement
of r from its predicted location. In a 1-D predictive system
with a shortest-distance-first paging rule,

Kp(r) = 2�r/S + 0.5	 + 1 , (49)

where S is the cell size. Then, the expected number of cells
paged when a call arrives at time i from the last location
updating is

g(i) =
∫ ∞

−∞
Kp(r)fri

(r)dr . (50)

Let P (n) be the expected number of cells paged when a call
arrives at time n from the last call arrival. We can compute
P (n) with the following recursive equation:

P (n) =Rupd (�n/m	) g(n) + fupd(m)P (n − m)
+ fupd(2m)P (n − 2m) + · · ·
+ fupd (�n/m	m) P (n − �n/m	m) .

(51)

Then, the average paging cost per call arrival is given by

Cpage = Cp

∞∑
n=0

fcall(n)P (n) , (52)

where Cp is the cost of paging a single cell.

B. 2-D Cost Evaluation

Section III-A describes the analytical framework for eval-
uating the predictive mobility management scheme in a 1-
D system. In a 2-D system, similarly to equations (19) and
(20), we can define mean-shifted velocity, un = (ux

n, uy
n)T ,

and mean-shifted displacement, rn = (rx
n, ry

n)T , given that
no location updating is performed up to the �n/m	th location
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inspection. Then, similarly to equations (19)-(39), we can com-
pute f

(2d)
upd (n) and frx

km,ry
km,ux

km,uy
km,(rx, ry, ux, uy) through

an iterative procedure over frkm,u(k−1)m,ukm
(r,u1,u2). Here,

the location cut-off function, as shown in equation (36),
becomes

P
(2d)
N (rx, ry) =

{
1,

√
(rx)2 + (ry)2 ≤ N

0, otherwise ,
(53)

where N is the threshold radius for location updating.
Then, the computation of Cinspect remains unchanged, and

the computation of Cupdate can be carried out exactly as in
equations (40)-(45). The computation of Cpage is similar to
that described in equations (46)-(52), except that Kp(r) in
(49) needs to be redefined.

The number of cells paged by the network to find a mobile is
largely dependent upon the cell shape and lattice arrangement.
In order to obtain analytical results that are compatible with
all cell configurations, we assume that the number of cells
paged is proportional to the size of the area paged by the
network. Since the optimal, shortest-distance-first and ring-by-
ring paging pattern is used, the area paged when the mobile
is at (rx, ry) is a circle centered at the predicted location and
with radius

√
(rx)2 + (ry)2. Thus, here the 2-D K

(2d)
p (r) is

defined as

K(2d)
p (rx, ry) =

⌊
π
(
(rx)2 + (ry)2

)
/S(2d)

⌋
+ 1 , (54)

where S(2d) is the average area of a cell.
As hinted by equations (32)-(34), the direct extension of

the 1-D algorithm to the 2-D case can potentially be very
computationally intensive, since it requires convolution and
other manipulation of frkm,u(k−1)m,ukm

(r,u1,u2) with six
free variables. In what follows, we introduce an approximating
algorithm for 2-D cost evaluation, which requires only as much
computation as the 1-D algorithm.

C. 2-D Cost Approximation

As shown in Section III-B, the difficulty there is in comput-
ing the joint PDF of location and velocity in both dimensions.
This problem can be alleviated by an approximation based
on the assumption that a mobile performs location updating
separately in each of the two dimensions. In this case, we
define a new location cut-off function

P
(2d)
L (rx, ry) =

{
1, −L ≤ rx ≤ L and − L ≤ ry ≤ L

0, otherwise ,
(55)

where L is the threshold distance for location updating in each
dimension, and

L =
√

πN2 , (56)

which maintains the same size of the range of possible mobile
location immediately after a location inspection.

With this location updating assumption, the mobile location
and update time statistics can be computed independently in
each dimension, and then combined to give the 2-D statistics.
The 2-D autonomous update time is the minimum of the 1-
D autonomous update time in each dimension. In particular,

since we have assumed that the mobiles have the same and
independent mobility pattern in both dimensions, we have

R
(2d)
upd (k) = R2

upd(k) , (57)

and hence,

f
(2d)
upd (km) = 2fupd(km)Rupd(km) + f2

upd(km) . (58)

The 2-D mobile location PDF can be obtained by

frx
n,ry

n
(rx, ry) = frn

(rx)frn
(ry) . (59)

Then, we can use the same procedures described in Sec-
tion III-B to compute the updating and paging costs. To
make the approximation results more precise, we can modify
K

(2d)
p (rx, ry) to reflect the mobile location constraint intro-

duced by equation (55). For simplicity, in this work, we only
consider this constraint at time n = km. In this case, the
paging area is the intersection of a circle and a square centered
at the predicted location, with radius N =

√
(rx)2 + (ry)2

and side-length 2L, respectively. Thus, we redefine

K(2d)
p (rx, ry) =

⎧⎪⎪⎨
⎪⎪⎩

⌊
πN2

S(2d)

⌋
+ 1, N ≤ L⌊

πN2

S(2d) − 4
S(2d) (N2 tan−1

√
N2−L2

L

−L
√

N2 − L2)
⌋

+ 1, N > L
(60)

Since (55) represents a sub-optimal updating scheme, Ctotal

obtained here is an upper-bound of the actual cost that can
be obtained by the direct 2-D computation in Section III-B.
In all experiments that we have conducted, this upper-bound
is within 2% of the actual cost. Thus, we conclude that the
approximation is quite reasonable, allowing us to significantly
reduce the computation complexity.

IV. NUMERICAL RESULTS AND COMPARISONS

In this section, we evaluate the cost of a two-dimensional
system. When analyzing the cost of the predictive scheme
in the case of ideal Gauss-Markov mobility pattern, we use
the upper-bound approximation described in Section III-C
to expedite the computations. In the case of time-varying
mobility pattern, the performance of the predictive scheme,
in conjunction with the proposed parameter estimator, is
demonstrated through simulation.

In order to reduce the redundancy of numerical represen-
tation, we scale both the spatial parameters and the cost
parameters. We normalize all distance and velocity values
according to the cell size, such that the area of a cell is
assumed to be one. Furthermore, since only the relative costs
of location inspection, location updating, and mobile paging
affect the performance optimization, we also normalize all
costs to have the units of Cp, the cost of a single paging.
Thus, Cu now represents the ratio of the cost of one location
update to the cost of a single paging, and Ci now represents
the ratio of the cost of one location inspection to the cost of
a single paging.

The costs Ci, Cu, and Cp depend on multiple factors
such as the mobile battery and processor capacity, the system
wireless bandwidth, and the location database architecture. It
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is impossible to quantify all these factors using a single metric.
In fact, it is difficult to properly quantify any one of these three
costs with a single metric. Therefore, the values of Ci and Cu

in our analysis merely represent the relative importance of
location inspection, location updating, and mobile paging in
evaluating the performance of a system.

Clearly, the relative importance of these different costs is
determined by the system design details on a case-by-case
basis. Furthermore, these costs may change over time, depend-
ing on the time varying characteristics of the battery power,
wireless channel usage, database loading, network congestion,
and many other factors that a system designer need to consider.
In this work, we consider the broad applicability of predictive
mobility management in different networks. Therefore, instead
of giving the numerical results of one specific type of network,
we study the optimization and performance of the proposed
scheme with a wide range of Ci and Cu values.

For the case of ideal Gauss-Markov mobility pattern, we are
interested in understanding how Cu, Ci, and the other system
variables, namely, the memory factor exponent β, the average
velocity μ, the standard deviation σ, the location inspection
period m, and the updating distance N , affect the performance
of the predictive scheme. In particular, we are interested in the
joint optimization of m and N , namely,

(mopt, Nopt) = arg min
m,N

Ctotal(m,N, β, μ, σ, λ, Cu, Ci) ,

(61)
which gives the minimum cost of mobility management
Ctotal(mopt, Nopt).

We are also interested in the performance gain that the pre-
dictive scheme can achieve over the non-predictive distance-
based scheme. In particular, we are interested in how the cost
ratio is affected by the aforementioned system parameters.

Although our analytical framework accommodates a general
call-arrival distribution, in the following numerical compu-
tations, we assume that the inter-arrival time of calls is
exponentially distributed with arrival rate λ [calls/unit time].

A. Joint Optimization of m and N with Ideal Gauss-Markov
Mobility Pattern

Assuming ideal prediction, μ has no effect on the cost of
predictive mobility management. Other than that, however, it
is not easy to solve equation (61) using general numerical
optimization tools. Therefore, in what follows, given a set
of system parameters, we first compute Ctotal for a range
of values of m and N and then pick the pair that gives the
minimum cost.

In Figs. 2-4, we study the effect of β, σ, λ, Ci, and Cu on
the minimization of Ctotal.

Fig. 2 presents the plots of the minimum Ctotal and the
corresponding (mopt, Nopt), as β increases along the val-
ues {10−2, 10−1.5, 10−1, 10−0.5, 100, 100.5} (i.e., α decreases
along the values {0.99, 0.97, 0.90, 0.73, 0.37, 0.04}), for vari-
ous values of σ and for λ = 0.01, Cu = 10, and Ci = 1.

Fig. 2(a) illustrates a seemingly counter-intuitive phe-
nomenon. It shows that the minimal total cost is not always
decreasing with the memory level (α = e−β) of a mobile’s
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Fig. 2. Joint optimization of m and N versus β and σ, for λ = 0.01,
Cu = 10, and Ci = 1. (a) Minimum cost. (b) Optimal m and N .
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Fig. 3. Joint optimization of m and N versus λ and Ci, for β = 10−0.5,
σ = 0.5, and Cu = 10. (a) Minimum cost. (b) Optimal m and N .

velocity. On the one hand, for fixed σ and small β , as
β increases, a mobile’s velocity becomes less correlated, so
the total cost of using prediction increases. On the other
hand, when β is large, the variance of

∑n
i=0 vi approaches

a local minimum nσ2, so a mobile’s position becomes more
predictable, and therefore the total cost decreases.

In addition, Fig. 2(a) also shows that the minimal total cost
is an increasing function of the variance of a mobile’s velocity.
This matches the intuition that the cost of predictive mobility
management increases as a mobile’s velocity becomes more
chaotic.

Fig. 2(b) shows that, corresponding to the results in
Fig. 2(a), the optimal m and the optimal N are respectively
convex and concave functions of β. However, the optimal m
is always a decreasing function of σ, and the optimal N is



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 5, OCTOBER 2003 10

10
−3

10
−2

10
−1

0

200

400

600

800

1000

λ

M
in

im
um

 c
os

t [
C

p/
C

al
l]

Cu=100.5  
Cu=101  
Cu=101.5  
Cu=102  

1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

Optimal log
2
(m)

O
pt

im
al

 N

Cu=100.5  
Cu=101  
Cu=101.5  
Cu=102  

(a) 

(b) 

λ=10−1 
λ=10−1.5 

λ=10−2 

λ=10−2.5 

λ=10−3 

Fig. 4. Joint optimization of m and N versus λ and Cu, for β = 10−0.5,
σ = 0.5, and Ci = 1. (a) Minimum cost. (b) Optimal m and N .

always an increasing function of σ. Therefore, as a mobile’s
movement becomes more unpredictable, more frequent loca-
tion inspections and longer update threshold distance should
be used.

Fig. 3 presents the plots of the minimum Ctotal and the
corresponding (mopt, Nopt), for various values of λ and Ci.
Here, Cu is fixed at 10. Fig. 4 presents the plots of the min-
imum Ctotal and the corresponding (mopt, Nopt), for various
values of λ and Cu. Here, Ci is fixed at 1. In both figures,
β = 10−0.5 (i.e., α = 0.73), and σ = 0.5.

The plots in Figs. 3(a) and 4(b) demonstrate that the
minimum cost of mobility management per call arrival is
approximately an exponentially decreasing function of the
call arrival probability. Since a mobile’s location is tracked
during a call, as the inter-arrival time decreases, there is
less unpredictable mobile random movement between calls,
which leads to lower mobility management cost per call.
As λ approaches 1 [arrivals/time unit], the total cost should
approach 1[Cp]. In this case no location inspection or location
updating is necessary, and the only cost is incurred when a call
arrives and the system pages once to verify that the mobile is
there.

Figs. 3(b) and 4(b) demonstrate that both the optimal
location inspection period and the optimal updating distance
decrease as the call arrival probability increases. This is
intuitive since, as call arrives more often, a mobile is better
off to check and update its location more often to reduce
the cost of the frequent paging operation. From these figures,
we also see that mopt is more sensitive to Ci than Nopt is,
and on the other hand, Nopt is more sensitive to Cu than
mopt is. For example, when λ = 0.01 [arrivals/time unit], as
shown in Fig. 3(b), as Ci goes from 1 to 100.5, mopt increases
from 8 to 12, while Nopt remains unchanged at 4. However
as shown in Fig. 4(b), as Cu goes from 101.5 to 102, Nopt

increases from 7 to 11, while mopt remains unchanged at 4.
The relative insensitiveness of the optimal m and N to some

of the system parameters is a welcomed property, especially
when the proposed scheme is applied to a system where the
cost factors and are time-varying and need to be estimated.

B. Comparison with the Non-predictive Distance-Based
Scheme

For the non-predictive distance-based scheme, we use com-
puter simulations to determine its cost when the system param-
eters take various combinations of values. In these simulations,
we assume an infinite two-dimensional space that is divided
into cells of size 1, where a mobile travels according to the
two-dimensional isotropic Gauss-Markov process defined by
the mobility parameters β, μ, and σ. The simulations are time-
driven. At the time of initiation, the mobile is assumed to have
just experienced a call arrival. Thus, it starts from the origin
(s0 = 0), and has initial velocity with the Gaussian distribution
defined by μ and σ. The time of the next call arrival is
randomly generated following the exponential distribution
with arrival rate λ. Until a call arrives, the mobile inspects
its position every m clock ticks. If the mobile is N or more
unit of distance away from the origin, a location update is
performed, and the origin is shifted to the current location.
When a call arrives, the paging cost is computed based on the
mobile’s distance from the origin, using equation (54). The
updating cost is computed based on counting the total number
of location updates performed since time initiation. The above
experiment is repeated 105 times, and the average is taken.

To find the joint optimization of m and N through simula-
tions in the non-predictive case would be too daunting a task.
Instead, to facilitate the comparison between the two schemes,
for both schemes, we treat m as a non-design parameter, and
only optimize N . Thus,

Np
opt = arg min

N
Cp

total(N,β, μ, σ, λ, Cu, Ci,m) (62)

Nnp
opt = arg min

N
Cnp

total(N,β, μ, σ, λ, Cu, Ci,m) . (63)

Furthermore, since both the predictive and non-predictive
schemes have the same Cinspect, independent of N , we drop
this term and define the performance gain

G(β, μ, σ, λ, Cu,m) =
Cnp

update(N
np
opt) + Cnp

page(N
np
opt)

Cp
update(N

p
opt) + Cp

page(Np
opt)

.

(64)
Thus, the predictive performance gain is a function of

six independent variables. Instead of attempting to plot the
performance gain in the six-dimensional space, we divide
the variables into two groups, the mobility-related parameters
(β, μ, σ) and the traffic and mobility-management parameters
(λ,Cu,m). For each group of variables, we study the effect of
these variable in detail, while the variables in the other group
are fixed.

In Fig. 5, we study the effect of the mobility pattern, namely,
(β, μ, σ), on the performance gain. The other parameters are
set to (λ,Cu,m) = (0.01, 10, 10).

Fig. 5(a) presents the plots of the performance gain versus
β, for various values of μ, and with fixed σ = 0.5. Here β
takes the values {10−2, 10−1.5, 10−1, 10−0.5, 100, 100.5}. This
corresponds to the memory factor α = e−β taking the values
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Fig. 5. Performance gain with ideal Gauss-Markov mobility model, for
λ = 0.01, Cu = 10, and m = 10. (a) Versus β and μ, with σ = 0.5. (b)
Versus μ and σ, with β = 10−0.5 (α = 0.73). (c) Versus σ and β, with
μ = 0.5.

{0.99, 0.96, 0.90, 0.73, 0.37, 0.042}. These plots demonstrate
the important fact that the performance gain is a convex
function of β. On the one hand, when β is small, the user
mobility has a high memory level, which favors the predictive
scheme. On the other hand, at α = 0, the variance of

∑n
i=0 vi

reaches a local minimum, nσ2. Thus, when β is large (i.e.,
α is small) and μ is not too small (larger than 0.1 in this
case), the disadvantage of the non-predictive scheme is mainly
determined by a mobile’s average velocity as explained below.
Therefore, in this case, since μ does not affect the cost of
the predictive scheme, the predictive performance gain is
larger for larger β. In other words, a smaller variance in
the mobile velocity, as observed over the location inspection
periods, reflects a more fluid-flow-liked movement pattern,
which favors the predictive scheme.

When μ = 0, the performance gain decreases from about 2.5
down to unity, as the memory factor of the system decreases
from 0.99 to 0.042. In particular, for μ = 0 and α ≈ 0, the
mobility of the mobile has the pattern of random-walk. In
this case, the predictive scheme does not have any advantage
over the non-predictive one. However, in all other cases, the
predictive scheme results in substantial savings.

Fig. 5(b) presents the plots of the performance gain versus
μ, for various values of σ, and with fixed β = 10−0.5

(α = 0.73). These plots demonstrate that the performance gain

is a faster-than-linearly increasing function of μ. Maximum
savings are achieved when μ >> σ, since, in this case,
the mobile mobility pattern is close to the fluid-flow model,
where a mobile’s velocity and location are easily predictable.
In this case, the mobile never needs to update its location,
and therefore, the only cost incurred using the predictive
scheme is the cost of paging once in the cell of the predicted
location, when a call arrives, to verify that the mobile is indeed
there. The performance gain can grow without bound as μ
approaches infinity. For example, when σ = 0.1 and μ = 10, a
performance gain greater than 1000 can be achieved. However,
when μ = 0.1 and σ > 0.1, the performance gain is close to
unity.

Fig. 5(c) shows the plots of the performance gain versus
σ, for various values of β, and with fixed μ = 0.5. These
plots demonstrate that, when the memory level is high enough
(e.g., α > 0.73), the performance gain is a convex, non-
monotonic function of σ. On the one hand, for small values
of σ, as shown in the last figure, the mobility pattern become
more like the fluid-flow model, and hence the predictive
performance gain increases. On the other hand, for large σ,
the advantage of using prediction becomes more prevalent, as
long as the memory level is high. When the memory level
is relatively low (e.g., α ≤ 0.73), the performance gain is
approximately an exponentially decreasing function of σ.

In Fig. 6, we study how the parameters (λ,Cu,m) affect the
performance gain. We set the mobility parameters (β, μ, σ) =
(10−0.5, 0.5, 0.5).

Fig. 6(a) presents the plots of the performance gain versus
λ, for various values of Cu, and with fixed m = 10. These
plots demonstrate that the predictive performance gain is a
convex function of λ. On the one hand, when the call arrival
rate is low, the inter-arrival time becomes longer, and a mobile
drifts farther away from the location where the last call arrived.
This leads to higher updating and paging costs for the non-
predictive scheme. On the other hand, when the call arrival rate
is high, as shown in Section IV-A, the cost of the predictive
scheme approaches one. In this case, the disadvantage of the
non-predictive scheme, due to the non-zero mean velocity,
becomes more dominant as λ becomes larger. In particular,
the transition point is around λ = 0.01 for the given set of
parameters.

Fig. 6(b) shows the plots of the performance gain versus
Cu, for the various values of m, and with fixed λ = 0.01.
These plots demonstrate that, when m is small (e.g., m ≤ 5),
the performance gain is an approximately linearly increasing
function of the updating cost to paging cost ratio. However,
when m is large (e.g., m ≥ 10), the performance gain is a
convex function of Cu (note that the Cu axis is in the logarith-
mic scale). As a call arrives in-between location inspections,
a mobile may have traveled beyond the updating distance. In
the non-predictive scheme, the system needs to page in more
cells than it does in the predictive scheme. This problem of
the non-predictive scheme becomes more prominent when the
paging cost to updating cost becomes larger, i.e., when Cu

becomes smaller. Furthermore, the disadvantage of the non-
predictive scheme is more apparent as m increases. This is
studied in more detail in the next figure.



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 5, OCTOBER 2003 12

10
−3

10
−2

10
−1

2

2.5

3

3.5

4

4.5

5

λ

C
m

in
(n

on
−

pr
ed

) 
/ C

m
in

(p
re

d)

Cu=101  
Cu=101.5  
Cu=102  
Cu=102.5  

10
0

10
1

10
2

10
3

1

2

3

4

5

6

7

8

Cu

C
m

in
(n

on
−

pr
ed

) 
/ C

m
in

(p
re

d)

m=2  
m=5  
m=10  
m=20  
m=50  

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2

3

4

5

6

log
2
(m)

C
m

in
(n

on
−

pr
ed

) 
/ C

m
in

(p
re

d)

λ=10−1  
λ=10−1.5  
λ=10−2  
λ=10−2.5  
λ=10−3  

(a) 

(b) 

(c) 

Fig. 6. Performance gain with ideal Gauss-Markov mobility model, for
μ = 0.5, σ = 0.5, and β = 10−0.5. (a) Versus λ and Cu, with m = 10. (b)
Versus Cu and m, with λ = 0.01. (c) Versus m and λ, with Cu = 101.5.

Fig. 6(c) presents the plots of the performance gain versus
m, for the various values of λ, and with fixed Cu = 101.5.
These plots demonstrate that the performance gain is an
increasing function of the location inspection period. This
shows that the predictive scheme improves the performance
of a system where the location inspection cost is relatively
high.

C. Dynamic Gauss-Markov Parameter Estimation

We use simulation to study the performance of the proposed
scheme in systems where the mobility pattern cannot be
ideally represented by the Gauss-Markov model. We simulated
the two-dimensional, random way-point mobility model as
described in Section II-A.3. The time-varying Gauss-Markov
parameters are estimated as described in Section II-C and
applied to the predictive scheme as described in Section II-
B.

Fig. 7 illustrates the effectiveness of combining dynamic
parameter estimation and predictive mobility management. In
both figures, the parameter estimation window is west = 10.
The call arrival rate λ takes the values {10−1, 10−2, 10−3}.
The cost per location update is assumed to be Cu = 10[Cp].5

5Simulation results with other Cu values yield similar results and are
omitted here.
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Fig. 7. Dynamic parameter estimation with random way-point mobility
model, for Cu = 10. (a) Comparison of minimum (over N ) cost. (b)
Performance gain.

We further assume that m = 1. In the random way-point
model, we assume that the mobile velocity has unit magnitude
with zero pause time (i.e., when a mobile reaches a destination
point, it immediately moves toward a new destination). The
system coverage area is assumed to be a square with side
length W . Clearly, the larger the W , the more predictable
is the mobile movement. In particular, when W approaches
infinity, a mobile appears to move with constant velocity with
a pre-selected random direction.

Fig. 7(a) plots the minimum total cost (obtained with the
optimal location threshold) of location updating and mobile
paging, per call arrival, for both the predictive scheme and
the non-predictive scheme. This figure shows that, as W
increases, the mobile movement approaches the constant-
velocity fluid-flow model, and the cost of the non-predictive
scheme approaches its maximum value. This maximum value
can be determined analytically, since when a mobile moves
with unit constant velocity,

Cnp
total(N) =

∫ ∞

0

λe−λt

(
Cu

t

N
+

1
N

∫ N

0

πs2ds

)
dt .

(65)
It is easy to optimize N in the above and to obtain the
minimum cost of the non-predictive scheme Cnp

total(N
np
opt) =

1.92
(

Cu

λ

) 2
3 . The simulation model can be verified by substi-

tuting the values of Cu and λ into the above equation and
comparing the results with the simulation results.

In contrast, as W increases, the cost of the predictive
scheme decreases. As expected, this cost approaches 1[Cp]
when W is very large. This is the case where the mobile
location is perfectly predictable, and, hence, the best scheme
is not to update at all, and each time a call arrives, the system
pages the mobile once.

Fig. 7(b) plots the performance gain of the predictive
scheme as defined in (64). This figure shows that when W is
not too large, the performance gain is approximately linearly
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increasing with W . When W is very large, as expected from
the results shown in the previous figure, the performance gain
levels off and approaches its global maximum. As a point of
reference, for the moderate case where Cu = 10 and λ = 0.01,
the predictive scheme outperforms the non-predictive scheme
by a maximal factor of 200!

It is worth noting that, in the case of dynamic Gauss-
Markov parameter estimation, the predictive performance gain
can degrade to less than 1 when W is very small. This is
in contrast with the ideal case shown in IV-B, where the
predictive scheme performs as well as the non-predictive
scheme even when the mobile movement is memoryless. This
performance degradation is a direct result of our sub-optimal
parameter estimation algorithm. For example, if we had a
priori knowledge (e.g., through long-term observation) that
the mobile movement follows the random way-point pattern,
a better parameter estimation using west = 1 could be em-
ployed. For systems with general mobility patterns, improving
the parameter estimation algorithm would further improve the
performance gain of the predictive scheme beyond what is
shown in Fig. 7(b).

V. CONCLUSIONS

Mobile users in PCS networks move with wide variety
of mobility patterns, especially in networks with multi-layer,
macro-cellular and micro-cellular infrastructures [10]. We have
presented a novel predictive distance-based mobility manage-
ment scheme, which takes full advantage of the correlation
between a mobile’s current velocity and location and its future
velocity and location. We have introduced a mobility model
based on the Gauss-Markov random process, which captures
the various degrees of velocity correlation in time. It even
includes both the random-walk and fluid-flow models as its
two extreme cases. An analytical framework is introduced
to evaluate the performance of the proposed scheme. The
analytical framework enables us to study the effects of various
parameters on the mobility management cost, to optimize the
location inspection frequency and location updating threshold
through numerical analysis, and to determine the relative
performance of the proposed scheme over the non-predictive
scheme.

The numerical results have demonstrated the important fact
that the performance gain of the predictive scheme is not
an increasing function of the memory level of a mobile’s
movement. This validates our observation that the memory
level does not directly indicate the predictability of a mobile’s
movement. Overall, however, the numerical analysis confirms
our intuition that the cost of predictive mobility management
is inversely proportional to the predictability of a mobile’s
mobility pattern. In particular, our numerical results suggest
that this cost is a monotonic function of the velocity variance
and the call arrival rate, that it is a concave function of the
memory level, and that it is independent of the mean velocity.
Correspondingly, the optimal location inspection period and
the optimal updating distance are monotonic functions of
the velocity variance and the call arrival rate, but they are,
respectively, convex and concave functions of the memory

level. In the span of parameter values under consideration,
the performance improvement of the predictive scheme ranges
from unity, in the random-walk case, to a factor of a few
orders of magnitude, in the constant velocity case. As a point
of reference, as shown in Figure 5(b), in the near fluid-flow
case, where σ = 0.1, the performance gain quickly increases
from 8, when μ = 0.3, to 100, when μ = 3. In more general
terms, the mobility management cost can be reduced by more
than 50% for all systems where the mobiles have moderate
mean velocity (e.g., μ ≥ 0.5), and where performing a location
update by a mobile is as least as expensive as paging a mobile
in a cell (e.g., Cu ≥ 1).

Our analysis using ideal Gauss-Markov mobility pattern
has demonstrated the potentially enormous advantage of using
prediction in mobility management. For practical systems
with time-varying mobility patterns, we have introduced a
dynamic parameter estimation algorithm to be employed in
conjunction with the proposed predictive scheme. Simulation
results of systems with the random way-point mobility model
have demonstrated that the proposed predictive scheme can
largely outperform the non-predictive scheme, even with a sub-
optimal parameter estimator.

The vast performance gain of predictive mobility man-
agement, as shown by both analysis and simulation, offsets
the cost of enabling prediction in the mobile terminal and
the wireline backbone. This justifies the investment of such
software and hardware devices in the next generation wireless
personal communication networks.

APPENDIX A:
DERIVATION OF Cinspect WITH EXPONENTIALLY

DISTRIBUTED CALL INTER-ARRIVAL TIME

In this case, the PDF of the call inter-arrival time is
fcall(n) = λ(1 − λ)n. From equation (17), we have

Cinspect = Ci

∞∑
n=0

λ(1 − λ)n�n/m	

= Ci

∞∑
i=0

(i+1)m−1∑
j=im

λ(1 − λ)j�j/m	

= Ci

∞∑
i=0

i

(i+1)m−1∑
j=im

λ(1 − λ)j

= Ci (1 − (1 − λ)m)
∞∑

i=0

i(1 − λ)im

= Ci
(1 − λ)m

1 − (1 − λ)m
.

(66)

APPENDIX B:
DERIVATION OF fy0|(u0,u′

m)(y, ξ1, ξ2)

Since u0, u1, . . . , um−1, u
′
m are jointly Gaussian, y0 =∑m−1

i=0 ui is jointly Gaussian along with
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u0, u1, . . . , um−1, u
′
m. With slight abuse of notation, we have

fy0|(u0,u′
m)(y, ξ1, ξ2) =

f(y0,u′
m)|u0(y, ξ1, ξ2)

fu′
m|u0(ξ2, ξ1)

= f(y0|u0)|(u′
m|u0)(y, ξ1, ξ2) =

1
σy0|u0

√
2π(1 − γ2)

· exp

⎧⎪⎨
⎪⎩−

[
(y − μy0|u0) − γ

σy0|u0
σu′

m|u0
(ξ2 − μu′

m|u0)
]2

2σ2
y0|u0

(1 − γ2)

⎫⎪⎬
⎪⎭ ,

(67)

where μu′
m|u0 and μy0|u0 are the means of u′

m|u0 and y0|u0,
respectively, σu′

m|u0 and σy0|u0 are the standard deviations of
u′

m|u0 and y0|u0, respectively, and γ is the correlation factor
of y0|u0 and u′

m|u0.
From the definition of u′

m, we have

μu′
m|u0 = αmu0 , (68)

and

σ2
u′

m|u0
= σ2(1 − α2)

m−1∑
i=0

α2(m−i−1)

= (1 − α2m)σ2 .

(69)

The mean of y0 given u0 is

μy0|u0 =
m−1∑
i=0

μui|u0 =
m−1∑
i=0

αiu0 =
1 − αm

1 − α
u0 . (70)

To find a formula for σy0|u0 , we first consider the covariance
between ui|u0 and uj |u0. For any i and j satisfying 0 ≤ i <
j ≤ m − 1, we have

E[(ui|u0 − μui|u0)(uj |u0 − μui|u0)]

=E

[
σ2(1 − α2)

i−1∑
l=0

αi−l−1wl

j−1∑
l=0

αj−l−1wl

]

=σ2(1 − α2)
i−1∑
l=0

αi−l−1αj−l−1

=σ2(1 − α2i)αj−i .

(71)

Then,

σ2
y0|u0

= E

⎡
⎣
(

m−1∑
i=0

ui|u0 − μui|u0

)2
⎤
⎦

=
m−1∑
i=0

E
[
(ui|u0 − μui|u0)

2
]
+ 2

m−1∑
i=0

m−1∑
j=i+1

E
[
(ui|u0 − μui|u0)(uj |u0 − μuj |u0)

]
=

m−1∑
i=0

σ2
um|u0

+ 2
m−1∑
i=0

m−1∑
j=i+1

σ2(1 − α2i)αj−i

=
−(1 − αm)2 + m(1 − α2) − 2α(1 − αm)

(1 − α)2
σ2 .

(72)

Finally, the covariance factor between u′
m and y0 is

γ =
C(u′

m,y0)|u0

σ2
u′

m|u0
σ2

y0|u0

, (73)

where

C(u′
m,y0)|u0 = E

[(
u′

m|u0 − μu′
m|u0

)(m−1∑
i=0

ui|u0 − μui|u0

)]

=
m−1∑
i=0

E
[
(u′

m|u0 − μu′
m|u0)(ui|u0 − μui|u0)

]

=
m−1∑
i=0

σ2(1 − α2i)αm−i

=
(1 − αm)(α − αm)

1 − α
σ2 .

(74)
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