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Abstract. Given a set Un = {0, 1, ..., n− 1}, a collection M of subsets
of Un that is closed under intersection and contains Un is known as a
Moore family. The set of Moore families for a �xed n is in bijection with
the set of Moore co-families (union-closed families containing the empty
set) denoted itself Mn. In this paper, we propose for the �rst time a
recursive de�nition of the set of Moore co-families on Un. These results
follow the work carried out in [1] to enumerate Moore families on U7.

1 Introduction

In this article we study the set of Moore co-families of a given universe
Un = {0, 1, ..., n − 1}. The concept of a Moore family, or of a closure
operator (extensive, isotone and idempotent function on 2Un), or of a
complete implicational system, is applied in numerous �elds. For exam-
ple, let us consider mathematical researches such as [2] for algebra and
computer science researches such as [3] for order theory and lattices, [4]
for relational databases and �nally [5] and [6] for data analysis and formal
concept analysis. The name `Moore family' was �rst used by Birkho� in
[7] referring to E.H. Moore's early century researches in [8]. Technically,
a Moore family on Un, denoted by M, is a collection of sets (or a family)
closed under intersection and containing Un.

The set of Moore families on Un is itself a Moore family or a closure
system (a closure system being the set of the �xed points of a closure
operator). Thus, the system composed of Moore families contains one
maximum element (2Un , all subsets of Un) and the intersection of two



Moore families is a Moore family itself. To get an overall view of the
properties of this closure system, see [9].

The problem of enumerating Moore families on n elements is a complex
issue for which there is no known formula ([10]). Even the absence of such
a formula has not been proved. Numerous combinatorial problems fall in
the same case: for example, the number of monotone Boolean functions
known as the Dedekind number. In [11], Burosch considers the issue of
counting Moore families as natural, so he suggests an upper bound for
that number (see also [12]). An often supported approach to understand
such a formula involves counting the number of objects for the �rst values
of n using a systematic procedure. Thus, the number of Moore families
was computed for n = 7 ([1]). We can �nd such integer sequences on the
well-known On-line Encyclopedia of Integer Sequences 1.

In [1] authors count Moore co-families on U7. For that, they highlight
some structural properties of the Moore co-families lattice. So, this new
article presents a �rst theoretical study of these properties. Particularly,
we give a decomposition theorem of the Moore co-families lattice based
on an operator h() and we study several properties of this operator.

So, the remainder of the report is divided into two main sections. The
�rst section is devoted to the recursive decomposition theorem, and the
second section deals with the properties of the h() operator. An assessment
of this work and its approach is provided in the conclusion. Finally, the
set of demonstrations of intermediate properties is appended.

In the rest of the paper, we denote elements by numbers (1, 2, 3, . . . ).
Sets are denoted by capital letters (A,B, C, . . . ). Families of sets are de-
noted by calligraphic letters (A,B, C, . . . ). Finally, we denote the sets of
families of sets by black board letters (A, B, C, . . . ).

2 Recursive decomposition of the Moore co-families

lattice

In the introduction, we have de�ned a Moore family on Un as a collection
of sets containing Un and closed by intersection. For reasons of legibility of
the results and simpli�cation of expressions, the remainder of the report
will deal with the study of the set of families closed by union and contain-
ing the empty set called the Moore co-families and denoted by Mn. Moore
families are in fact in bijection with this set. For a given Moore family,

1 http://www.research.att.com/ njas/sequences/A102896



one only has to complement every set to obtain a Moore co-family. For ex-
ample, the Moore family {{0}, {0, 1}, {0, 2}, {0, 1, 2}} on U3 corresponds
to the Moore co-family {∅, {1}, {2}, {1, 2}} and vice versa.

2.1 Study of the relationships between Mn and Mn−1

A Moore co-familyM on Un can be decomposed into two parts. The part
consisting of the sets of M containing the element (n − 1) (denoted by
Mup for the upper part), and the complementary part (denoted by Mlow

for the lower part). The empty set is added toMup in order to be present
in both parts. Naturally, M = Mup ∪Mlow. In the one hand the family
Mlow is clearly a family of Mn−1. On the other hand, the family Mup is
a Moore co-family on Un with the peculiarity that all its nonempty sets
contain the element (n− 1) (we will denote by Mup

n the set of Moore co-
families on Un having this property). Thus, Mup can be seen as a Moore
co-family of Mn−1 for which the element (n− 1) has been added to each
set.
Example: letM be the family on U3, {∅, {0}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}},
we can decompose this family into two sub Moore co-families: Mlow =
{∅, {0}, {0, 1}} and Mup = {∅, {0, 2}, {1, 2}, {0, 1, 2}}.

To study the matching conditions between a family in Mn−1 and a
family in Mup

n , we de�ne the notion of a compatible family. Thus, we
will say that a Moore co-family in Mn−1 is compatible with a Moore co-
family in Mup

n if and only if the union of the two families is a Moore
co-family in Mn. The example in the following �gure illustrates that for
a �xed upper part, there are several compatible lower parts.

{0,1,2}

{1,2}{0,2}

{}

{0,1}

{0}

{}

{0}

{}

( union )
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{}

{0,1}

{0}

{0,1,2}
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{}

{0}

+

( union )
+

On the left, a family in Mup
3 (all

sets contain the element 2) to which
are associated two di�erent compati-
ble Moore co-families in M2. In the two
cases the family obtained, on the right,
is a Moore co-family in M3.

In [1] we have shown that for a given upper familyMup, there exists a
unique maximal compatible family. The latter is moreover such that
all Moore co-families compatible with Mup are exactly its sub Moore
co-families. More formally:



Proposition 1. Let Mup in Mup
n . Then there exists a unique Moore co-

familyMmax on Un−1 such that: ∀M ∈ Mn−1 the two following assertions

are equivalent :

1. M is compatible with Mup;

2. M⊆Mmax.

For example, the maximal Moore co-family compatible with Mup (cf.
�gure above) is the Moore co-family {∅, {0}, {1}, {0, 1}}. It can be veri�ed
that the two compatible families given are in fact sub-families of this
family.

The function f : Mup
n → Mn−1 de�ned below allows to characterize

the maximal compatible family of a Moore co-family belonging to Mup
n .

De�nition 1. One de�nes the function f : Mup
n → Mn−1 such that

f(M) = {X ∈ 2Un−1 | ∀M ∈M \ ∅, M ∪X ∈M}.

To summarize, let us remember that the set of families in Mn−1 com-
patible with a given familyM in Mup

n has a maximal family calledMmax

equal to f(M) and that there exists a `greedy' algorithm to compute it
([1]). Moreover all Moore co-families contained in Mmax are compatible
with M. By noting ↓ X the principal ideal based on X in Mn−1, the set
of families compatible with M coincides with ↓ Mmax, in other words,
with ↓ f(M).

2.2 Recursive decomposition theorem

In fact, the set Mup
n can be partitioned into two sets: the set Mup1

n of
families that do not contain the singleton {n − 1} and the set Mup2

n of
families that contain it. These two sets are in natural bijection with Mn−1.
More formally, functions g1 and g2 associate with each familyM in Mn−1

a family in Mup1
n (g1(M)) and a family in Mup2

n (g2(M)).

De�nition 2. The functions g1 and g2 from Mn−1 to Mup
n are given by:

� g1(M) = {M ∪ {n− 1} | M ∈M} ∪ ∅\{n− 1};
� g2(M) = {M ∪ {n− 1} | M ∈M} ∪ ∅.
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On the left, a Moore co-family of M3.
At the bottom, its image in Mup1

4 by g1.
One can check that all the sets in the
family contain the object 3. The single-
ton {3} doesn't belong to the family. At
the top on the right, the image by g2

belongs to Mup2
4 and contains the sin-

gleton {3}.

According to Property 1 below, the maximal family compatible with
a family in Mup2

n spelled g2(M) is none other than M.

Property 1. Let M ∈ Mn−1. Then f(g2(M)) = M.

For the convenience of the study of the maximal family associated with
families in Mup1

n , we will denote h : Mn−1 → Mn−1 the function f ◦ g1.
Thus, for all M in Mn−1, h(M) = f(g1(M)).

Mn−1

Mup
n

Mup1
n

Mup2
n

M

h(M)

g1(M)

g2(M)

f()

{n− 1}

{n− 1}

On the left the lattice Mn−1 of the
Moore co-families on Un−1. At the cen-
ter, an isomorphic lattice obtained by
g1, on the right another copy obtained
by g2. Their union gives Mup

n .

By previous results and the de�nitions of the functions g1, g2, f and
h, the set of Moore co-families on Un can be characterized by the Moore
co-families on Un−1. ↓ h(M) (resp. ↓ M) is the principal ideal based on
h(M) (resp. on M) in the lattice of Moore co-families on Un−1.



Theorem 1. Let Mn and Mn−1 be the sets of Moore co-families on Un

and Un−1 respectively. Then:

Mn =
⋃
M∈Mn−1

{g1(M) ∪M′,M′ ∈↓ h(M)} ∪⋃
M∈Mn−1

{g2(M) ∪M′′,M′′ ∈↓ M}

Note: The case M = {∅} could be extracted from the �rst term of the
decomposition to make the Mn−1 set appear. In fact, if M is reduced to
the empty set, g1(M) contains only the empty set, and the associated
maximal family is 2Un−1 . And sets of the sub Moore co-families of 2Un−1

is exactly Mn−1.

Proof : We prove both inclusions:

� ⊆ : Let F ∈ Mn, F = Mup ∪Mlow. Three cases occur :
1. Mup = {∅} then F belongs to Mn−1;
2. Mup doesn't contain {n − 1} then let M ∈ Mn−1 such that

g1(M) = Mup. From Proposition 1 all families compatible with
Mup have to be included in f(g1(M)). Thus the compatible fam-
ilyMlow belongs to ↓ h(M) and F belongs to {g1(M)∪M′,M′ ∈↓
h(M)};

3. Mup contains {n− 1}. This case is similar to the previous one but
from Property 1 we know that f(g2(M)) is equal to M. Then F
belongs to {g2(M) ∪M′′,M′′ ∈↓ M};

� ⊇ : From the principle of compatible families and Proposition 1, each
element in the left part of the equation is a union-closed family and
contains the empty set.

�

3 Study of the h operator

3.1 Some properties of h

Property 2. Let M∈ Mup
n and M ∈M. Then M \ {n− 1} ∈ f(M).

Corollary 1. For any M∈ Mn−1, M⊆ h(M).

Thus the function h behaves as an augmentation operator, idempotent
but not monotone. We have actually M⊆ h(M) and h(M) = h(h(M)),
but we do not have, for M⊆M′, h(M) ⊆ h(M′). As a counterexample
for n = 2, h({∅}) = {∅, {0}, {1}, {0, 1}} and h({∅, {0}}) = {∅, {0}}. The
following property speci�es a powerful constraint on the objects that can
be added to M to form h(M).



Property 3. Let M ∈ Mn−1, ∀M ′ ∈ h(M) \M, 6 ∃ M ∈ M \ ∅ such that
M ⊆ M ′.

In other words, according to property 3, we can a�rm that any set M in
h(M) \ M is a `quasi-closed' set of M 2. Moreover M is incomparable
with any set in M or minimum in M. As a consequence if M does not
have any `quasi-closed' set, M is clearly a �xed point for h.

{ ,0,1,01,2,02,12,012}

{ ,0,1,01,12,012} { ,0,1,01,02,012} { ,0,2,02,12,012} { ,0,2,02,12,012} { ,1,01,2,12,012} { ,0,01,2,02,012}

{ ,12,012} { ,1,01,012} { ,02,012} { ,2,12,012} { ,2,02,012} { 1,2,012}

{ ,1,01} { ,1,2,12} { ,0,2,02}

{ ,0} { ,1} { ,2}

{}

Fig. 4. The set of all �xed points of h in M3

3.2 Fixed points and equivalence classes induced by the h
function

The set Mn−1 is endowed with the quotient partition associated with h:
each class of this partition contains all the families which have the same

2 The term quasi-closed set has to be used in a context of closed system. So, in our
context, we mean that M is a `quasi-closed' set of M if the union of M with any
set in M already belongs to M.



image by h. By Proposition 1 (unicity of maximal family) and due to the
fact that h is an augmentation operator (M ⊆ h(M)), each �xed point
associated to h is a unique representative of each class and corresponds
to its upper bound.

De�nition 3. Let C(M) be an equivalence class ofM in Mn−1 such that:

C(M) = {M′ ∈ Mn−1 | h(M) = h(M′)}.

In the following Corollary 2 we show that each class induced by h has
a distributive lattice structure. In other terms, a class induced by h is
closed under both union and intersection.

Property 4. Let M, M′ in Mn−1 such that h(M) = h(M′). Then:

1. M ∪ M′ is a Moore co-family.
2. h(M∩M′) = h(M) = h(M′).
3. h(M∪M′) = h(M) = h(M′).

Corollary 2. For any M in Mn−1, (C(M),⊆) is a distributive lattice.

4 Conclusion

In this paper, we stated a decomposition theorem of the Moore co-families
lattice. We studied the h operator relied upon by the theorem. Particu-
larly, we showed that families assuming the same value for h have a dis-
tributive lattice structure. Then, it would be interesting to characterize
irreducible elements of these lattices. We are currently investigating why
two families are in the same class using di�erent representations of closure
systems (irreducible elements, implicational basis, ...)
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5 Appendix

Proof of Property 1 : by double inclusion :

� M⊆ f(g2(M)). Let M ∈M, by de�nition of g2, we have M∪{n−1} ∈
g2(M). From Property 2 applied to M ∪ {n − 1} in g2(M), we have
(M ∪ {n− 1})\{n− 1} ∈ f(g2(M)). In other words, M ∈ f(g2(M)).

� f(g2(M)) ⊆ M. Suppose that M ∈ f(g2(M)) such that M 6∈ M. By
construction of f , we have ∀M ′ ∈ g2(M), M ∪ M ′ ∈ g2(M). Now,
by the de�nition of g2, M ′ = {n − 1} ∈ g2(M) and so M ∪ {n − 1}
∈ g2(M). By the construction of g2, we obtain M ∈M. Contradiction.

Proof of Property 2: Suppose that M ∈ M and M\{n − 1} 6∈ f(M).
From the de�nition of f : ∃ M ′ ∈M such that M\{n−1}∪M ′ 6∈ M. Now
∀ M ′ ∈ M, M ′∪ (M\{n−1}) = M ′∪M ({n−1} ∈ M ′ sinceM∈ Mup

n ).
Moreover, M ′ ∪M ∈M since M is a Moore co-family containing M and
M ′. Contradiction.

Proof of Corollary 1: Let us show that ∀M ∈ M, M ∈ h(M). From
the de�nition of g1 : ∀M ∈M, M∪{n−1} ∈ g1(M). From Property 2, we
have for M∪{n−1} ∈ g1(M), (M∪{n−1})\{n−1} ∈ f(g1(M)) = h(M).
Proof of Property 3: Suppose there exists M ∈M\∅ such that M ⊆ M ′

with M ′ ∈ h(M) \ M. By construction of g1, we have M ∪ {n − 1} ∈
g1(M). Moreover, since M ′ ∈ h(M) \M, we deduce that ∀X ∈ g1(M),
X ∪M ′ ∈ g1(M). So, since M ∪ {n− 1} ∈ g1(M) we have M ∪ {n− 1} ∪
M ′ ∈ g1(M). Moreover, since M ⊂ M ′, we have M ∪ {n − 1} ∪ M ′ =
M ′ ∪ {n− 1} ∈ g1(M). From the construction of g1, we obtain M ′ ∈ M
which is a contradiction with the hypothesis. Contradiction.

Proof of Property 4:



1. Lemma 1. Let M, M′ ∈ Mn−1 such that h(M) = h(M′). Then

∀M ∈M et ∀M ′ ∈M′ we have M ∪M ′ ∈M∩M′.
Proof of lemma: Since M ′ belongs to h(M′) = h(M), M ′ belongs
to h(M). From the de�nition, h(M) is the set of objects such that
their own union with M is in M. In particular we do have M ∪M ′ in
M. We do have too M ∪M ′ in M′. So M ∪M ′ belongs to M∩M′.
�.
Then, let M, M′ in Mn−1 such that h(M) = h(M′), let M and M ′

in M∪M′ :
� if M and M ′ are in M, M ∪M ′ belongs to M∪M′ since M is a

Moore co-family;
� if M and M ′ are in M′, M ∪M ′ belongs to M∪M′ since M′ is

a Moore co-family;
� if M belongs to M and M ′ to M′ then from the lemma M ∪M ′

belongs to M∩M′ ⊆M∪M′;
So for any couple M and M ′ inM∪M′, M ∪M ′ belongs toM∪M′.
M∪M′ is a Moore co-family.

2. by double inclusion:
� Let us show that h(M∩M′) ⊆ h(M) if h(M) = h(M′).

Let us suppose there exists X in h(M∩M′)) with X which does
not belongs to h(M) = h(M′). Since X 6∈ h(M), there exists M1

inM such that X∪M1 is not inM. By hypothesis h(M) = h(M′)
which means that X∪M1 does not belong to h(M′). Then, from the
de�nition of h again, there exists M ′

1 inM′ such that X∪M1∪M ′
1

is not in M′.

So, we can construct two incompatible schemas (cf. schema in �g-
ure 5):

• a) We just showed the existence of M1 in M and of M ′
1 in M′

such that X∪M1∪M ′
1 does not belongs toM∪M′. Moreover,

from Property 3, X ∪M1∪M ′
1 can't belong to h(M) = h(M′).

• b) From the lemma we do have M1 ∪M ′
1 in M∩M′, since X

belongs to (h(M∩M′)), X ∪ M1 ∪ M ′
1 belongs to M∩M′

(from de�nition of h);

The existence hypothesis of X in h(f(M∩M′)) with X not in
h(M) = h(M′) leads to two incompatible schemas. Contradiction.

� Let us show that h(M) ⊆ h(M∩M′) if h(M) = h(M′).
Let X ∈ h(M), from the de�nition of h, we have ∀M ∈ M, M ∪
X ∈ M. The same: since h(M) = h(M′), we do have ∀M ′ ∈ M′,
M ′∪X ∈M′. As a consequence, ∀M ∈M∩M′, M∪X ∈M∩M′.
From the de�nition of h again, we must have X ∈ h(M∩M′).



M
M′

h(M′)h(M)

M1

M ′
1

M1 ∪M ′
1X

X ∪M1

X ∪M1 ∪M ′
1

X ∪M1 ∪M ′
1

Fig. 5. On the left, from schema a) we construct the object X ∪ M1 ∪ M ′
1 outside

of h(M) = h(M′). In the middle, from schema b) we construct the same object in
M∩M′. Contradiction.

3. By double inclusion :
� Let us show that h(M∪M′) ⊆ h(M) if h(M) = h(M′).

Let us suppose there exists X in h(M∪M′) with X not in h(M) =
h(M′). Since X 6∈ h(M), there exists M1 in M such that X ∪M1

is not in M.
So, we can design two incompatible schemas of construction (cf.
schema in �gure 6):

• a) We just showed the existence of M1 inM such that X ∪M1

is not in M. Moreover, from Property 3, X ∪M1 can't belong
to h(M) = h(M′).

• b) Since X belongs to h(M∪M′), for any object of M the
union of X with this object belongs to M∪M′. In particular
for M1 we do have X ∪M1 in M∪M′.

The existence hypothesis of X in h(f(M∪M′)) with X not in
h(M) = h(M′) leads to two incompatible schemas. Contradiction.

� Let us show that h(M) ⊆ f(M∪M′) if h(M) = h(M′).
Let X ∈ h(M), from the de�nition of h, we have ∀M ∈ M, M ∪
X ∈ M. In the same way, since h(M) = h(M′), we have ∀M ′ ∈
M′, M ′∪X ∈M′. As a consequence, ∀M ∈M∪M′, M∪X ∈M∪
M′. From the de�nition of h again, we do have X ∈ h(M∪M′).



M
M′

h(M′)h(M)

M1

X

X ∪M1

X ∪M1

Fig. 6. On left, from schema a) we construct the object X ∪M1 outside of h(M) =
h(M′). In the middle, from schema b) we construct the same object in M ∪ M′.
Contradiction.


