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Abstract — The problem of vector quantizer empir-
ical design from training vectors is studied for noisy
channels and for noisy sources. It is shown that global
empirical error minimization for designing quantizers
for transmission over a discrete noisy channel have
the same performance (convergence rate) as in ordi-
nary quantizer design. For noisy source quantization
an appropriate analogue of empirical error minimiza-
tion is developed. Consistency and convergence rates
are proved under appropriate regularity conditions in
this case.

I. Noisy CHANNEL QUANTIZERS
Let X be a k-dimensional random vector and consider a
discrete noisy channel with N input and output symbols.
An N-level noisy-channel vector quantizer is defined via its
encoder Qc which maps R* into {1,...,N}, and its de-
coder @p which maps {1,... , N} onto the set of codewords
{y1,...,yn} C R*. The rate of the quantizer is (1/k)log N
bits per source symbol. The index I = Q¢(X) is transmit-
ted through a noisy channel, and the decoder receives the
index J € {1,..., N}, whose conditional distribution given I
is {p(j|¢)}, the channel transition probabilities. The output
of the quantizer is X = Qp(J) = ys and we will use the no-
tation X = Q(X). The mean-squared distortion E{|X — X|?

is given by E?:l IR; (Z;‘;l lly; -—szp(in)) Px (dz) where
R; = {z: Qc(x) =1i}. We call an N-level quantizer optimal
if it minimizes the distortion over all N-level quantizers. Let
us denote the distortion of such an optimal quantizer @* by

D = E{Q"(X) - XI’] = min E{IQ(X) - X|I'.

The task is to design an N-level noisy channel vector quan-
tizer when the channel is known but the statistics of X are
not. Rather, n training vectors Xi,...,X,, independently
drawn from the distribution of X, are given. The empir-
ical distortion of the noisy channel quantizer is defined by
D, =n"'3%""  do(Xi), where

N N
do(®@) =Y 1gery | O N —=l’p(ili)
i=1 j=1

The empirical error minimization procedure produces a quan-
tizer @, which minimizes the empirical distortion over the
training data

1 n
Q. = arg min — do(Xy).
gl "éx Q(X1)
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The following result gives an upper bound on how much the
expected distortion of the quantizer designed from n training
vectors exceeds the distortion of the optimal quantizer.
Theorem 1 Assume that the source X € R* is bounded as
P(||X||* < B) =1 for some B > 0. Then

E[|Q5(X) — X|’] < D* +c4/ "’% + 03,

II. Noisy SOURCE QUANTIZERS
Let Y = X + v be a version of X degraded by the indepen-
dent additive noise . An N-level noisy source quantizer Q)
is an ordinary N-level vector quantizer with general encoding
regions {R:}. Y is quantized by @Q, and the distortion, which
is measured with respect to the clean source X, is given by
D(Q) = E[||X — Q(Y)}|?]. It is well known that

D(Q) = E(JIX - MM)II* ] + E[IM(Y) - Q(V)II*],

where M(y) = E[X|Y = y]. In fact, the optimal quantizer
Q" can always be written as Q*(y) = Q" (M(y)), where @‘ is
a nearest neighbor quantizer. The task is to design a noisy
source quantizer when the statistics of the noise v and the
noisy training vectors and Y,...,Y, are given. The lack of
the clean source samples corresponding to the Y; require that
we appropriately redefine the notion of empirical distortion.
Let M,(y) be an estimator of the regression function M (y)
based on the first half of the noisy training samples. De-
fine Q; as the nearest neighbor quantizer which minimizes
the empirical error over the n/2 modified training vectors
Mn(Yos241)s+ -+, Ma(Ya). Then the output of the procedure
is the noisy source quantizer given by Q. (y) = @;(Mn(y)).
We have the following result on the excess distortion of @,
over the distortion D* of the optimal quantizer Q*.
Theorem 2 Assume that P(JJX|> < B) = 1 and suppose
that a,, the La error of the estimator M, , converges to zero
as n— oo. Then

logn

E[IX - QuVI* 1S D" +eq/ =2

+ 0~ ?) + 0(a)'?).

Based on deconvolution techniques, we can construct a con-
sistent estimator M, if the noise has a density whose charac-
teristic function is nonzero a.e. Thus in this case the above
procedure gives a consistent quantizer design method. It can
also be proved if the clean training vectors are given instead of
the noisy ones, the convergence rate of Theorem 1 is achiev-
able, which is almost optimal in the minimax sense [1]
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