Discrete
Generalised Polynomial
Functors

Marcelo Flore

COMPUTER LABORATORY
UNIVERSITY OF CAMBRIDGE

ICALP 2012
12.VI1.2012

This Talk

. Motivate and explain a general notion of
polynomial.

. Introduce generalised polynomials and
present their basic theory.

. Sketch an application to type theory.

The Two Aspects

Intensional

» Algebra
p(x) = ax* +bx+c

» Programming
T = Nil

| Cons(«, &)

of Polynomials

Extensional

f:-R—R

r—ar’+br+c

Polynomial Constructions
(Sums of Products)

» Mono-sorted.

X — ZyEC XYl

C = set of constructors

| v | = arity of y

Polynomial Constructions
(Sums of Products)

» Mono-sorted.

X ZyeC XYl

C = set of constructors

| v | = arity of y

» Multi-sorted:
(Xi)ies ZyEC HaEM Xo(a)

C = set of constructors
| v |= arity positions of y

o:|v|— S = sorting function

Polynomial Constructions
(Sums of Products)

» Mono-sorted.

X ZyEC XYl

C = set of constructors

| v | = arity of y

» Multi-sorted:
(Xi)ies ZyEC HaEM Xc(a)

C = set of constructors
| v |= arity positions of y

o:|v|— S = sorting function

ZYEC | y ‘ — C
Polynomials al

S

Polynomials

» Single valued.

|

(Xi)ies = ZyEC Haecx—wy) Xo(a)

Polynomials

» Single valued.

A——=C
S

(Xi)ies = ZyEC Haecx—wy) Xo(a)

» Multi-valued.

x

A—C
S T

(Xi)ies — (Z‘yET_1(j) Hanc‘Wﬂ XG(G))jeT

Polynomials

» Single valued.

A——=C
S

(Xi)ies = Zyec Haecx—w) Xo(a)
» Multi-valued.

_‘X>C

A
S

T

(Xi)ies — (Zyerm‘) Haéoﬂ(y) XG(G))jeT

CONSTRUCTIONS STRUCTURE
additive
Polynomial <~~~ - reindexing

- multiplicative

Additive and Multiplicative
Transfer Structure

» Logic.

R

Additive and Multiplicative
Transfer Structure

» Logic.
A 24
l — EIl%T%lV
B 2B

» Type theory.

Additive and Multiplicative
Transfer Structure

» Logic.
A 24
l — EIl%T—I\LV
B 2B
» Type theory.
A ST
| = =l
B S/p

» Generalised logic.

A Set”

[P

B Set”

Kan Extensions

Every
f:A—BR
Induces
L
.
PA =— PB
T
f)
where
PC = Set®
and

(f* P)b — (Ranf P)b — IaEA [B(b,f(l) = Pa]

(f"Q)a Q+q
(fi Py (Lang P)y,

[%* B(fa,b) x P,

Generalised Polynomial Functors

» Polynomials in Cat.
P=A+—T1—J— B)

Generalised Polynomial Functors

» Polynomials in Cat.
P=(Ac—T1—J]— B)

» Generalised polynomial functors
between presheaf categories.

Fp = (PA —~> Pl —>P] —> PR)

(Fp A)p = "< B(tj,b) x [, [J(,) = Ay]

Generalised Polynomial Functors

» Polynomials in Cat.
P=(Ac—T1—J]— B)

» Generalised polynomial functors
between presheaf categories.

Fp = (PA —~> Pl ——>P] —> PR)

(Fp A)p = "< B(tj,b) x [, [J(,) = Ay]

» Generalised polynomial functors are
continuous, and hence admit final
coalgebras.

Examples:

» For every presheaf P, the product
endofunctor (—) x P and the exponential
endofunctor (—)" are generalised
polynomial.

» The class of generalised polynomial
functors:

1. contains the constant, cocontinuous, and
projections functors, and

2. 1s closed under sums and finite products.

Discrete Generalised
Polynomial Functors

» The class of discrete generalised polynomial
functors Is represented by sums of
polynomial diagrams of the form

J]—>-B)

Vi

M=(A=<—L-J
where L Is finite.

(FmMA)p = fjeJB(tj>b) X HeeL As(t5)

Discrete Generalised
Polynomial Functors

» The class of discrete generalised polynomial
functors Is represented by sums of
polynomial diagrams of the form

e 1% m)

M=(A=<—L-J

where L Is finite.

(FmMA)p = ijJB(tj>b) X HeeL As(t5)

» Discrete generalised polynomial functors
are finitary and preserve epimorphisms.
Hence they admit inductively constructed
free algebras.

Examples:

» Convolution monoidal closed structure

1. Day’s monoidal-convolution tensor
product is [iIsomorphic to] a discrete
generalised polynomial functor.

2. Monoidal-convolution exponentiation to
a representable Is a discrete generalised
polynomial functor.

Examples:

» Convolution monoidal closed structure

1. Day’s monoidal-convolution tensor
product is [iIsomorphic to] a discrete
generalised polynomial functor.

2. Monoidal-convolution exponentiation to
a representable is a discrete generalised
polynomial functor.

» The class of discrete generalised polynomial
functors:

1. contains the constant, cocontinuous, and
projections functors, and

2. 1s closed under sums, finite products,
composition, and differentiation.

Discrete Generalised
Polynomial Functors
in Type Theory

» Vernacular syntactic rules in simple,
polymorphic, and dependent type
theories are discrete generalised
polynomials.

» Their associated functors describe the
algebraic structure of type theories.

» Models of type theories are algebras.

Initial algebras universally characterise
the syntax.

Simply-Typed A-Calculus

» Let S be a set of sorts closed under an

= type constructor; that is,

SxS 258 .

Simply-Typed A-Calculus

» Let S be a set of sorts closed under an

= type constructor; that is,

SxS 258 .

» Let C = FinSet/s be the category of
S-sorted contexts, and write

CxSsS — C
[, o — -0

for the operation of context extension.

1. The application rule

|—t20‘1:>0"2 l—t,201

- t(t/) . 02

1. The application rule
—t:07 2> 0y |—t’20'1
= t(t'): o

corresponds to the discrete polynomial

2. (C><S><S)—>C><S><S
[id><=>,id><7t1}l lidxm

C xS C xS

1. The application rule
—t:07 2> 0y |—t’20'1
= t(t'): o

corresponds to the discrete polynomial

2. (C><S><S)—>C><S><S
[id><=>,id><7t1}l lidxm

C xS C xS

An Fq)-algebra
F@)(T) = T:C xS — Set
IS a natural transformation
{T(R 01 = 02) x T(I;01) — T([5 02) }F,m,crz

2. The abstraction rule

X:T1|_tIT2

(A)
FAx.t:Ti 2T

2. The abstraction rule

XIT1|_tIT2

(A)
FAx.t:Ti 2T

corresponds to the discrete polynomial

1-(C><S><S)LC><S><S

[-Xid}l lidx$>

C xS CxS

2. The abstraction rule

XIT1|_tIT2

(A)
FAx.t:Ti 2T

corresponds to the discrete polynomial

1-(C><S><S)LC><S><S

[-Xid}l lidx$>

C xS CxS

An F -algebra
Fo(T) = T:C xS — Set
IS a natural transformation
{T(T- 0y,02) = T([,o1 > 03) }rm)gz

Appendix

Dependent Context Structures

1. Let C be a category (of contexts) with a
terminal object € (the empty context).

2. Let

T = o)

| in C= Set"

S
be a bundle consisting of a presheaf (of
terms) T over a presheaf (of sorts or

types) S.

Conventions:

» ['F+ o denotes an object of the category
of elements | S; thatisT" € C and o € S(I").

» For A 55T+ o, one has A I o[f] where
olf] = Sf(o).

» The bundle of terms over types is
regarded as a presheaf T € |S.

'+ t: o denotes an object in the
category of elements | T; that is,
teT(I'F o).

> ForAQF%t:G, one has A |- t[f] : o|f]
where t[f] = Tf(t).

3. Forevery I F o, let
y: (N o)—=TinC and T-oF vy:olmg
be such that

v

y(l-o) —T

.

y(I') ——S

0

IS a pullback.

NB: This data and condition state that pullbacks

-
of the bundle | along representable

S
generalised elements y(I') — S are themselves
representable In @\r

This Is in fact equivalent to the
context comprehension axiom of Dybjer.

That is, that for every A LT Ft: othere exists

a unique A At (I'- o) in C such that 7ty (f,t) = f

and vq [(f, t)| = t[f].

Identity Types

1. The identity type rule

- o
(Id)

x:0,y:0FIlds(x,y)

corresponds to the discrete polynomial

0——[S
Lk
C C

where

An Fq-algebra
Faay(S) — S
IS a family
{T-0-0ln] - Id(o) },,
such that, forall f: A — T,
Id(o) [8(f)| = Id(olf])

where
O(f) =f- o0 o]
with

g T = (g g, Vaig) -

2. The reflexivity rule

Ft:0
- re(t) @ Idg(t, t)

(r)

corresponds to the discrete polynomial

0o—— | T
)
[s [s

where

y(Tkt:o) = (T F Id(o)[{dr, t,t)]) .

An T -algebra
Fn(T)—=T
IS a family
{T F () 1do)[(dr t,1)] By,

such that

forall f: A —T.

NB: ForallT Ft: o,

3. The elimination rule

x:0,y:0,p:lds(x,y) - E(x,y,p)
z:otelz] : E(z,z,1(2))

(J)

x:0,y:0,p:lds(x,y)
- J(z.elzl,x,y,p) : E(x%,y,P)

(NB: J is a binding operator.)

corresponds to the discrete polynomial

[K—~[K
O
[s s

where, for"' x 0 £ (T -0 o[, - Id(0o)),

K(T'+o) = S(T'x o)

1>

kK('Ho, E) ('x ok E)
AMTrFo,E) 2 (T-0F Eh)

With U £ (705, Vo, Vo, (Vo)) 1 (T 0) = (T' X 0).

An F;-algebra
Fo(T) =T
IS a family of maps
{JE):T(T-oFEu]) = T(FT'xoFE) } o
such that, forallT-okFe:ElusJand f: A — T,
(J(E)(e))[f x o] = J(E[f x o])(elf-o])
where

fxo=f-0-0[n, Id(o): (Ax o[f]) = (T'x o) .

