
CERIAS Tech Report 2004-91
Privacy-preserving distributed mining of association rules on horizontally partitioned data

 by Christopher Clifton
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Privacy-Preserving Distributed
Mining of Association Rules

on Horizontally Partitioned Data
Murat Kantarcioglu and Chris Clifton, Senior Member, IEEE

Abstract—Data mining can extract important knowledge from large data collections—but sometimes these collections are split among

various parties. Privacy concerns may prevent the parties from directly sharing the data and some types of information about the data.

This paper addresses secure mining of association rules over horizontally partitioned data. The methods incorporate cryptographic

techniques to minimize the information shared, while adding little overhead to the mining task.

Index Terms—Data mining, security, privacy.

�

1 INTRODUCTION

DATA mining technology has emerged as a means of
identifying patterns and trends from large quantities

of data. Data mining and data warehousing go hand-in-
hand: Most tools operate by gathering all data into a
central site, then running an algorithm against that data.
However, privacy concerns can prevent building a
centralized warehouse—data may be distributed among
several custodians, none of which are allowed to transfer
their data to another site.

This paper addresses the problem of computing associa-

tion rules within such a scenario. We assume homogeneous

databases: All sites have the same schema, but each site has

information on different entities. The goal is to produce

association rules that hold globally while limiting the

information shared about each site.
Computing association rules without disclosing indivi-

dual transactions is straightforward. We can compute the

global support and confidence of an association rule

AB) C knowing only the local supports of AB and

ABC and the size of each database:

supportAB)C ¼
Psites

i¼1 support countABCðiÞPsites
i¼1 database sizeðiÞ

supportAB ¼
Psites

i¼1 support countABðiÞPsites
i¼1 database sizeðiÞ

confidenceAB)C ¼ supportAB)C

supportAB
:

Note that this does not require sharing any individual

transactions. We can easily extend an algorithm such as

a priori [1] to the distributed case using the following

lemma: If a rule has support > k% globally, it must have

support > k% on at least one of the individual sites. A

distributed algorithm for this would work as follows:

Request that each site send all rules with support at least

k. For each rule returned, request that all sites send the

count of their transactions that support the rule and the

total count of all transactions at the site. From this, we can

compute the global support of each rule and (from the

lemma) be certain that all rules with support at least k have

been found. More thorough studies of distributed associa-

tion rule mining can be found in [2], [3].
The above approach protects individual data privacy, but

it does require that each site disclose what rules it supports

and howmuch it supports each potential global rule. What if

this information is sensitive? For example, suppose the

Centers for Disease Control (CDC), a public agency, would

like to mine health records to try to find ways to reduce the

proliferation of antibiotic resistant bacteria. Insurance com-

panies have data on patient diseases and prescriptions.

Mining this data would allow the discovery of rules such as

Augmentin&Summer) Infection&Fall, i.e., people taking

Augmentin in the summer seem to have recurring infections.
The problem is that insurance companies will be

concerned about sharing this data. Not only must the

privacy of patient records be maintained, but insurers will

be unwilling to release rules pertaining only to them.

Imagine a rule indicating a high rate of complications with a

particular medical procedure. If this rule does not hold

globally, the insurer would like to know this—they can then

try to pinpoint the problem with their policies and improve

patient care. If the fact that the insurer’s data supports this

rule is revealed (say, under a Freedom of Information Act

request to the CDC), the insurer could be exposed to

significant public relations or liability problems. This

potential risk could exceed their own perception of the

benefit of participating in the CDC study.
This paper presents a solution that preserves such

secrets—the parties learn (almost) nothing beyond the

1026 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 9, SEPTEMBER 2004

. The authors are with the Department of Computer Sciences, Purdue
University, 250 N. University St., W. Lafayette, IN 47907.
E-mail: {kanmurat, clifton}@cs.purdue.edu.

Manuscript received 30 Jan. 2003; revised 11 June 2003; accepted 30 June
2003.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 118208.

1041-4347/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

global results. The solution is efficient: The additional cost
relative to previous nonsecure techniques is

Oðnumber of candidate itemsets � sitesÞ

encryptions and a constant increase in the number of
messages.

The method presented in this paper assumes three or
more parties. In the two-party case, knowing a rule is
supported globally and not supported at one’s own site
reveals that the other site supports the rule. Thus, much of
the knowledge we try to protect is revealed even with a
completely secure method for computing the global results.
We discuss the two-party case further in Section 5. By the
same argument, we assume no collusion as colluding
parties can reduce this to the two-party case.

1.1 Private Association Rule Mining Overview

Our method follows the two-phase approach described
above, but combining locally generated rules and support
counts is done by passing encrypted values between sites.
The two phases are discovering candidate itemsets (those
that are frequent on one or more sites) and determining
which of the candidate itemsets meet the global support/
confidence thresholds.

The first phase (Fig. 1) uses commutative encryption.
Each party encrypts its own frequent itemsets (e.g., Site 1
encrypts itemset C). The encrypted itemsets are then passed
to other parties until all parties have encrypted all itemsets.
These are passed to a common party to eliminate duplicates
and to begin decryption. (In the figure, the full set of
itemsets are shown to the left of Site 1, after Site 1 decrypts.)
This set is then passed to each party and each party
decrypts each itemset. The final result is the common
itemsets (C and D in the figure).

In the second phase (Fig. 2), each of the locally supported
itemsets is tested to see if it is supported globally. In the
figure, the itemset ABC is known to be supported at one or
more sites and each computes their local support. The first
site chooses a random value R and adds to R the amount by
which its support for ABC exceeds the minimum support
threshold. This value is passed to site 2, which adds the
amount by which its support exceeds the threshold (note
that this may be negative, as shown in the figure.) This is
passed to site 3, which again adds its excess support. The
resulting value (18) is tested using a secure comparison to

see if it exceeds the Random value (17). If so, itemset ABC is
supported globally.

This gives a brief, oversimplified idea of how the method
works. Section 3 gives full details. Before going into the
details, we give background and definitions of relevant data
mining and security techniques.

2 BACKGROUND AND RELATED WORK

There are several fields where related work is occurring. We
first describe other work in privacy-preserving data mining,
then go into detail on specific background work on which
this paper builds.

Previous work in privacy-preserving data mining has
addressed two issues. In one, the aim is preserving
customer privacy by distorting the data values [4]. The
idea is that the distorted data does not reveal private
information and thus is “safe” to use for mining. The key
result is that the distorted data, and information on the
distribution of the random data used to distort the data, can
be used to generate an approximation to the original data
distribution, without revealing the original data values. The
distribution is used to improve mining results over mining
the distorted data directly, primarily through selection of
split points to “bin” continuous data. Later refinement of
this approach tightened the bounds on what private
information is disclosed by showing that the ability to
reconstruct the distribution can be used to tighten estimates
of original values based on the distorted data [5].

More recently, the data distortion approach has been
applied to Boolean association rules [6], [7]. Again, the idea
is to modify data values such that reconstruction of the
values for any individual transaction is difficult, but the
rules learned on the distorted data are still valid. One
interesting feature of this work is a flexible definition of
privacy, e.g., the ability to correctly guess a value of “1”
from the distorted data can be considered a greater threat to
privacy than correctly learning a “0.” The data distortion
approach addresses a different problem from our work. The
assumption with distortion is that the values must be kept
private from whoever is doing the mining. We instead
assume that some parties are allowed to see some of the data,

KANTARCIOGLU AND CLIFTON: PRIVACY-PRESERVING DISTRIBUTED MINING OF ASSOCIATION RULES ON HORIZONTALLY 1027

Fig. 1. Determining global candidate itemsets.

Fig. 2. Determining if itemset support exceeds 5 percent threshold.

just that no one is allowed to see all the data. In return, we
are able to get exact, rather than approximate, results.

The other approach uses cryptographic tools to build
decision trees [8]. In this work, the goal is to securely build
an ID3 decision tree where the training set is distributed
between two parties. The basic idea is that finding the
attribute that maximizes information gain is equivalent to
finding the attribute that minimizes the conditional en-
tropy. The conditional entropy for an attribute for two
parties can be written as a sum of the expression of the form
ðv1 þ v2Þ � logðv1 þ v2Þ. The authors give a way to securely
calculate the expression ðv1 þ v2Þ � logðv1 þ v2Þ and show
how to use this function for building the ID3 securely. This
approach treats privacy-preserving data mining as a special
case of secure multiparty computation [9] and not only aims
for preserving individual privacy, but also tries to preserve
leakage of any information other than the final result. We
follow this approach, but address a different problem
(association rules) and emphasize the efficiency of the
resulting algorithms. A particular difference is that we
recognize that some kinds of information can be exchanged
without violating security policies; secure multiparty
computation forbids leakage of any information other than
the final result. The ability to share nonsensitive data
enables highly efficient solutions.

The problem of privately computing association rules in
vertically partitioned distributed data has also been ad-
dressed [10]. The vertically partitioned problem occurs
when each transaction is split across multiple sites, with each
site having a different set of attributes for the entire set of
transactions. With horizontal partitioning, each site has a set
of complete transactions. In relational terms, with horizontal
partioning, the relation to be mined is the union of the
relations at the sites. In vertical partitioning, the relations at
the individual sites must be joined to get the relation to be
mined. The change in the way the data is distributed makes
this a much different problem from the one we address here,
resulting in a very different solution.

2.1 Mining of Association Rules

The association rules mining problem can be defined as
follows [1]: Let I ¼ i1; i2; . . . ; inf g be a set of items. Let DB

be a set of transactions where each transaction T is an
itemset such that T � I. Given an itemset X � I, a
transaction T containsX if and only ifX � T . An association
rule is an implication of the form X) Y , where X � I,
Y � I, and X \ Y ¼ ;. The rule X) Y has support s in the
transaction database DB if s% of transactions in DB contain
X [Y . The association rule holds in the transaction
database DB with confidence c if c% of transactions in DB
that contain X also contains Y. An itemset X with k items is
called k-itemset. The problem of mining association rules is
to find all rules whose support and confidence are higher
than certain user-specified minimum support and con-
fidence. In this simplified definition of the association rules,
missing items, negatives, and quantities are not considered.
In this respect, transaction database DB can be seen as
0=1 matrix where each column is an item and each row is a
transaction. In this paper, we use this view of association
rules.

2.1.1 Distributed Mining of Association Rules

The above problem of mining association rules can be
extended to distributed environments. Let us assume that a
transaction database DB is horizontally partitioned among
n sites (namely, S1; S2; . . . ; Sn) where DB ¼ DB1 [DB2 [
. . . [DBn and DBi resides at side Si (1 � i � n). The
itemset X has local support count of X:supi at site Si if
X:supi of the transactions contains X. The global support
count of X is given as X:sup ¼

Pn
i¼1 X:supi. An itemset X is

globally supported if X:sup � s�
Pn

i¼1 jDBij
� �

. Global con-
fidence of a ruleX) Y can be given as X [Yf g:sup=X:sup.

The set of large itemsets LðkÞ consists of all k-itemsets that
are globally supported. The set of locally large itemsets
LLiðkÞ consists of all k-itemsets supported locally at site Si.
GLiðkÞ ¼ LðkÞ \ LLiðkÞ is the set of globally large k-itemsets
locally supported at site Si. The aim of distributed
association rule mining is to find the sets LðkÞ for all k > 1
and the support counts for these itemsets and, from this,
compute association rules with the specified minimum
support and confidence.

A fast algorithm for distributed association rule mining
is given in Cheung et al. [2]. Their procedure for fast
distributed mining of association rules (FDM) is summar-
ized below:

1. Candidate Sets Generation: Generate candidate
sets CGiðkÞ based on GLiðk�1Þ, itemsets that are
supported by the Si at the ðk� 1Þth iteration, using
the classic a priori candidate generation algorithm.
Each site generates candidates based on the
intersection of globally large ðk� 1Þ itemsets and
locally large ðk� 1Þ itemsets.

2. Local Pruning: For each X 2 CGiðkÞ, scan the data-
baseDBi at Si to computeX:supi. IfX is locally large
Si, it is included in the LLiðkÞ set. It is clear that ifX is
supported globally, it will be supported in one site.

3. Support Count Exchange: LLiðkÞ are broadcast and
each site computes the local support for the items in
[iLLiðkÞ.

4. Broadcast Mining Results: Each site broadcasts the
local support for itemsets in [iLLiðkÞ. From this, each
site is able to compute LðkÞ.

The details of the above algorithm can be found in [2].

2.2 Secure Multiparty Computation

Substantial work has been done on secure multiparty
computation. The key result is that a wide class of
computations can be computed securely under reasonable
assumptions. We give a brief overview of this work,
concentrating on material that is used later in the paper.
The definitions given here are from Goldreich [9]. For
simplicity, we concentrate on the two-party case. Extending
the definitions to the multiparty case is straightforward.

2.2.1 Security in Semihonest Model

A semihonest party follows the rules of the protocol using
its correct input, but is free to later use what it sees during
execution of the protocol to compromise security. This is
somewhat realistic in the real world because parties who
want to mine data for their mutual benefit will follow the

1028 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 9, SEPTEMBER 2004

protocol to get correct results. Also, a protocol that is buried
in large, complex software cannot be easily altered.

A formal definition of private two-party computation in
the semihonest model is given below. Computing a function
privately is equivalent to computing it securely. The formal
proof of this can be found in Goldreich [9].

Definition 2.1: (privacy with regard to semihonest

behavior) [9]. Let f : 0; 1f g�� 0; 1f g�7�! 0; 1f g�� 0; 1f g� be
probabilistic, polynomial-time functionality, where f1 x; yð Þ
(respectively, f2 x; yð Þ) denotes the first (respectively, second)
element of f x; yÞð Þ and let � be two-party protocol for
computing f .

Let the view of the first (respectively, second) party
during an execution of � on x; yð Þ, denoted view�

1 x; yð Þ
(respectively, view�

2 x; yð Þ) be x; r1;m1; . . . ;mtð Þ (respec-
tively, y; r2;m1; . . . ;mtð ÞÞ, where r1 represent the outcome
of the first (respectively, r2 second) party’s internal coin
tosses and mi represents the ith message it has received.

The output of the first (respectively, second) party during

an execution of � on x; yð Þ is denoted output�1 x; yð Þ
(respectively, output�2 x; yð Þ) and is implicit in the party’s

view of the execution.
� privately computes f if there exist probabilistic poly-

nomial time algorithms, denoted S1; S2, such that

S1 x; f1 x; yð Þð Þ; f2 x; yð Þð Þf gx;y2 0;1f g�

�C view�
1 x; yð Þ; output�2 x; yð Þ

� �� �
x;y2 0;1f g� ;

ð1Þ

f1 x; yð Þ; S2 x; f1 x; yð Þð Þð Þf gx;y2 0;1f g�

�C output�1 x; yð Þ; view�
2 x; yð Þ

� �� �
x;y2 0;1f g� ;

ð2Þ

where �C denotes computational indistinguishability.

The above definition says that a computation is secure if
the view of each party during the execution of the protocol
can be effectively simulated by the input and the output of
the party. This is not quite the same as saying that private
information is protected. For example, if two parties use a
secure protocol to mine distributed association rules, a
secure protocol still reveals that if a particular rule is not
supported by a particular site and that rule appears in the
globally supported rule set, then it must be supported by
the other site. A site can deduce this information by solely
looking at its locally supported rules and the globally
supported rules. On the other hand, there is no way to
deduce the exact support count of some itemset by looking
at the globally supported rules. With three or more parties,
knowing a rule holds globally reveals that at least one site
supports it, but no site knows which site (other than,
obviously, itself). In summary, a secure multiparty protocol
will not reveal more information to a particular party than
the information that can be induced by looking at that
party’s input and the output.

2.2.2 Yao’s General Two-Party Secure Function

Evaluation

Yao’s general secure two-party evaluation is based on
expressing the function fðx; yÞ as a circuit and encrypting
the gates for secure evaluation [11]. With this protocol, any
two-party function can be evaluated securely in the

semihonest model. To be efficiently evaluated, however,
the functions must have a small circuit representation. We
will not give details of this generic method; however, we do
use this generic result for securely finding whether a � b
(Yao’s millionaire problem). For comparing any two
integers securely, Yao’s generic method is one of the most
efficient methods known, although other asymptotically
equivalent but practically more efficient algorithms could
be used as well [12].

2.3 Commutative Encryption

Commutative encryption is an important tool that can be
used in many privacy-preserving protocols. An encryption
algorithm is commutative if the following two equations
hold for any given feasible encryption keys K1; . . . ; Kn 2 K,
any message M, and any permutations of i; j:

EKi1
ð. . .EKin

ðMÞ . . .Þ ¼ EKj1
ð. . .EKjn

ðMÞ . . .Þ: ð3Þ

8M1;M2 2 M such that M1 6¼ M2 and for given k, � < 1
2k

PrðEKi1
ð. . .EKin

ðM1Þ . . .Þ ¼ EKj1
ð. . .EKjn

ðM2Þ . . .ÞÞ < �: ð4Þ

These properties of commutative encryption can be used
to check whether two items are equal without revealing
them. For example, assume that party A has item iA and
party B has item iB. To check if the items are equal, each
party encrypts its item and sends it to the other party:
Party A sends EKA

ðiAÞ to B and party B sends EKB
ðiBÞ to A.

Each party encrypts the received item with its own key,
giving party A EKA

ðEKB
ðiBÞÞ and party B EKB

ðEKA
ðiAÞÞ. At

this point, they can compare the encrypted data. If the
original items are the same, (3) ensures that they have the
same encrypted value. If they are different, (4) ensures that,
with high probability, they do not have the same encrypted
value. During this comparison, each site sees only the other
site’s values in encrypted form.

In addition to meeting the above requirements, we
require that the encryption be secure. Specifically, the
encrypted values of a set of items should reveal no
information about the items themselves. Consider the
following experiment: For any two sets of items, we encrypt
each item of one randomly chosen set with the same key
and present the resulting encrypted set and the initial two
sets to a polynomial-time adversary. Loosely speaking, our
security assumption implies that this polynomial-time
adversary will not be able to predict which of the two sets
were encrypted with a probability better than a random
guess. Under this security assumption, it can be shown that
the resulting encrypted set is indistinguishable by a
polynomial adversary from a set of items that are randomly
chosen from the domain of the encryption; this fact is used
in the proof of the privacy-preserving properties of our
protocol. The formal definition of multiple-message seman-
tic security can be found in [13].

There are several examples of commutative encryption,
perhaps the most famous being RSA [14] (if keys are not
shared). The Appendix describes how Pohlig-Hellman
encryption [15] can be used to fulfill our requirements, as
well as further discussion of relevant cryptographic details.
The remainder of this paper is based on the definitions
given above and does not require a knowledge of the
cryptographic discussion in the Appendix.

KANTARCIOGLU AND CLIFTON: PRIVACY-PRESERVING DISTRIBUTED MINING OF ASSOCIATION RULES ON HORIZONTALLY 1029

3 SECURE ASSOCIATION RULE MINING

We will now use the tools described above to construct a
distributed association rule mining algorithm that preserves
the privacy of individual site results. The algorithm given is
for three or more parties—the difficulty with the two-party
case is discussed in Section 5.

3.1 Problem Definition

Let i � 3 be the number of sites. Each site has a private
transaction database DBi. We are given support threshold s
and confidence c as percentages. The goal is to discover all
association rules satisfying the thresholds, as defined in
Section 2.1.1.We further desire that disclosure be limited: No
site should be able to learn contents of a transaction at any
other site, what rules are supported by any other site, or the
specific value of support/confidence for any rule at any other
site unless that information is revealed byknowledge of one’s
own data and the final result. For example, if a rule is
supported globally but not at one’s own site, we can deduce
that at least one other site supports the rule. Here, we assume
no collusion (this is discussed further in Section 4).

3.2 Method

Our method follows the general approach of the FDM
algorithm [2], with special protocols replacing the broad-
casts of LLiðkÞ and the support count of items in LLðkÞ. We
first give a method for finding the union of locally
supported itemsets without revealing the originator of the
particular itemset. We then provide a method for securely
testing if the support count exceeds the threshold.

3.2.1 Secure Union of Locally Large Itemsets

In the FDM algorithm (Section 2.1.1), Step 3 reveals the
large itemsets supported by each site. To accomplish this
without revealing what each site supports, we instead
exchange locally large itemsets in a way that obscures the
source of each itemset. We assume a secure commutative
encryption algorithm with negligible collision probability
(Section 2.3).

The main idea is that each site encrypts the locally
supported itemsets, along with enough “fake” itemsets to
hide the actual number supported. Each site then encrypts
the itemsets from other sites. In Phases 2 and 3, the sets of
encrypted itemsets are merged. Since (3) holds, duplicates
in the locally supported itemsets will be duplicates in the
encrypted itemsets and can be deleted. The reason this
occurs in two phases is that if a site knows which fully
encrypted itemsets come from which sites, it can compute
the size of the intersection between any set of sites. While
generally innocuous, if it has this information for itself, it
can guess at the itemsets supported by other sites.
Permuting the order after encryption in Phase 1 prevents
knowing exactly which itemsets match; however, separately
merging itemsets from odd and even sites in Phase 2
prevents any site from knowing the fully encrypted values
of its own itemsets.1 Phase 4 decrypts the merged frequent
itemsets. Commutativity of encryption allows us to decrypt

all itemsets in the same order regardless of the order they
were encrypted in, preventing sites from tracking the
source of each itemset.

The detailed algorithm is given in Protocol 1 (see Fig. 3).
In the protocol, F represents the data that can be used as
fake itemsets. jLLeiðkÞj represents the set of the encrypted k
itemsets at site i. Ei is the encryption and Di is the
decryption by site i.

Clearly, Protocol 1 in Fig. 3 finds the union without
revealing which itemset belongs to which site. It is not,
however, secure under the definitions of secure multiparty
computation. It reveals the number of itemsets having
common support between sites, e.g., sites 3, 5, and 9 all
support some itemset. It does not reveal which itemsets
these are, but a truly secure computation (as good as giving
all input to a “trusted party”) could not reveal even this
count. Allowing innocuous information leakage (the num-
ber of itemsets having common support) allows an
algorithm that is sufficiently secure with much lower cost
than a fully secure approach.

If we deem leakage of the number of commonly
supported itemsets as acceptable, we can prove that this
method is secure under the definitions of secure multiparty
computation. The idea behind the proof is to show that,
given the result, the leaked information, and a site’s own
input, a site can simulate everything else seen during the
protocol. Since the simulation generates everything seen
during execution of the protocol, the site clearly learns
nothing new from the protocol beyond the input provided
to the simulator. One key is that the simulator does not need
to generate exactly what is seen in any particular run of the
protocol. The exact content of messages passed during the
protocol is dependent on the random choice of keys; the
simulator must generate an equivalent distribution, based
on random choices made by the simulator, to the distribu-
tion of messages seen in real executions of the protocol. A
formal proof that this proof technique shows that a protocol
preserves privacy can be found in [9]. We use this approach
to prove that Protocol 1 (Fig. 3) reveals only the union of
locally large itemsets and a clearly bounded set of
innocuous information.

Theorem 3.1. Protocol 1 privately computes the union of the
locally large itemsets assuming no collusion, revealing at most
the result [N

i¼1LLiðkÞ and:

1. the size of the intersection of locally supported itemsets
between any subset of odd numbered sites,

2. the size of the intersection of locally supported itemsets
between any subset of even numbered sites, and

3. the number of itemsets supported by at least one odd
and one even site.

Proof. Phase 0: Since no communication occurs in Phase 0,
each site can simulate its view by running the algorithm
on its own input.

Phase 1: At the first step, each site sees LLei�1ðkÞ. The
size of this set is the size of the global candidate set
CGðkÞ, which is known to each site. Assuming the
security of encryption, each item in this set is computa-
tionally indistinguishable from a number chosen from a
uniform distribution. A site can therefore simulate the set
using a uniform random number generator. This same
argument holds for each subsequent round.

1030 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 9, SEPTEMBER 2004

1. An alternative would be to use an anonymizing protocol [16] to send
all fully encrypted itemsets to Site 0, thus preventing Site 0 from knowing
which were its own itemsets. The separate odd/even merging is lower cost
and achieves sufficient security for practical purposes.

Phase 2: In Phase 2, site 0 gets the fully encrypted sets

of itemsets from the other even sites. Assuming that each

site knows the source of a received message, site 0 will

know which fully encrypted set LLeðkÞ contains en-

crypted itemsets from which (odd) site. Equal itemsets

will now be equal in encrypted form. Thus, site 0 learns if

any odd sites had locally supported itemsets in common.

We can still build a simulator for this view, using the

information in point 1 above. If there are k itemsets

known to be common among all bN=2c odd sites (from

point 1), generate k random numbers and put them into

the simulated LLeiðkÞ. Repeat for each bN=2c � 1 subset,

etc. down to two subsets of the odd sites. Then, fill each

LLeiðkÞ with randomly chosen values until it reaches size

jCGiðkÞj. The generated sets will have exactly the same

combinations of common items as the real sets and, since

the values of the items in the real sets are computationally

indistinguishable from a uniform distribution, their
simulation matches the real values.

The same argument holds for Site 1, using information
from point 2 to generate the simulator.

Phase 3: Site 1 eliminates duplicates from the LLeiðkÞ to
generate RuleSet1. We now demonstrate that Site 0 can
simulate RuleSet1. First, the size of RuleSet1 can be
simulated knowing point 2. There may be itemsets in
common between RuleSet0 and RuleSet1. These can be
simulated using point 3: If there are k items in common
between even and odd sites, Site 0 selects k random items
from RuleSet0 and inserts them into RuleSet1. RuleSet1
is then filled with randomly generated values. Since the
encryption guarantees that the values are computation-
ally indistinguishable from a uniform distribution and
the set sizes jRuleSet0j, jRuleSet1j, and jRuleSet0 \
RuleSet1j (and, thus, jRuleSetj) are identical in the
simulation and real execution, this phase is secure.

KANTARCIOGLU AND CLIFTON: PRIVACY-PRESERVING DISTRIBUTED MINING OF ASSOCIATION RULES ON HORIZONTALLY 1031

Fig. 3. Protocol 1: Finding secure union of large itemsets of size k.

Phase 4: Each site sees only the encrypted items after
decryption by the preceding site. Some of these may be
identical to items seen in Phase 2 but, since all items
must be in the union, this reveals nothing. The simulator
for site i is built as follows: Take the values generated in
Phase 2 Step N � 1� i and place them in the RuleSet.
Then, insert random values in RuleSet up to the proper
size (calculated as in the simulator for Phase 3). The
values we have not seen before are computationally
indistinguishable from data from a uniform distribution,
and the simulator includes the values we have seen (and
knew would be there), so the simulated view is
computationally indistinguishable from the real values.

The simulator for site N � 1 is different since it learns
RuleSetðkÞ. To simulate what it sees in Phase 4, site N � 1
takes each item in RuleSetðkÞ, the final result, and
encrypts it with EN�1. These are placed in RuleSet.
RuleSet is then filled with items chosen from F , also
encrypted with EN�1. Since the choice of items from F is
random in both the real and simulated execution and the
real items exactly match in the real and simulation, the
RuleSet site N � 1 receives in Phase 4 is computationally
indistinguishable from the real execution.

Therefore, we can conclude that the above protocol is
privacy-preserving in the semihonest model with the
stated assumptions. tu

The information disclosed by points 1-3 could be relaxed
to the number of itemsets support by one site, two sites, ...,
N sites if we assume anonymous message transmission. The
number of jointly supported itemsets can also be masked by
allowing sites to inject itemsets that are not really supported
locally. These fake itemsets will simply fail to be globally
supported and will be filtered from the final result when
global support is calculated, as shown in the next section.
The jointly supported itemsets “leak” then becomes an
upper bound rather than exact, at an increased cost in the
number of candidates that must be checked for global
support. While not truly zero-knowledge, it reduces the
confidence (and usefulness) of the leaked knowledge of the
number of jointly supported itemsets. In practical terms,
revealing the size (but not content) of intersections between
sites is likely to be of little concern.

3.2.2 Testing Support Threshold without Revealing

Support Count

Protocol 1 (Fig. 3) gives the full set of locally large itemsets
LLðkÞ. We still need to determine which of these itemsets are
supported globally. Step 4 of the FDM algorithm forces each
site to reveal its own support count for every itemset in
LLðkÞ. All we need to know for each itemset X 2 LLðkÞ is
X:sup � s%� jDBj? The following allows us to reduce this
to a comparison against a sum of local values (the excess
support at each site):

X:sup � s � jDBj ¼ s �
Xn
i¼1

jDBij
 !

Xn
i¼1

X:supi � s �
Xn
i¼1

jDBij
 !

Xn
i¼1

ðX:supi � s � jDBijÞ � 0:

Therefore, checking for support is equivalent to checking
if
Pn

i¼1ðX:supi � s � jDBijÞ � 0. The challenge is to do this
without revealing X:supi or jDBij. An algorithm for this is
given in Protocol 2 (Fig. 4).

The first site generates a random number xr for each
itemset X, adds that number to its ðX:supi � s � jDBijÞ, and
sends it to the next site. (All arithmetic is mod m � 2 � jDBj,
for reasons that will become apparent later.) The random
number masks the actual excess support, so the second site
learns nothing about the first site’s actual database size or
support. The second site adds its excess support and sends
the value on. The random value now hides both support
counts. The last site in the change now has

Xn
i¼1

ðX:supi � s � jDBijÞ þ xr ðmod mÞ:

Since the total database size is jDBj � m=2, negative
summation will be mapped to some number that is bigger
thanor equal tom=2. (�k ¼ m� kmod m.) The last siteneeds
to test if this summinus xrðmod mÞ is less thanm=2. This can
be done securely using Yao’s generic method [11]. Clearly,
this algorithm is secure as long as there is no collusion as no
site can distinguish what it receives from a random number.
Alternatively, the first site can simply send xr to the last site.
The last site learns the actual excess support, but does not
learn the support values for any single site. In addition, if we
consider the excess support to be a valid part of the global
result, this method is still secure.

Theorem 3.2. Protocol 2 (Fig. 4) privately computes globally
supported itemsets in the semihonest model.

Proof. To show that Protocol 2 (Fig. 4) is secure under the
semihonest model, we have to show that a polynomial
time simulator can simulate the view of the parties
during the execution of the protocol, based on their local
inputs and the global result. We also use the general
composition theorem for semihonest computation [9].
The theorem says that if g securely reduces to f and f is
computed securely, then the computation of fðgÞ is
secure. In our context, f is the secure comparison of two
integers and g is Protocol 2 (Fig. 4). First, we show that
the view of any site during the addition phase can be
efficiently simulated given the input of that site and the
global output. Site i uniformly chooses a random
integer sr, 0 � sr < m. Next, we show that the view
and the output of the simulator are computationally
indistinguishable by showing that the probability of
seeing a given x in both is equal. In the following
equations, xr is the random number added at the
beginning of Protocol 2 (Fig. 4), 0 � Xr < m. The
arithmetic is assumed to be mod m. Also note that
X:supi is fixed for each site:

Pr V IEWProtocol 2
i ¼ x

� �
¼ Pr xr ¼ x�

Xk¼i�1

k¼1

X:supi

" #

¼ 1

m

¼ Pr sr ¼ x½ �
¼ Pr Simulatori ¼ x½ �:

1032 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 9, SEPTEMBER 2004

Therefore, what each site sees during the addition
phase is indistinguishable from that simulated with a
random number generator. During the comparison
phase, we can use the generic secure method, so, from
the composition theorem, we conclude that Protocol 2
(Fig. 4) is secure in the semihonest model. tu

3.3 Securely Finding Confidence of a Rule

To find if the confidence of a rule X) Y is higher than the

given confidence threshold c,wehave to check if X[Yf g:sup
Y :sup � c.

Protocol 2 (Fig. 4) only reveals if an itemset is supported, it

does not reveal the support count. The following equations

show how to securely compute if confidence exceeds a

threshold using Protocol 2 (Fig. 4). The support of

X [Yf g:supi is denoted asXY :supi:

X [Yf g:sup
Y :sup

� c)
Pi¼n

i¼1 XY :supiPi¼n
i¼1 X:supi

� c

)
Xi¼n

i¼1

XY :supi � c �
Xi¼n

i¼1

X:supi

 !

)
Xi¼n

i¼1

ðXY :supi � c �X:supiÞ � 0:

Since each site knows XY :supi and X:supi, we can easily
use Protocol 2 (Fig. 4) to securely calculate the confidence of
a rule.

4 SECURITY AGAINST COLLUSION

Collusion in Protocol 1 (Fig. 3) could allow a site to know its
own frequent itemsets after encryption by all parties. Using

this, it can learn the size of the intersection between its own

itemsets and those of another party. Specifically, if site i

colludes with site i� 1, it can learn the size of its intersection

with site iþ 1. Collusionbetween sites 0 and1 exacerbates the

problemas theyknowencryptedvaluesof itemsets for all odd

(even) sites. This may reveal the actual itemsets; if

jLLiðkÞ \ LLiþ1ðkÞj ¼ jLLiðkÞj, then site i has learned a subset

of the itemsets at site iþ 1.
Collusion can be a problem for our second protocol

because site iþ 1 and site i� 1 can collude to reveal site i’s

excess support value. This protocol can be made resilient

against collusions using a straightforward technique from

the cryptographic community. The basic idea is each party

divides its input into n parts and sends the n� 1 pieces to

different sites. To reveal any parties input, n� 1 parties

must collude. The following is a brief summary of the

protocol, details can be found in [17]. (A slightly more

efficient version can be found in [18].)

1. Each site i randomly chooses n elements such that
xi ¼

Pn
j¼1 zi;j mod m, where xi is the input of site i.

Site i sends zi;j to site j.
2. Every site i computes wi ¼

Pn
j¼1 zj;i modm and

sends wi to site n.
3. Site n computes the final result

Pn
i¼1 wi modm.

The above protocol can easily be used to improve our

second protocol. Assume site 0 is the starting site in our

protocol and site N � 1 is the last site. Choose m such

that 2 � jDBj � m. Set x1 ¼ X:sup1 � s � d1 þ xr modm and

xi ¼ X:supi � s � di modm; i 6¼ 1. After this point, the

above protocol can be used to find

KANTARCIOGLU AND CLIFTON: PRIVACY-PRESERVING DISTRIBUTED MINING OF ASSOCIATION RULES ON HORIZONTALLY 1033

Fig. 4. Protocol 4: Finding the global support counts securely.

Xn
i¼1

ðX:supi � s � diÞ þ xr modm:

At the end, one secure addition and comparison is done as
in Protocol 2 (Fig. 4) to check if itemset X is globally
supported.

5 DIFFICULTIES WITH THE TWO-PARTY CASE

The two-party case is problematic. First, globally supported
itemsets that are not supported at one site are known to be
supported at the other site—this is an artifact of the result.
Protocol 1 (Fig. 3) is worse yet, as itemsets that are
supported at one site but not supported globally will
become known to the other site. To retain any privacy, we
must dispense with local pruning entirely (Steps 1 and 2 of
the FDM algorithm) and compute support for all candidates
in CGðkÞ (as computed from Lðk�1Þ). Second, the secure
comparison phase at the end of the Protocol 2 (Fig. 4) cannot
be removed as, otherwise, the support of one site is
disclosed to the other. It is difficult to improve on this, as
evidenced by the following theorem.

Theorem 5.1. For itemset X, the test X:sup1þX:sup2
d1þd2

� k can be

securely computed if and only if Yao’s millionaire problem is

securely solved for arbitrary a and b.

Proof. Checking X:sup1þX:sup2
d1þd2

� k is equivalent to checking
ðX:sup1 � k � d1Þ � ðk � d2 �X:sup2Þ. If we have a ¼
X:sup1 � k � d1 and b ¼ k � d2 �X:sup2, we have an
instance of Yao’s millionaire problem for a and b.
Assume we have a secure protocol that computes
whether X is supported globally or not for arbitrary
X:sup1, X:sup2, d1, d2, and k. Take X:sup1 ¼ 3a, d1 ¼ 4a,
X:sup2 ¼ b, d2 ¼ 4 � b, and k ¼ 0:5. This is equivalent to
checking whether a � b. tu

The above theorem implies that if we develop a method
that can check securely if an itemset is globally supported
for the two party case in a semihonest model, it is
equivalent to finding a new solution to Yao’s millionaire
problem. This problem is well-studied in cryptography and,
to our knowledge, there is no significantly faster way for
arbitrary a and b than using the generic circuit evaluation
solution.

It is worth noting that eliminating local pruning and
using Protocol 2 (Fig. 4) to compute the global support of all
candidates in CGðkÞ is secure under the definitions of secure
multiparty computation for two or more parties. The
problem with the two-party case is that knowing a rule is
supported globally that is not supported at one’s own site
reveals that the other site supports that rule. This is true no
matter how secure the computation is; it is an artifact of the
result. Thus, extending to secure computation in the two-
party case is unlikely to be of use.

6 COMMUNICATION AND COMPUTATION COSTS

We now give cost estimates for association rule mining
using the method we have presented. The number of sites is
N . Let the total number of locally large candidate itemsets
be jCGiðkÞj and the number of candidates that can be

directly generated by the globally large ðk� 1Þ itemsets be
jCGðkÞj (¼ apriori genðLðk�1ÞÞ). The excess support X:supi �
jDBij of an itemset X can be represented in m ¼
dlog2ð2 � jDBjÞe bits. Let t be the number of bits in the
output of the encryption of an itemset. A lower bound on t

is log2ðjCGðkÞjÞ; based on current encryption standards, t ¼
512 is a more appropriate value.2

The total bit-communication cost for Protocol 1 (Fig. 3) is
Oðt � jCGðkÞj �N2Þ, however, as much of this happens in
parallel, we can divide by N to get an estimate of the
communication time. For comparison, the FDM algorithm
requires Oðt � j [i LLiðkÞj �NÞ for the corresponding steps,
with effectively the same reduction in time due to
parallelism (achieved through broadcast as opposed to
simultaneous point-to-point transmissions). The added cost
of Protocol 1 (Fig. 3) is due to padding LLeiðkÞ to hide the
actual number of local itemsets supported and the increase
in bits required to represent encrypted itemsets. The worst-
case value for jCGðkÞj is

item domain size
k

� �
;

however, the optimizations that make the a priori algorithm
effective in practice would fail for such large jCGðkÞj. In
practice, only in the first round (k ¼ 1) will this padding
pose a high cost; jCGð1Þj ¼ the size of the domain of items.
In later iterations, the size of jCGðkÞj will be much closer to
jLLeiðkÞj. The computation cost increase due to encryption is
Oðt3 � jCGðkÞj �N2Þ, where t is the number of bits in the
encryption key. Here, t3 represents the bit-wise cost of
modular exponentiation.

Protocol 2 (Fig. 4) requires Oðm � j [i LLiðkÞj � ðN þ tÞÞ
bits of communication. The t factor is for the secure circuit
evaluations between sites N � 1 and 0 required to deter-
mine if each itemset is supported. FDM actually requires an
additional factor of N due to the broadcast of local support
instead of point-to-point communication. However, the
broadcast results in a single round instead of N rounds of
our method. The final secure comparison requires a
computation cost of Oðj [i LLiðkÞj �m � t3Þ.

As discussed in Section 5, using only Protocol 2 (Fig. 4)
directly on CGðkÞ is fully secure assuming the desired
result includes all globally large itemsets. The commu-
nication cost becomes Oðm � jCGðkÞj �NÞ, but, because the
communication in Protocol 2 (Fig. 4) is sequential, the
communication time is roughly the same as the full
protocol. The encryption portion of the computation cost
becomes OðjCGðkÞj �m � t3Þ for the secure comparison at
the end of the protocol. However, there is a substantial
added cost in computing the support, as we must
compute support for all jCGðkÞj itemsets. This is generally
much greater than the jCGiðkÞ [ð[iLLiðkÞÞj required under

the full algorithm (or FDM), as shown in [3]. It is
reasonable to expect that this cost will dominate the other
costs as it is linear in jDBj.

1034 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 9, SEPTEMBER 2004

2. The worst-case bound on jCGðkÞj is item domain size
k

� �
. t ¼ 512 can

respresent such worst-case itemsets for 50 million possible items and

k ¼ 20, adequate for most practical cases.

6.1 Optimizations and Further Discussion

The cost of “padding” LLeiðkÞ from F to avoid disclosing the
number of local itemsets supported can add significantly to
the communication and encryption costs. In practice, for
k > 1, jCGðkÞj is likely to be of reasonable size. However,
jCGð1Þj could be very large as it is dependent only on the
size of the domain of items and is not limited by already
discovered frequent itemsets. If the participants can agree
on an upper bound on the number of frequent items
supported at any one site that is tighter than “every item
may be frequent” without inspecting the data, we can
achieve a corresponding decrease in the costs with no loss
of security. This is likely to be feasible in practice; the very
success of the a priori algorithm is based on the assumption
that relatively few items are frequent. Alternatively, if we
are willing to leak an upper bound on the number of
itemsets supported at each site, each site can set its own
upper bound and pad only to that bound. This can be done
for every round, not just k ¼ 1. As a practical matter, such
an approach would achieve acceptable security and would
change the jCGðkÞj factor in the communication and
encryption costs of Protocol 1 (Fig. 3) to Oðj [i LLiðkÞjÞ,
equivalent to FDM.

Another way to limit the encryption cost of padding is
to pad randomly from the domain of the encryption
output rather than encrypting items from F . Assuming
jdomainofEij >> jdomainofitemsetsj, the probability of
padding with a value that decrypts to a real itemset is
small and, even if this occurs, it will only result in
additional itemsets being tested for support in Protocol 2
(Fig. 4). When the support count is tested, such “false
hits” will be filtered out and the final result will be
correct.

The comparison phase at the end of Protocol 2 (Fig. 4)
can be also removed, eliminating the Oðm � j [i LLiðkÞj � tÞ
bits of communication and Oðj [i LLiðkÞj �m � t3Þ encryp-
tion cost. This reveals the excess support for each itemset.
Practical applications may demand this count as part of the
result for globally supported itemsets, so the only informa-
tion leaked is the support counts for itemsets in
[iLLiðkÞ � LðkÞ. As these cannot be traced to an individual
site, this will generally be acceptable in practice.

The cost estimates are based on the assumption that all
frequent itemsets (even 1-itemsets) are part of the result.
If exposing the globally frequent 1-itemsets is a problem,
the algorithm could easily begin with 2-itemsets (or
larger). While the worst-case cost would be unchanged,
there would be an impact in practical terms. Eliminating
the pruning of globally infrequent 1-itemsets would
increase the size of CGið2Þ and, thus, LLið2Þ; however,
local pruning of infrequent 1-itemsets should make the
sizes manageable. More critical is the impact on jCGð2Þj
and, thus, the cost of padding to hide the number of
locally large itemsets. In practice, the size of CGð2Þ will
rarely be the theoretical limit of item domain size

2

� �
, but this

worst-case bound would need to be used if the algorithm
began with finding 2-itemsets (the problem is worse for
k > 2). A practical solution would again be to have sites
agree on a reasonable upper bound for the number of
locally supported k-itemsets for the initial k, revealing

some information to substantially decrease the amount of
padding needed.

6.2 Practical Cost of Encryption

While achieving privacy comes at a reasonable increase in
communication cost, what about the cost of encryption? As
a test of this, we implemented Pohlig-Hellman, described in
the Appendix. The encryption time per itemset represented
with t ¼ 512 bits was 0.00428 seconds on a 700MHz
Pentium 3 under Linux. Using this and the results reported
in [3], we can estimate the cost of privacy-preserving
association rule mining on the tests in [3].

The first set of experiments described in [3] contain
sufficient detail for us to estimate the cost of encryption.
These experiments used three sites, an item domain size of
1,000, and a total database size of 500k transactions.

The encryption cost for the initial round (k ¼ 1) would be
4.28 seconds at each site as the padding need only be to the
domain size of 1,000. While finding two-itemsets could
potentially be much worse (1;000

2

� �
¼ 499; 500), in practice

jCGð2Þj is much smaller. The experiment in [3] reports a total
number of candidate sets (

P
k>1 jCGðkÞj) of just over 100,000

at 1 percent support. This gives a total encryption cost of
around 430 seconds per site, with all sites encrypting
simultaneously. This assumes none of the optimizations of
Section 6.1; if the encryption cost at each site could be cut to
jLLiðkÞj by eliminating the cost of encrypting the padding
items, the encryption cost would be cut to 5 to 35 percent of
the above on the data sets used in [3].

There is also the encryption cost of the secure compar-
ison at the end of Protocol 2 (Fig. 4). Although the data
reported in [3] does not give us the exact size of [iLLiðkÞ, it
appears to be on the order of 2,000. Based on this, the cost of
the secure comparison, Oðj [i LLiðkÞj �m � t3Þ, would be
about 170 seconds.

The total execution time for the experiment reported in [3]
was approximately 800 seconds. Similar numbers hold at
different support levels; the added cost of encryption would,
at worst, increase the total runtime by roughly 75 percent.

7 CONCLUSIONS AND FURTHER WORK

Cryptographic tools can enable data mining that would
otherwise be prevented due to security concerns. We have
given procedures to mine distributed association rules on
horizontally partitioned data. We have shown that dis-
tributed association rule mining can be done efficiently
under reasonable security assumptions.

We believe the need for mining of data where access is
restricted by privacy concerns will increase. Examples
include knowledge discovery among intelligence services
of different countries and collaboration among corporations
without revealing trade secrets. Even within a single
multinational company, privacy laws in different jurisdic-
tions may prevent sharing individual data. Many more
examples can be imagined. We would like to see secure
algorithms for classification, clustering, etc. Another possi-
bility is secure approximate data mining algorithms. Allow-
ing error in the results may enable more efficient algorithms
that maintain the desired level of security.

KANTARCIOGLU AND CLIFTON: PRIVACY-PRESERVING DISTRIBUTED MINING OF ASSOCIATION RULES ON HORIZONTALLY 1035

The secure multiparty computation definitions from the
cryptography domain may be too restrictive for our
purposes. A specific example of the need for more flexible
definitions can be seen in Protocol 1 (Fig. 3). The “padding”
set F is defined to be infinite so that the probability of
collision among these items is 0. This is impractical and,
intuitively, allowing collisions among the padded itemsets
would seem more secure as the information leaked (item-
sets supported in common by subsets of the sites) would
become an upper bound rather than an exact value.
However, unless we know in advance the probability of
collision among real itemsets or, more specifically, we can
set the size of F so the ratio of the collision probabilities in F
and real itemsets is constant, the protocol is less secure
under secure multiparty communication definitions. The
problem is that knowing the probability of collision among
items chosen from F enables us to predict (although
generally with low accuracy) which fully encrypted item-
sets are real and which are fake. This allows a probabilistic
upper bound estimate on the number of itemsets supported
at each site. It also allows a probabilistic estimate of the
number of itemsets supported in common by subsets of the
sites that is tighter than the number of collisions found in
the RuleSet. Definitions that allow us to trade off such
estimates and techniques to prove protocols relative to
those definitions will allow us to prove the privacy of
protocols that are practically superior to protocols meeting
strict secure multiparty computation definitions.

More suitable security definitions that allow parties to
choose their desired level of security are needed, allowing
efficient solutions that maintain the desired security. Some
suggested directions for research in this area are given in
[19]. One line of research is to predict the value of
information for a particular organization, allowing trade
off between disclosure cost, computation cost, and benefit
from the result. We believe some ideas from game theory
and economics may be relevant.

In summary, it is possible to mine globally valid results
from distributed data without revealing information that
compromises the privacy of the individual sources. Such
privacy-preserving data mining can be done with a reason-
able increase in cost over methods that do not maintain
privacy. Continued research will expand the scope of
privacy-preserving data mining, enabling most or all data
mining methods to be applied in situations where privacy
concerns would appear to restrict such mining.

APPENDIX

CRYPTOGRAPHIC NOTES ON COMMUTATIVE

ENCRYPTION

The Pohlig-Hellman encryption scheme [15] can be used
for a commutative encryption scheme meeting the
requirements of Section 2.3. Pohlig-Hellman works as
follows: Given a large prime p with no small factors of
p� 1, each party chooses a random e; d pair such that
e � d ¼ 1ðmod p� 1Þ. The encryption of a given message M

is Meðmod pÞ. Decryption of a given ciphertext C is done
by evaluating Cdðmod pÞ. Cd ¼ Medðmod pÞ and, due to
Fermat’s little theorem, Med ¼ M1þkðp�1Þ ¼ Mðmod pÞ.

It is easy to see that Pohlig-Hellman with shared p

satisfies (3). Let us assume that there are n different
encryption and decryption pairs (ðe1; d1Þ; . . . ; ðen; dnÞ). For
any permutation function i; j and

E ¼ e1 � e2 � . . . � en
¼ ei1 � ei2 . . . ein
¼ ej1 � ej2 . . . ejn mod p� 1 :

Eei1
ð. . .Eein ðMÞ . . .Þ ¼ ð. . . ððMein ðmod pÞÞein�1 ðmod pÞÞ . . .Þei1

ðmod pÞÞ
¼ Mein�ein�1

...�ei1 ðmod pÞ
¼ ME ðmod pÞ
¼ Mejn�ejn�1

...�ej1 ðmod pÞ
¼ Eej1

ð. . .Eejn ðMÞ . . .Þ:

Equation (4) is also satisfied by the Pohlig-Hellman
encryption scheme. LetM1;M2 2 GF ðpÞ such thatM1 6¼ M2.
Any order of encryption by all parties is equal to evaluating
the Eth power ðmod pÞ of the plain text. Let us assume that,
after, encryptions M1 and M2 are mapped to the same
value. This implies that ME

1 ¼ ME
2 ðmod pÞ. By exponentiat-

ing both sides with D ¼ d1 � d2 � . . . � dnðmod p� 1Þ, we get
M1 ¼ M2 ðmod pÞ, a contradiction. Note that

E �D ¼ e1 � e2 � . . . � en � d1 � d2 � . . . dn
¼ e1 � d1 . . . en � dn ¼ 1 ðmod p� 1Þ:

Therefore, the probability that two different elements map
to the same value is zero.

Direct implementation of Pohlig-Hellman is not secure.
Consider the following example, encrypting two values a

and b, where b ¼ a2.

EeðbÞ ¼ Eeða2Þ ¼ ða2Þeðmod pÞ
¼ ðaeÞ2ðmod pÞ ¼ ðEeðaÞÞ2ðmod pÞ:

This shows that, given two encrypted values, it is possible
to determine if one is the square of the other (even though
the base values are not revealed.) This violates the security
requirement of Section 2.3.

Huberman et al. provide a solution [20]. Rather than
encrypting items directly, a hash of the items is encrypted.
The hash occurs only at the originating site, the second and
later encryption of items can use Pohlig-Hellman directly.
The hash breaks the relationship revealed by the encryption
(e.g., a ¼ b2). After decryption, the hashed values must be
mapped back to the original values. This can be done by
hashing the candidate itemsets in CGðkÞ to build a lookup
table; anything not in this table is a fake “padding” itemset
and can be discarded.3

We present the approach from [20] as an example; any
secure encryption scheme that satisfies (3) and (4) can be
used in our protocols. The above approach is used to
generate the cost estimates in Section 6.2. Other approaches,

1036 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 9, SEPTEMBER 2004

3. A hash collision, resulting in a padding itemset mapping to an itemset
in the table, could result in an extra itemset appearing in the union. This
would be filtered out by Protocol 2 (Fig. 4); the final results would be
correct.

and further definitions and discussion of their security, can
be found in [21], [22], [23], [24].

ACKNOWLEDGMENTS

The authors wish to acknowledge the contributions of Mike
Atallah and Jaideep Vaidya. Discussions with them have
helped to tighten the proofs, giving clear bounds on the
information released.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 20th Int’l Conf. Very Large Data Bases,
pp. 487-499, 1994, available: http://www.vldb.org/dblp/db/
conf/vldb/vldb94-487.html.

[2] D.W.-L. Cheung, J. Han, V. Ng, A.W.-C. Fu, and Y. Fu, “A Fast
Distributed Algorithm for Mining Association Rules,” Proc. 1996
Int’l Conf. Parallel and Distributed Information Systems (PDIS ’96),
pp. 31-42, 1996.

[3] D.W.-L. Cheung, V. Ng, A.W.-C. Fu, and Y. Fu, “Efficient Mining
of Association Rules in Distributed Databases,” IEEE Trans.
Knowledge and Data Eng., vol. 8, no. 6, pp. 911-922, Dec. 1996.

[4] R. Agrawal and R. Srikant, “Privacy-Preserving Data Mining,”
Proc. 2000 ACM SIGMOD Conf. Management of Data, pp. 439-450,
2000, available: http://doi.acm.org/10.1145/342009.335438.

[5] D. Agrawal and C.C. Aggarwal, “On the Design and Quantifica-
tion of Privacy Preserving Data Mining Algorithms,” Proc. 20th
ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database
Systems, pp. 247-255, 2001, available: http://doi.acm.org/
10.1145/375551.375602.

[6] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke, “Privacy
Preserving Mining of Association Rules,” Proc. Eighth ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, pp. 217-
228, 2002, available: http://doi.acm.org/10.1145/775047.775080.

[7] S.J. Rizvi and J.R. Haritsa, “Maintaining Data Privacy in
Association Rule Mining,” Proc. 28th Int’l Conf. Very Large Data
Bases, pp. 682-693, 2002, available: http://www.vldb.org/conf/
2002/S19P03.pdf.

[8] Y. Lindell and B. Pinkas, “Privacy Preserving Data Mining,”
Advances in Cryptology (CRYPTO 2000), pp. 36-54, 2000, available:
http://link.springer.de/link/service/series/0558/bibs/1880/
18800036.htm.

[9] O. Goldreich, “Secure Multiparty Computation,” (working draft),
Sept. 1998, available: http://www.wisdom.weizmann.ac.il/
~oded/pp.html.

[10] J. Vaidya and C. Clifton, “Privacy Preserving Association Rule
Mining in Vertically Partitioned Data,” Proc. Eighth ACM SIGKDD
Int’l Conf. Knowledge Discovery and Data Mining, pp. 639-644, 2002,
available: http://doi.acm.org/10.1145/775047.775142.

[11] A.C. Yao, “How to Generate and Exchange Secrets,” Proc. 27th
IEEE Symp. Foundations of Computer Science, pp. 162-167, 1986.

[12] I. Ioannidis and A. Grama, “An Efficient Protocol for Yao’s
Millionaires’Problem,” Proc. Hawaii Int’l Conf. System Sciences
(HICSS-36), 2003.

[13] O. Goldreich, “Encryption Schemes,” (working draft), Mar. 2003,
available: http://www.wisdom.weizmann.ac.il/~oded/PSBook
Frag/enc.ps.

[14] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” Comm. ACM,
vol. 21, no. 2, pp. 120-126, 1978, available: http://doi.acm.org/
10.1145/359340.359342.

[15] S.C. Pohlig and M.E. Hellman, “An Improved Algorithm for
Computing Logarithms over GF(p) and Its Cryptographic
Significance,” IEEE Trans. Information Theory, vol. IT-24, pp. 106-
110, 1978.

[16] M.K. Reiter and A.D. Rubin, “Crowds: Anonymity for Web
Transactions,” ACM Trans. Information and System Security, vol. 1,
no. 1, pp. 66-92, Nov. 1998, available: http://doi.acm.org/
10.1145/290163.290168.

[17] J.C. Benaloh, “Secret Sharing Homomorphisms: Keeping Shares of
a Secret Secret,” Advances in Cryptography (CRYPTO86): Proc.,
A. Odlyzko, ed., pp. 251-260, 1986, available: http://spring
erlink.metapress.com/openurl.asp?genre=article&issn=0302-
9%743&volume=263&spage=251.

[18] B. Chor and E. Kushilevitz, “A Communication-Privacy Tradeoff
for Modular Addition,” Information Processing Letters, vol. 45, no. 4,
pp. 205-210, 1993.

[19] C. Clifton, M. Kantarcioglu, and J. Vaidya, “Defining Privacy for
Data Mining,” Proc. US Nat’l Science Foundation Workshop on Next
Generation Data Mining, H. Kargupta, A. Joshi, and
K. Sivakumar, eds., pp. 126-133, 2002.

[20] B.A. Huberman, M. Franklin, and T. Hogg, “Enhancing Privacy
and Trust in Electronic Communities,” Proc. First ACM Conf.
Electronic Commerce (EC ’99), pp. 78-86, 1999.

[21] J.C. Benaloh and M. de Mare, “One-Way Accumulators: A
Decentralized Alternative to Digital Signatures,” Advances in
Cryptology - EUROCRYPT ’93, Workshop Theory and Application
of Cryptographic Techniques, pp. 274-285, 1993, available:
http://springerlink.metapress.com/openurl.asp?genre=art
cle&issn=0302-9%743&volume=765&spage=274.

[22] W. Diffie and M. Hellman, “New Directions in Cryptography,”
IEEE Trans. Information Theory, vol. 22, no. 6, pp. 644-654, Nov.
1976.

[23] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms,” IEEE Trans. Information Theory,
vol. IT-31, no. 4, pp. 469-472, July 1985.

[24] A. Shamir, R.L. Rivest, and L.M. Adleman, “Mental Poker,”
Technical Memo MIT-LCS-TM-125, Laboratory for Computer
Science, MIT, Feb. 1979.

Murat Kantarcioglu received the bachelor’s
degree in computer engineering from Middle
East Technical University, Ankara, Turkey, and
the master’s degree in computer science from
Purdue University. He is a PhD candidate at
Purdue University. His research interests include
data mining, database security and information
security. He is a student member of ACM.

Chris Clifton received the bachelor’s and
master’s degrees from the Massachusetts In-
stitute of Technology. He received the PhD
degree from Princeton University. He is an
associate professor of computer science at
Purdue University. Prior to joining Purdue, he
held positions at The MITRE Corporation and
Northwestern University. His research interests
include data mining, database support for text,
and database security. He is a senior member of

the IEEE and a member of the IEEE Computer Society and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KANTARCIOGLU AND CLIFTON: PRIVACY-PRESERVING DISTRIBUTED MINING OF ASSOCIATION RULES ON HORIZONTALLY 1037

