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Abstract 

 
This paper explores the impact that numerical 
representation has on the power consumption of audio 
signal processing applications.  The motivation is digital 
hearing aids, for which minimizing the power 
consumption is a critical design goal.  We investigate two 
aspects of this problem.  First, we evaluate the validity of 
using signal transition counts to model actual power 
consumption within this problem domain, and second, we 
compare the relative power consumption of multiply-
accumulate operations for several customized numerical 
representations. 
 
Keywords:  audio signal processing, power consumption, 
numerical representation 
 
1. Introduction 
 

One of the major technical issues facing the designers 
of modern, hand-held, portable, digital systems is the need 
to minimize the power consumption of the system to 
prolong battery life.  Many of these systems perform 
signal processing functions on audio signals (e.g., hearing 
aids, communications systems, MP3 players, etc).  As 
new signal processing techniques are proposed, the 
computational requirements invariably grow, putting 
additional pressure on power consumption.  In this work, 
we are investigating the use of non-standard numerical 
representations for processing audio signals, showing how 
the power consumption can be lowered for audio signal 
processing while maintaining (and even improving) 
overall signal quality. 

Standard numerical representations used for signal 
processing applications include fixed-point 
representations (typically 16 bits) and floating-point 
representations (either 32- or 64-bit IEEE standard).  The 
choices of representation available to system designers are 
based largely upon historical convention rather than the 
specific needs of the application.  Our purpose is to 

investigate the implications of deviating from these 
standard representations and designing a system with a 
numerical representation tailored to the specific 
application. 

Our specific motivating application is the design of 
digital hearing aids [1,2,3].  Here, the resource limitations 
can be extreme, given that the entire device (including the 
battery) needs to fit within the ear canal.  As a result, 
power consumption must be held to an absolute 
minimum, and the use of customized numerical 
representations can potentially help us achieve this goal. 

Focusing our attention on audio signals that 
communicate human speech, a dynamic range of 
approximately 100 dB and a signal-to-quantization-noise 
ratio (SQNR) of approximately 30 dB have been shown to 
be adequate [4].  In this investigation, we compare the 
power consumption of a 16-bit linear representation with 
several different floating-point representations (4- to 6-bit 
exponent and 4- to 6-bit mantissa) and a 9-bit logarithmic 
notation.  As a representative computation, we use a series 
of multiply-accumulate operations.  Multiply-accumulate 
(MAC) is the most common computation in audio signal 
processing.  For each representation, we design a 
hardware MAC unit in the VHDL language and perform a 
standard-cell synthesis, layout, and place-and-route in the 
AMI Semiconductor 0.5 µm VLSI integrated circuit 
process. 

In our previous work [5,6], the VLSI circuit design 
was simulated using the Mentor Graphics Mach PATM 
power analysis tool with both random inputs and input 
vectors modeling a 21-tap finite impulse response (FIR) 
band-pass filter.  The simulation output both verifies 
correct operation of the circuit and provides information 
on power consumption.  However, this tool models the 
system with a continuous model, effectively solving the 
differential equations that describe the detailed circuit 
operation.  While this gives highly accurate power 
consumption results, the execution times are 
unrealistically long, significantly restricting the range of 
candidate designs that can be effectively investigated.  In 
this paper, we compare the results of this earlier 



  

investigation with a logic-level simulation that models the 
system in a discrete-event fashion.  The output of this 
simulation is signal transition counts, which have a linear 
relationship with power consumption.  The increased 
execution speed of the logic-level simulation enables us to 
investigate a much wider design space, and the inherent 
inaccuracies present are acceptable at this point in the 
design cycle. 

The results show a significant power savings using 
both the floating-point representations and the logarithmic 
representation.  This is primarily due to the ability to 
either eliminate (in the case of the logarithmic 
representation) or significantly reduce the size of the 
hardware multiplier required as part of the MAC unit.  
The agreement between the power consumption 
predictions of the continuous simulation model and the 
discrete-event model is quite high, validating the use of 
the discrete-event simulation model for power estimation 
early in the design space exploration. 

This paper provides an experimental investigation 
into the power consumption associated with customized 
numerical representations for audio signal processing 
applications.  We report on both model fidelity for a 
discrete-event simulation of the system and power 
consumption results for a range of numerical 
representations.  Section 2 describes the numerical 
representations used and the computation structures that 
implement the signal processing functions.  Section 3 
contrasts the continuous simulation model with the 
discrete-event model, and Section 4 compares the power 
consumption of the various numerical representations.  
Section 5 provides conclusions and directions for further 
work. 

 
2. Numerical Representations and 

Computation Structures 
 

For standard, fixed-point, linear, numerical 
representations executing MAC operations, the 
multiplication is significantly more expensive (in terms of 
power and area) than the accumulation (by about an order 
of magnitude).  This has motivated previous 
investigations into logarithmic representations [7], 
exploiting the fact that the multiplication operations can 
be implemented using an adder: 

 
)log()log()log( baba +=× . 

 
This savings must be traded off against larger power 
consumption in the accumulation operations, which have 
been implemented as look-up tables in previous work. 

If a logarithmic representation gives a significant 
power savings in the multiplication, but costs power for 
the accumulation, a numerical representation that is 

partially logarithmic and partially linear has the potential 
to achieve balanced power consumption across both 
operations.  This is precisely the description of a floating-
point representation, where the exponent represents the 
logarithmic portion and the mantissa represents the linear 
portion.  Rather than IEEE standard floating-point 
representations, however, we are interested in 
representations designed to more closely match the 
requirements of the audio signal processing application. 

 
2.1. Properties of Numerical Representations 
 

Figure 1 plots the dynamic range available with a 16-
bit linear representation, a 9-bit logarithmic representation 
(using base 0.941 logarithms [8]), and nine different 
floating-point representations (ranging from 4 to 6 bits of 
exponent and 4 to 6 bits of mantissa).  Here, the “e-m” 
notation refers to “e” exponent bits and “m” mantissa bits. 
For example, “6-4” is a representation with 1 sign bit, 6 
bits of exponent, and 4 bits of mantissa.  The dynamic 
range can be expressed as follows: 





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V
, 

where Vmax corresponds to the largest value that can be 
represented and Vmin corresponds to the smallest non-zero 
value that can be represented.  Notice that for the floating-
point representations, the dynamic range is determined 
primarily by the number of bits in the exponent.  This is 
true because we do not support unnormalized numbers 
near zero due to the need to keep power consumption as 
low as possible. 
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Figure 1.  Dynamic range for all numeric 
representations. 

Next we examine the SQNR associated with each of 
these numeric representations.  SQNR is quantified as 
follows: 
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where Vi represents the peak value of an input sinusoid, 
and the quantization error is uniformly distributed 
between Vi and Vi+1, the next largest input value that can 
be represented in the number system.  We start with the 
SQNR for the 16-bit integer representation, shown in 
Figure 2.  This is followed by the 9-bit logarithmic 
representation in Figure 3 and three of the floating-point 
representations in Figure 4. 
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Figure 2.  SQNR for 16-bit linear representation. 

Figure 2 illustrates a major issue with the 16-bit 
linear number representation.  While the signal-to-noise 
requirements for understanding speech are fairly constant 
across the available dynamic range, the SQNR of a linear 
representation varies significantly across the range.  For 
low-level signals, SQNR is near 0 dB, well below the 30 
dB required, and for high-level signals, SQNR is near 100 
dB, well above what is needed.  This points to 
opportunities for improved numeric properties with 
alternate representations. 
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Figure 3.  SQNR for 9-bit logarithmic 
representation. 

Figure 3 illustrates one of the strong points of a 
logarithmic representation.  Here the SQNR closely 
matches the requirements for understanding of human 
speech.  It is flat at just over 30 dB over the entire 
dynamic range of representable values. 

Figure 4 shows the SQNR for floating-point 
representations with 4, 5, and 6 bits in the mantissa.  
Although all three plots are for representations with 5 bits 

of exponent, the results for 4- and 6-bit exponents are the 
same.  This is because the SQNR is not a function of the 
number of bits in the exponent, it is only a function of the 
number of bits in the mantissa.  At a course level of 
observation, the SQNR stays relatively flat over the 
dynamic range of the representable values.  At a finer 
level, however, the SQNR is seen to vary in a sawtooth 
fashion.  This variation is due to the uneven quantization 
effects associated with changing one count in the mantissa 
versus changing one count in the exponent.  The 
suitability of floating-point representation is still strong, 
however, as the SQNR can be closely matched to the 
needs of the application by simply choosing an 
appropriate number of bits in the mantissa. 
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Figure 4.  SQNR for three floating-point 
representations. 

2.2. Computation Structures 
 

The computation structure for a linear multiply-
accumulate (MAC) unit is fairly traditional.  Our design 
uses a Baugh-Wooley multiplier [9] to minimize power 
consumption for the multiplication operation and a 
standard adder leading into the accumulation register. 

The MAC design for the logarithmic number 
representation is shown in Figure 5.  In the figure, the 
input data is provided on the X and C inputs (typically X 
represents input signals and C represents filter 
coefficients).  The multiplication operation is performed 
via the adder in the upper left corner of the figure.  The 
multiplication result is compared with the current contents 
of the accumulator, and if the difference between the two 
is sufficiently large, the look-up table is bypassed and the 
larger of the two values is used as the new accumulation 
result.  If the multiplication result and the current 
accumulator contents are sufficiently close to one another, 
the look-up table is accessed to determine the new 
accumulated value. 

In the design of the look-up table, we exploit the 
following relationship: 

 

)1log()log()log( a
baba ++=+  

 



  

which, since b/a can be calculated via a subtraction, 
enables us to further limit the size of the look-up table.  
Essentially, the look-up table calculates the second term 
in the above expression. 

 

Figure 5.  Functional block diagram of the 9-bit 
logarithmic MAC. 

The structure of the floating-point MAC units is 
shown in Figure 6.  As with the linear representations, the 
floating-point units are fairly traditional in design.  The 
unit shown is for a 5-bit exponent and a 5-bit mantissa; 
however, the structure of the unit does not change for the 
other floating-point representations. The floating-point 
MAC units operate as follows: the data input and 
coefficient are separated into their three parts: sign bit, 
exponent bits, and mantissa bits; the mantissa bits are 
multiplied together using partial products, while the 
exponents are added; the sign bits are combined using an 
exclusive-or function to give the sign of the multiply 
result; next, the mantissa of the resulting multiply is 
normalized and the exponent is adjusted appropriately. 

 

Figure 6.  Functional block diagram of the 5-5 
floating-point MAC. 

The result of the multiply is compared to the current 
output of the accumulator register.  First, the mantissa of 
the number with the smaller exponent is shifted, in 
preparation for the add, such that both numbers have the 
same exponent.  The shifted mantissas are then added 
together and the result is normalized, again adjusting the 
exponent appropriately.  The final result is then latched in 

the register when the controller asserts the Latch Enable 
signal. 

In order to verify correct operation for each of the 
designs, a behavioral “golden model” was created using 
National Instruments LabVIEW™.  The VHDL designs 
were simulated using Mentor Graphics ModelSimTM, and 
the results compared to the behavioral model.  Each MAC 
unit was then synthesized using Mentor Graphics 
Leonardo Spectrum™, targeting the ASIC Design Kit 
standard cell library (available through the Mentor 
Graphics Higher Education Program [10]) for the AMI 
Semiconductor 0.5 micron VLSI integrated circuit 
process. 

 
3. Modeling Power Consumption 
 

For current process technologies, the primary 
component of power consumption is the power required 
to charge and discharge the gate, drain, and interconnect 
capacitance associated with each signal node.  For an 
individual signal node, the power can be expressed using 
the classic equation: 

2
2
1 fCVP = , 

where f is the frequency with which the signal changes 
state (i.e., transitions from 0 to 1 or 1 to 0), C is the 
capacitive load on the signal, and V is the voltage swing 
of the signal transition.  Expanding this equation to 
support multiple signals is straightforward: 

∑
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=
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i
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2
2
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Here, we are expressing the power consumption for n 
nodes, Ci is the capacitive load on node i, and αif is the 
signal transition frequency for node i, expressed as the 
product of f, the clock frequency for the circuit as a 
whole, and αi, the fraction of clock cycles for which node 
i has a signal transition. 

Knowledge of the actual values of capacitance for all 
n signal nodes in a circuit is not readily available during 
the point in the design process for which we would like to 
perform comparisons of the power consumption between 
candidate designs.  As a result, it is common practice to 
make a few simplifying assumptions to the above 
equation that will enable power consumption comparisons 
earlier in the design cycle.  Assuming the following: 

1. for a gate-level representation of the circuit, 
the signal transitions at gate outputs are 
representative of the signal transitions for all 
signals, both internal and external to the 
gates, and 

2. the load capacitance associated with each 
signal is the same, 

we can simplify the above power expression to 
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C is now the average value of load capacitance and the 
ratio n/m, where m is the number of gate outputs and n is 
the total number of signals, scales the power to account 
for not including the internal gate signals in the 
summation.  The first 5 terms of the power expression 
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1  do not significantly change from one 

design candidate to the next.  The upshot of this 
simplification is that it is now feasible to estimate the 
(relative) power consumption of several candidate design 
options by comparing just the summation expression in 
the above power equation.  The values for m and αi are 
readily available from discrete-event logic simulations of 
gate-level designs. 

Given the gate-level designs that resulted from the 
synthesis described above, the following tools (all from 
Mentor Graphics) were used for the remainder of the 
design and analysis.  ModelSimTM was used for discrete-
event logic simulation of the gate-level designs.  IC 
Station™ was used to perform automated place-and-route 
(the resulting layout for the 5-bit exponent, 5-bit mantissa 
floating-point MAC is shown in Figure 7).  Finally, we 
extracted the layout in IC Station™ and ran Mach PA™ 
to analyze power consumption.  Mach PA™ takes a test 
vector input file, generated by the “golden model,” which 
contains both the inputs and expected outputs.  It 
performs a continuous circuit simulation of the design 
(numerically solving the differential equations that 
describe the circuit operation), compares the simulated 
output values with the expected outputs (reporting any 
discrepancies, if present) and provides highly accurate 
current usage.  With knowledge of the average current, I, 
power consumption is straightforward to calculate: 

 
IVP = . 
 

Upon completion of the design process, we have the 
ability to perform both discrete-event logic simulations of 
each MAC unit using the gate-level model and continuous 
simulations of each MAC unit using the circuit-level 
model.  The input vectors come in two forms: a set of 
random inputs (uniformly distributed over the full 
dynamic range of the number representation) and a 21-tap 
finite-impulse response bandpass filter used to filter a 
representative speech sample (drawn from one of the 
sentences in the SPeech In Noise (SPIN) audiological test 
for human speech understandability).  Each discrete-event 
simulation required about 10 min. to execute, and the 
continuous simulations each had execution times of 8 
hours or more.  The discrete-event simulation was 
executed with both input vector sets for all numerical 

representations, and the continuous simulation was 
executed for a representative subset of the input vectors 
and numerical representations. 

 
Mentor Graphics IC Station Layout for the 

5-5 Floating-Point Representation
Mentor Graphics IC Station Layout for the 

5-5 Floating-Point Representation

 

Figure 7.  Standard-cell layout for floating-point 
MAC unit. 

 
4. Simulation Results 
 

The appropriateness of using the more abstract 
discrete-event model for evaluating power consumption is 
examined in Figure 8.  The power consumption results 
from the continuous model are plotted against the signal 
transition counts from the discrete-event model.  Note 
that, strictly speaking, transition counts are an energy 
measure rather than a power measure; however, as long as 
the number of clock cycles is consistent, power and 
energy are linearly related and either can be used.  The 
results from 10 distinct experiments are shown, including 
5 random input sets and 5 speech input sets.  The 
numerical representations include the 9-bit logarithmic 
representation, the 16-bit linear representation, and 
several of the floating-point representations.  Also shown 
on the plot is a least-mean-squared error linear curve fit to 
the data, used below to generate estimated power from 
transition counts. 

The conclusions that can be drawn from this graph 
are quite clear.  Although the fidelity is not perfect, signal 
transition counts that are measured from the discrete-
event simulation model are an excellent predictor of the 
power consumption that is measured from the continuous 
simulation model.  This is true independent of input data 
set or structural design of the MAC unit.  The standard 



  

deviation in the error between the transition counts 
estimating power and actual power (from the continuous 
simulation) is 0.9 mW. In the results that follow, we 
report data based on signal transition counts, the discrete-
event simulation output. 
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Figure 8.  Continuous vs. discrete power models. 

Figure 9 presents the relative power consumption (as 
estimated power and labeled with signal transition counts, 
in millions) for the eleven different numerical 
representations for the experiments with random input 
vectors.  Figure 10 presents the same information for the 
experiments with speech input vectors. For random input 
vectors, the improvement in power consumption for the 
customized numerical representations (vs. the 16-bit 
integer representation) is quite dramatic, up to an order of 
magnitude better for the 9-bit logarithmic representation 
and power savings ranging from 25% to 60% for the 
various floating-point representations.  As one would 
expect, the drop in power consumption is more dramatic 
for number representations that use fewer bits.  

The power savings for speech inputs are not as 
dramatic, but are still significant.  The 9-bit logarithmic 
representation again provides the greatest improvement, 
requiring only 27% of the power as the 16-bit linear 
representation.  Essentially, the integer representation 
requires 3.7 times more power to perform the same 
function as the logarithmic representation.  For small 
exponent, small mantissa floating-point representations, 
the power is now somewhat competitive with the 
logarithmic representation; however, the larger exponent, 
larger mantissa floating-point representations are near (or 
even exceed) the power consumption of the integer 
representation.  

The results indicate that the power consumption of a 
MAC unit is clearly dependent upon the inputs used to 
exercise the system.  The fact that the logarithmic 
representation has such a low power consumption for the 
random input vectors is attributable to the design 
optimization that enables the look-up table to be bypassed 
for accumulation operations that have input values 
sufficiently far apart in value.  Since the random input 

vectors are uniformly distributed across the dynamic 
range, this bypass opportunity will be exercised much 
more frequently than is the case for speech signals.  The 
improved power consumption for the linear representation 
when operating on speech signals can be attributed to the 
same fact.  Since the speech signal amplitude is 
significantly less than the peak value of the dynamic 
range, the high-order bits of the integer MAC unit stay 
relatively stable for the speech input and are active for the 
random inputs. 
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Figure 9.   Relative MAC unit power 
consumption, random input vectors. 
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Figure 10.  Relative MAC unit power 
consumption, speech input vectors. 

Overall, the numerical properties and minimum 
power consumption associated with the 9-bit logarithmic 
representation point to it as the best option (of those 
considered) for our motivating application, digital hearing 
aids. 

 
5. Conclusions 
 

This paper has presented a comparison of two distinct 
simulation models for estimating the power consumption 
associated with custom numerical representations for 
audio signal processing applications, indicating that the 
less computationally intensive discrete-event simulation 
model is quite adequate for relative power consumption 
comparisons.  We have also contrasted the power 
requirements for multiply-accumulate operations 
implemented using eleven different numerical 
representations, including a 16-bit linear representation, a 
9-bit logarithmic representation, and nine floating-point 
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representations, ranging from 4 to 6 bits in the exponent 
and 4 to 6 bits in the mantissa.  Overall, the logarithmic 
representation has the lowest power requirements for both 
random input vectors and speech input vectors. 

Although the specific results presented here are 
limited to a small range of numerical representations, the 
general message is much broader.  With the ready 
availability of ASIC fabrication, rigid, fixed-function 
computational hardware is no longer a necessity of 
modern digital system design, and significant power 
savings can result if the requirements of the application 
are used to specify the properties of the numerical 
representation.  While this work was initially motivated 
by the needs of digital hearing aids [1,2,3], it is applicable 
to a wide variety of digital signal processing applications, 
such as cellular telephony, etc. 

Our current work is expanding the investigation to 
include alternate designs for the floating-point 
representations (e.g., no longer restricting the 
representation to an excess notation for the exponent and 
signed-magnitude for the mantissa) and a wider set of 
computations (e.g., including the non-linear amplification 
functions of [3]). 
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