
Computer Supported Cooperative Work 12: 297–327, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

297

Recomposition: Coordinating a Web of Software
Dependencies

REBECCA E. GRINTER
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA (E-mail:
beki@parc.com)

Abstract. In this paper, I revisit the concept of recomposition – all the work that development
organizations do to make sure that their product fits together and into a broader environment of
other technologies. Technologies, such as Configuration Management (CM) systems, can ameliorate
some of a software development team’s need to engage in recomposition. However, technological
solutions do not scale to address other kinds of recomposition needs. This paper focuses on various
organizational responses to the need for recomposition. By organizational response, I mean how
individuals engage in recomposition so that the organization can assemble software systems from
parts. Specifically, I describe how those responses are manifested in the day-to-day communications
and responsibilities of individuals throughout the organization. I also highlight how changes in an
organization complicate recomposition. The paper concludes with a discussion of three features of
software development work that are revealed by recomposition: the affects of environmental disturb-
ances on development work, the types of dependencies that require recomposition, and the images of
organizations required to manage the recomposition.

Key words: empirical studies, recomposition, software development

1. Introduction

Given the highly collaborative nature of software development, it is not surprising
that it has attracted the attention of researchers interested in computer supported
cooperative work (CSCW). Most commercial software development requires tens,
hundreds and even thousands of people – typically spread among numerous loca-
tions – working together to produce the final product. Moreover, since it requires
computers to build software the environment is rich with technologies that support
development work. These technologies range from purpose-built systems, such
as configuration management tools, to general tools such as group calendars.
More recently, open source movements have shown that Internet technologies
such as e-mail can facilitate development (Mockus, Fielding and Herbsleb, 2000).
For CSCW researchers, software development provides opportunities to study
interactions among developers that may be mediated by a range of technologies.

For these reasons, and others, researchers have produced a sizable literature
about software development practices.1 Researchers have studied many aspects of
software development work. Studies of meetings have highlighted the cognitive

298 REBECCA E. GRINTER

and social aspects of collaborative design work (see for example, Bucciarelli,
1994; Herbsleb et al., 1995). Other studies have examined computerized and
paper-based technologies used to coordinate development (see for example, Palen,
1999; Whittaker and Schwarz, 1999). Finally, researchers interested in CSCW
and empirical software engineering have conducted longitudinal studies of project
coordination that span the entire development life cycle (see for example, Button
and Sharrock, 1996; Curtis, Krasner and Iscoe, 1988; Herbsleb and Grinter, 1999;
Potts and Catledge, 1996).

In this paper, I revisit the topic of coordinating development. However, I focus
on the work necessary to ensure that a software product can be assembled from
its component pieces, which I call recomposition (Grinter, 1998). Examination
of recomposition highlights the social relationships that arise among individuals
responsible for distinct, but related, software components. The paper begins by
introducing recomposition and its relationship to decomposition.

2. Decomposition and recomposition

2.1. MODULAR DECOMPOSITION AND DIVISION OF LABOUR

When researchers and practitioners met at the first conference about software
development – convened by the North Atlantic Treaty Organization (NATO) in
1968 – one discussion topic was coordinating the production of software systems
(NATO, 1969). One technique that would emerge as central to coordinating soft-
ware development was taking form at the same time as that NATO conference.
Also in 1968, Melvin Conway published a paper arguing that the structure of
software systems tended to mirror the communications structure of the committee
that designed it (Conway, 1968).

This relationship between software and the organization that builds it – known
today as Conway’s Law – would become a cornerstone of the process of modular
decomposition. One of the earliest proponents of modular decomposition was
David Parnas. Like Conway, Parnas recognized the relationship between a software
system and a division of labor. Unlike Conway, Parnas used this relationship to
argue how to design software systems. As Parnas said in his paper that described
the criteria for systems decomposition:

In this context “module” is considered to be a responsibility assignment rather
than a sub-program. (Parnas, 1972, p. 1054)

For Parnas, modular decomposition was the process of deciding how to break apart
a problem into small pieces that individuals could build. He argued that this process
would create efficiencies in development because:

development time should be shortened because separate groups would work on
each module with little need for communication. (Parnas, 1972, p. 1054)

These efficiencies would only arise when each module had certain technical prop-
erties. Two concepts that became a part of good modular decomposition were

SOFTWARE DEPENDENCIES 299

coupling and information hiding. Coupling focuses on the relationships among
modules and argues for reducing those dependencies. Specifically, decomposition
should produce a design that makes each module as independent as possible from
others.

Parnas’ concept of information hiding also emphasizes creating an easily under-
stood separation among modules by using interface specifications. Each module
has a specified interface that allows other modules to interact with it. Information
hiding is the process of designing these interfaces so that other modules can use
the functions provided, but do not know how those functions are implemented. The
advantage of this approach is that developers only need to know what results the
module generates, and what data it needs to be passed, and the rest happens without
their knowledge. Information hiding exemplifies “good” modular design because it
separates implementation dependencies between modules, one developer does not
have to know how a module works to interact with it, they only need to know the
function that that module provides and how to pass data to it.

Today, modular decomposition is widely recognized as being the correct
approach to software design. Books teaching software engineering to undergradu-
ates advocate modular decomposition because supports the goal of achieving
a design that embodies properties such as low coupling (Ghezzi, Jazayeri and
Mandrioli, 1991). Moreover, modular decomposition and information hiding have
also become practice by becoming embedded in object oriented programming
languages (Sommerville, 1996). With contemporary languages such as C++ and
Java being object oriented, many people find themselves using modular decomposi-
tion to achieve good software design.

With the adoption of modular decomposition came the division of labor orga-
nized around modules. However, the focus on this relationship was lost. Software
developers and researchers adopted modular decomposition for its technical advan-
tages. Over time the connection between the decomposition of code and the
division of labor was largely lost in software engineering writings. Consequently,
development proceeds with surprisingly little attention paid to how the division
of labor determined by decomposition creates systematic coordination needs that
influence the entire development process.

2.2. DEPENDENCIES AND RECOMPOSITION

Despite the widespread adoption of modular decomposition, empirical studies of
software development suggest that developers still spend time coordinating their
efforts (Curtis et al., 1988; Herbsleb and Grinter, 1999). One study of collo-
cated developers suggests that they spent 15% of their time communicating with
colleagues about shared problems (Perry, Staudenmayer and Votta, 1994). More
recent studies suggest that the length of time it takes to coordinate develop-
ment rises sharply when developers are geographically remote. In fact, a study
of geographically distributed development suggests that remote developers take

300 REBECCA E. GRINTER

almost three times as long to resolve a problem as their collocated counterparts
(Herbsleb et al., 2000).

Empirical evidence suggests that despite modular decomposition techniques
developers still need to coordinate with each other. One reason that developers
need to communicate and coordinate is that their code contains technical relation-
ships known as dependencies. Dependencies among modules can take a number
of forms. For example, if module A passes a variable to module B, then module
B depends on A to give it that type of information. Another type of dependency
occurs when module A has information that B needs in order to compile. Then A
must be compiled before B. One of the hardest kinds of dependency to find is when
module A generates a certain behavior during program execution which module B
needs to function. This last case is known as a run-time dependency, and is hard
to see because there may be scant evidence of this relationship in the written code
itself.

Dependencies occur among modules for at least four reasons. First, designers
define some dependencies during the decomposition process. Modular decomposi-
tion did not argue that the need to communicate would disappear. Rather, it argued
that the need would be reduced, and those communications would be focused
on various aspects of the software. For example, if developers use information
hiding they would still need to coordinate with others about the interface specifica-
tions.

Second, dependencies arise when software cannot be completely decomposed.
Real-time hardware-embedded software systems prove difficult to decompose into
modules because of the real-time and hardware constraints imposed on the solution
space. For example, to meet real-time requirements it may be necessary to have one
module “look inside” another rather than wait for interface communications. This
kind of design trade-off – between good design and performance – can lead to
increased dependencies among modules. However, outside this domain, this rarely
creates problems. In theory, full modular decomposition can be achieved.

Third, legacy code can complicate the decomposition process and increase the
number of dependencies. Decomposing new problems onto a base of existing code
can be compared to retrofitting or an extending an existing house as opposed
to building a new one. Since many products have more than one life cycle –
as enhancements and revisions are added over time – so the amount of “legacy
code” increases. However, legacy code also means that the design process becomes
constrained by what ever already exists. As software systems evolve their purpose
can change, making the original design – while good for the original product – less
optimal for the current incarnation. In addition, dependencies may arise when the
new software has to interact with the old software in order for the final product to
remain compatible with older versions of the system already in use.

Fourth, software requirements change during the development life cycle (Curtis
et al., 1988). As these requirements change so developers add, modify, and delete
pieces of the code. Each time a piece is changed, any dependencies it has with

SOFTWARE DEPENDENCIES 301

other pieces can change. Clean and simple interfaces may be transformed into more
complicated ones as dependencies accommodating changes in the desired feature
set are added. In other words, although dependencies are defined during design
they evolve throughout development. Dependencies arise for at least four reasons:
as part of decomposition, when problems are not amenable to modularity, if legacy
code compromises the process, and as requirements evolve during development.
For all these reasons and others software ends up with dependencies among its
components (Parnas and Clements, 1986). From the perspective of understanding
collaborative work, these dependencies become more interesting when they span
modules that are owned by different developers.

When dependencies span modules owned by two or more developers then those
developers have to coordinate and communicate their actions with each other well
enough so that everyone has a shared understanding of what exactly is being
worked on. For example, when two developers own modules that interact – A
passes variables to B and B returns a function – then the developer working on
A has to know what type of variables B expects to get from A and B has to know
what form to return the answer in. This may get specified in the original design, but
as A and B work on their respective modules they need to ensure that if they make
any changes to the original agreements that they communicate that to the other. If
they fail to coordinate their actions sufficiently then one possible consequence is
that their modules A and B will not work together. In simple cases they will cause
the program to stop running. In more difficult cases they will actually interact but
produce strange and unexpected results that may only appear in another part of the
program later on.

This work – of coordinating and communicating enough to maintain a shared
understanding of the dependency – is recomposition. Developers who share a
dependency have to share enough information among the dependent developers
so that they all have the same understanding of the problem that they are solving
together, how their modules fit into the overall solution, and how this solution
affects their individual modules. I call it recomposition to emphasize its relation-
ship to decomposition. Decomposition encourages developers to focus on their own
modules having decomposed them from the overall program. Recomposition is all
the work that individuals have to do to understand how their modules fit into the
overall software system. Moreover, while decomposition may occur once at the
beginning of the current development life cycle, recomposition occurs throughout
the remainder of the development effort.

2.3. TECHNOLOGY AND RECOMPOSITION

Configuration Management (CM) systems are a technological solution to the
challenge of coordinating dependencies (Grinter, 1998; Tellioglu and Wagner,
1997). They help “small groups” of developers to coordinate their work in a variety
of ways.2 In addition to performing an automated assembly of all the code inside

302 REBECCA E. GRINTER

an instance of the system – the build – some CM systems can help developers
determine whether their code depends on others.

However, even with a CM tool, developers usually need to spend time coordi-
nating dependencies with their co-workers. For example, to coordinate a change
developers must determine what each person has done to their own code, how
their revisions influence other people’s code, what combined functionality has been
produced, and whether that reflects the desired end-state (Grinter, 1998). All of
these discussions focus on a coordination work that arises from the need to align
modules that must function together as a system – recomposition.

Despite this need to coordinate changes, smaller companies still have a rela-
tively easy time managing dependencies. Small companies with 30 developers may
be able to put their code into a couple instances of a CM system (perhaps taking
advantage of an architectural separation in their code) and manage the cross subsys-
tems dependencies by the simple fact that all the developers know each other. Tool
Corp, who I will introduce in the next section, was one such company.

Companies with bigger development projects have more difficulties coordi-
nating dependencies among subsystems. Some of the difficulties arise from the
fact that these companies have more subsystems to manage, and each subsystem
can be fairly large itself. On top of those difficulties, Comms Corp and Computer
Corp who I introduce in the next section had another challenge in managing their
dependencies. They both had projects that had been evolving for upwards of twenty
years. Some of their current dependencies stemmed from the fact that they were
retrofitting their software to provide functions that it was not originally intended
for. But Comms Corp also had young projects that contained dependencies among
subsystems, which required considerable coordination.

Both companies had a variety of solutions in place to coordinate their depend-
encies. Despite their current solutions, managers in both companies were aware
of the challenges of dependencies that spanned subsystems. Moreover, they were
interested in improving the overall process. As two different managers put it:

We’re thinking of starting an initiative that would be a whole task force or
specially chartered group to examine dependencies. Just because you know
that is such a hard problem for people because it bites, its enterprise wide
dependencies, right so how do you manage them, well right now we don’t
manage it, we stumble over it, and try to solve it every dependency one at a
time. Senior Manager, Computer Corp.

Our problem is beyond the scope of a single database. We’re going to need
upwards of ten possibly . . . and we don’t have visibility across databases as we
speak today. Manager, Computer Corp.

In this paper, I describe the current solutions that Computer and Comms Corp
used to coordinate dependencies. Specifically, I describe how individuals took on
informal and more formal communications and roles to manage recomposition and
how successful these strategies were.

SOFTWARE DEPENDENCIES 303

The rest of the paper is organized as follows. First, I describe the sites and
methods used. Then I describe the two ways of managing recomposition: commu-
nications and organizational roles and groups. Finally, I show how any way of
managing recomposition can be complicated by changes within the organization
itself. The paper concludes with a discussion about what recomposition comprises
and how individuals in the organization conceive of the organization in order to
engage in recomposition.

3. Sites and methods

3.1. SITES

The data presented in this paper come from three companies. I used two criteria for
site selection. First, the companies had to produce software commercially. I wanted
to study corporations who sold their software – either “shrink-wrapped” or bundled
with hardware – and had customers for their products. Second, these corpora-
tions had to be willing to host a researcher, sometimes for extended periods of
time.

Tool Corp is the vendor of a configuration management (CM) tool. At the
time, they were finishing a new release of the product as well as an upgrade to
an existing version. Both products contained code from prior systems. During my
time there Tool Corp. grew from 14 to 18 developers and their product consisted
of 1 million lines of code (LOC). I spent three months on site and conducted over
100 interviews there.

Computer Corp is a large computer company that produces a real-time operat-
ing environment. They employ 700 developers who are distributed across a number
of sites in the US and other continents. Their product suite consists of around 10
million LOC. I conducted 14 interviews with developers and spent three days on
site.

Comms Corp is a telecommunications equipment company that builds and sells
a range of telephony products. In this paper I draw on data gathered on three
products Alpha, Beta, and Shape. The products span a range of telecommunications
functions. Beta was a large system with approximately 50 million LOC, and the
other two were smaller systems that contained approximately 2 million LOC. I
spent approximately six months gathering data on each project. Data was largely
drawn as an active participant on these projects, where I consulted on integration
procedures. My role involved attending meetings with a range of individuals across
the project, conducting some interviews especially where there were gaps in my
knowledge and participating in integration planning activities.

3.2. METHODS

A qualitative approach was used to gather and analyze data from all the sites.
Data were collected using forms of observation and interviewing. At Tool Corp

304 REBECCA E. GRINTER

and Comms Corp. I conducted participant observation, non-participant observa-
tion, and interviews. The participant observation did not consist of writing code,
instead I helped by conducting usability analysis, reviewing system architectures,
facilitating project retrospectives, and process design. At Computer Corp my site
access was limited to interviewing and the only observation I conducted was while
I remained on site.

Most of the interviews were semi-structured. They relied on an interview guide
that directed questioning towards recomposition, but allowed the individuals time
to talk about their own coordination problems. In addition to observation and inter-
viewing, I also gathered supplemental materials. These materials included project
documentation, organizational information, and systems overviews.

I used the Grounded Theory method of developing explanations of practice
from qualitative data (Strauss and Corbin, 1990). In this case, I wanted to know
more about how large software projects are coordinated, who by, and using what
technologies and procedures. Grounded Theory consists of cycles of data gather-
ing followed by analysis. The analysis drives the next cycle of data gathering by
extending, modifying, and contradicting the current explanation of the phenomena
under investigation. Data gathering ceases when new cycles fail to change the
explanation, which then becomes the Grounded Theory.

Moreover, as Strauss argued, it is possible to then take the newly developed
Grounded Theory of events, and try and apply it to understanding other data
gathered using Grounded Theory methods (Strauss, 1987). I visited the first two
sites described – plus several others not discussed here – to learn about the
phenomena that would eventually become the concept of recomposition. I entered
Comms Corp, the third site described, with the goal of learning whether recomposi-
tion work permeated other parts of the development process. I also gathered data
at Comms Corp that extended and revised my Grounded Theory of recomposition
itself.

4. Using communication to coordinate dependencies in larger projects

One approach to managing the difficulties of coordinating software dependencies at
assembly time was to communicate about them prior to assembly. Communications
about dependencies was a method to try and prevent the assembly process from
breaking by discussing changes. In this section I describe two approaches used to
communicate changes: broadcast and meetings.

4.1. BROADCAST

Broadcast was the crudest method either company used to coordinate dependen-
cies. Specifically, developers would broadcast changes they made to their code to
others who depended on their work. The broadcaster hoped that other developers

SOFTWARE DEPENDENCIES 305

would make any necessary adjustments to their code. Broadcast typically involved
e-mailing out notifications about changes that could affect others.

We use e-mail and some more informal things where you just know because
you’ve been around a long time. You tell everyone that you know who would
be impacted that they’re getting impacted. Developer, Computer Corp.

Broadcast was a quick, informal way to communicate changes among individuals
who knew each other. However, its usefulness was contingent on knowing everyone
to contact. As one developer described:

I’m creating code and I don’t know who uses it, I know a few people cause
they complain when its broken, but there are always more like if I send out a
mail message saying well we’re obsoleteing this kernel component we’re not
going to produce anymore then people come out of the woodwork you know I
get totally shocked at the number of developers that over time you know just
sort of this has infiltrated into other subsystems. Developer, Computer Corp.

While developers on small projects could send out “global” e-mail to the entire
project, this was not acceptable for larger projects. For the largest projects, global
e-mail would have meant sending notes to upwards of 5000 people. In addition to
consuming corporate network bandwidth, many developers would have regarded
the message as spam e-mail, and that deterred developers from sending these
messages out.

4.2. MEETINGS

Projects at Computer Corp and Comms Corp did not use broadcast very often.
A much more common approach to communicating about dependencies prior to
software assembly was to have a meeting. Meetings have had a long history of
being used as a genre for reporting information about the state of work (Yates,
1989). Both Comms Corp and Computer Corp used some meetings to report about
the state of the development work and feed that information up. It was those same
reporting meetings that were used as occasions to discuss problems in the state of
work created by dependencies.

The Network Project at Comms Corp illustrates the use of meetings to
coordinate dependencies. The Network Project consisted of 3000 developers
who worked on a collection of elements that collectively provided a type of
telecommunications network. The architecture of these elements was distributed,
each providing a specialized piece of the overall function. The 3000 developers
were organized into departments. Each department would have responsibility for
one part of one element of the network, since the parts were big enough that they
would require 300 developers and a department consisted of roughly 150 people.

Alpha was one part of one element in the Network Project and a corresponding
department of developers. I joined the department head of Alpha for her meetings.
The first one was a meeting of the department head and her team leaders (each

306 REBECCA E. GRINTER

team leader had approximately 7–15 development staff that reported to him, and the
department head had 10 team leaders that reported to her). Each team leader owned
several software functions that their team implemented. Collectively, the team
leaders owned code that interoperates with each other, to produce functions that
the department head had responsibility for delivering to the Network Project. Field
notes from two of these meetings illustrate how dependencies got coordinated:

8:30 a.m. Alpha Weekly Meeting. Everyone has a two-page spreadsheet that
contains a list of items in 8pt font. Each row is a system function; each column
a version of the system the department head has responsibility for. The purpose
of the meeting is to review the status of each function with respect to each
version of the system. A few of the boxes are already filled in, letting everyone
know whether the function is implemented for the release. The goal of this
meeting is to fill in the rest of the boxes.

10:30 a.m. The meeting is not finished, but must be adjourned, since the
department head has another meeting. The spreadsheet remains incomplete.
The discussions have been of several forms. Some team leaders announce that
they have delivered functions. The box gets marked “ready.” Software that
does not work receives more discussion. In some cases, the software depends
on hardware or other software from other groups outside the department. The
department head takes an action item to “rattle some cages” to ensure that her
schedule does not get delayed by non-functional code any further. The cases
where one team leader depends on another team leader’s code and there are
problems (non-delivery, technical incompatibility between the two groups) get
two responses. One response is a lengthy discussion of the technical difficulties
of the current work. This often gets the other team leaders into longer debates
about different technical solutions that might be tried. Others are not discussed,
the team leader acknowledges that he has spoken with either just the team
leader, or with the leader and the department head. Nothing is written in the
box. Nothing more is said publicly.

10:40 a.m. Network Project Monthly Meeting. The department head arrives
at the monthly project status review meeting. The meeting consists of all
the department heads and their boss, the Vice President. The purpose of this
meeting is to coordinate the progress of Network Project. The department head
distills the information from the previous meeting to an appropriate level for
this meeting. She lines up her items for discussion. Unlike the previous meeting
there is no spreadsheet for discussion and not all the people are physically
present in the room, instead there are about 20 people in the room and an
unspecified number on conference call – including the Vice President – from
other states and other countries.

12:30 p.m. The meeting ends. The Vice President wraps up. Each department
head has delivered a summary of the progress of the software. The depart-
ment head for Alpha describes the technical decisions that her department

SOFTWARE DEPENDENCIES 307

is considering. She mentions delays that come from outside her department
when they refer to hardware or software shipments that come from outside the
corporation as a whole. This garners widespread support from her colleagues,
many of who have also been waiting for a certain hardware delivery. Delays
from sources outside her department, but within the span of the Vice Presi-
dent’s management, are not mentioned in the course of the meeting. Instead,
she approaches these department heads and has brief conversations with them,
either in the hallway afterwards or quietly in the back of the room during the
meeting itself. She explains to me that the corporate culture does not approve
of formal problem escalation until peer resolution fails to work. I do not see
any cases where informal problem resolution has failed, but she tells me some
“war stories” about when that does happen.

The purpose of both meetings was to discuss progress made towards implementing
various software components. In both meetings, software progress was discussed in
terms of delays to progress. The nature of the delays was sometimes independently
hard problems that someone, a team leader or a department head just needed to
work though. Many times delays resulted from some form of dependency. Some-
times it was delays in receiving other components that held up progress. Sometimes
the delays arose because a developer was making progress on their own work and
then for reasons they didn’t fully understand they were receiving messages from
people testing their code that it did not function anymore. Often the process of
debugging previously working code lead to the realization that someone else had
changed their code.

In the case of working software, Alpha’s weekly meeting provided a forum for
team leaders to announce successful completion of software for a release. For the
other team leaders it was an opportunity to find out whether they could use that
software in their own testing to ensure that their code worked together. In other
words, it was a means for the teams to align their individual efforts with other parts
of the Alpha product.

In the case of non-working software, the weekly meeting was also an oppor-
tunity for each team leader to engage the department head in resolving dependen-
cies that were outside the department. When those dependencies came from outside
the corporation it was an opportunity for the department head to make a note of
them for discussion at the monthly meeting. When those dependencies came from
another department working on the Network Project it was an occasion for the
department head to work on a solution. In this particular instance the department
head had an immediate opportunity to do so because she attended the monthly
immediately afterwards. When the monthly review did not immediately follow
the weekly review, she would return to her office and begin scheduling individual
appointments with her peers to discuss delays. She did this face-to-face over lunch
when she could, but in some cases her peer was in another state or continent and a
phone call had to do.

308 REBECCA E. GRINTER

The weekly meeting also forced other kinds of dependency resolution or recom-
position work among the team leaders. Team leaders (and the department head)
knew that the “corporate culture” of the company meant that they should speak with
their counterpart before engaging the department head. The process of engaging
a more senior manager was known as “escalation” and implied that all possible
negotiations among peers had not resolved the dependency, and that there were
problems with that dependency that had to be made visible to management.

Sometimes team leaders self-reported that they were delaying other people with
particularly difficult problems. Open admissions tended to occur when a delay had
only just emerged. Early admission, with a precise technical description of the
complexity of the problem, often appeared to encourage the other team leaders who
depended on this code to help out with suggestions for possible design solutions.

The Network Project’s monthly meeting shared two common features with the
Alpha weekly meeting. First, the department heads were comfortable discussing
delays that came from outside the corporation. Second, the same “corporate
culture” also kept department heads from discussing delays in their own progress
bought about by delays or difficulty with another department head’s code. Again,
it would have constituted “escalation.”

However, the two meetings also differed. In the Network Project monthly
meeting no-one seemed to openly discuss difficulties that were caused by delays
that stemmed from another part of the Network Project. These were discussed
privately. The Network Project meeting also had a lack of cohesion, which arose
from the combination of having some people present and others on conference
call. This, of course, facilitated the necessary private in-meeting discussions among
department heads that shared a need to coordinate a dependency discretely.

Both meetings were a significant part of the process of coordinating change
across subsystems owned by different team leaders and different department heads.
For team leaders, the weekly project meeting caused them to talk with other team
leaders to try and resolve problems. Those team leaders would then communicate
back to individual developers that problems were communicated (in the case of the
person reporting the problem) and that a problem needed resolution (in the case of
the developer who’s code was related to the person reporting the problem).

The monthly meetings were an opportunity for Alpha’s department head to
discuss dependencies with the other department head that owned the other side
of the dependency in question. Based on discussions with her peer she would get
information that she could then take back to her department and report down to the
relevant team leader. However, the Alpha department head did not use the weekly
project meeting to discuss the results of any discussions with other department
heads. She always discussed the conclusions with individual team leaders. This
was because sometimes it was Alpha department code that was the source of a
delay, and by discussing the problem privately she was avoiding making that team
leader’s code “visible.”

SOFTWARE DEPENDENCIES 309

Other projects in Comms Corp used meetings as a vehicle to communicate
and coordinate dependencies that spanned subsystems. Meetings, either public
and routine or private and individually scheduled, were used to ensure that the
message was communicated appropriately. By appropriately I mean that using
meetings for recomposition followed a set of expectations about how changes that
span subsystems owned by different individuals are managed. Rather than making
these changes highly visible, they need to be handled carefully, ensuring that good
vertical and lateral communications can be established, so that the problem can be
effectively resolved. “War stories” – which many people on the Network Project
and in Comms Corp – could tell me were a mechanism for ensuring that people,
such as myself, knew why these protocols existed.

5. Organizational roles to coordinate change

Both Computer Corp and Comms Corp also coordinated software development
activities by instituting various positions and groups within the organization. Some
of these groups had the “official” role of coordinating development work and
others did not. In this section, I examine the official and less official roles that
the organizations developed as a mechanism for coordinating dependencies among
software.

5.1. BUILD AND RELEASE GROUPS

People who performed build and release functions had roles assigned to them
by the organization that included coordinating dependencies. A “build manager”
was responsible for pulling together all the software for a subsystem. They were
typically assigned to projects where the code base was large enough that a configu-
ration management tool could not hold it all. The process of pulling all the code
together required that the build manager gather all the latest code from every
developer on the project, compile it together, and test it to see whether it worked.

When I worked in different groups that were larger we had a build manager
who did that for us and that was ideal in terms of when we said we were done
and we released our code and he captured it they put it some place and then
secured it. Developer, Computer Corp.

Beta was a product that had some extremely large components that were beyond
the scope of tool support. Beta, a project at Comms Corp, was a growing project.
It started with a few hundred people, but at the time of the study had at least 3000
headcount assigned. One part of Beta, Betalite, was sufficiently big that they also
had a build manager to coordinate their build.

The work to coordinate the build itself begins with considerable coordination
between the build manager and the development staff as the following excerpt from
field notes illustrates:

310 REBECCA E. GRINTER

9:30 a.m. The build manager for Betalite begins this week’s build process.
Rather than starting with compilation it starts with e-mail sent to the entire
staff of Betalite. Then he picks up a pencil and notepad and leaves his office.
We begin the process of walking around the development offices. At each office
that is occupied we stop and talk with the developer. The conversations take the
form of the developer informing the build manager what new code they know
about, including code of their colleagues who are away from their desks. Most
importantly the developers inform the build manager about whose changes he
must incorporate into the build if their own changes are going to work. In
other words they flag dependencies between their code and their coworkers.
The build manager takes notes. These notes consist of locations of files, new
functionality that has been produced since the previous build, and the names of
people who own any related code.

We spend the rest of the day walking around the building talking to
developers and crosschecking these dependencies as well as gathering new
ones. The day ends when the build manager returns to his office. He checks
his e-mail to see whether anyone else has sent notes regarding their work.
Scanning through his notes he determines what will go into the build. He takes
all the latest changes, except for those where it has been flagged that there is a
dependency but he has not been able to contact the other person or people who
share that dependency. He makes notes to inform them that their changes have
not made the build. His last acts are to set the build running and leave for the
evening.

The following day

7:00 a.m. The build has failed. The build manager looks through the error logs
generated to see whether he can determine what piece of code is responsible.
He then looks though the code that had been running at the time the build broke
to see whether he can spot the error. Nothing seems visible. Next, he contacts
the developer whose code was running when the build broke. He tells me that
he always starts with the person who owns the code, because even if it turns out
it’s not their fault, the developer knows that part of the system well and may
have good leads on where the problem has arisen.

9:00 a.m. We find the developer whose code was running when the build broke.
He joins us in the build manager’s office. They start to discuss the broken build.
The developer clearly does not want the problem to be in his own code – there’s
a stigma associated with being the person who broke the build – but at the same
time he also wants to know what the problem is since he may have to make
some changes to his own code. The build manager and the developer spend
some time discussing the logs and looking at the code. Eventually they decide
that the problem is that half a change from a related piece of code has gotten
into the build.

SOFTWARE DEPENDENCIES 311

10:00 a.m. A third developer arrives. This third developer joins the diagnosis
discussion about the problem. The three eventually conclude that the broken
build is a result of a mis-communication and no one is to blame. They had not
synchronized when the change would enter the build.

Or as a manager at Computer Corp succinctly put it:

What do they do? They just going around trying to figure out what the configu-
ration is, and how to build it, and why this build failed, that’s all they do.
Manager, Computer Corp.

The build function involved two kinds of coordination. First, the build manager
had to coordinate with each developer what should and should not be in the build.
Second, the build manager had to coordinate the resolution of any problems with
the build. Like Alpha developers and managers in the previous section, the build
managers at Comms Corp, and Computer Corp, did not initially raise the problem
beyond the developers concerned. Creating visibility for a broken build has social
implications in many companies.3

Further, by resolving the problem locally, the build manager got more informa-
tion about the cause of the difficulty. Behind a small problem was the opportunity
to gather more knowledge about the current structure of the product. The build
manager could use this knowledge in future build cycles.

Tool Corp, while small enough to manage their builds largely through auto-
mated processes, also had a build manager. At Tool Corp the build manager was
responsible for determining why a build broke. Although the automated systems
did a comprehensive job of reporting the point at which the system had failed – not
just what module was running, but what the “state” of the program was and what
the values of variables were if it failed during the testing after compilation – their
build person still needed to follow up with the developer responsible.

Tool Corp’s management used the build manager function as a training tool and
always assigned a new person to the role. It was a training opportunity because
the new person would, in the course of tracking down the reasons for broken
builds, meet many of the developers working on the project. The new person would
also come to learn the overall structure of the code and begin to understand the
dependencies that existed.

Tool Corp’s build manager had two functions, overseeing the build and the
release. This happened because each time that the build manager compiled and
tested the code they were in fact pulling together everything required for a general
release of the system. At Computer and Comms Corp build managers did not gather
together enough subsystems to comprise a release, and both companies had other,
distinct, organizational groups specifically focused on release management.

Computer Corp produced one large product and had one release group. It was
a department of between 15–30 people who gathered together all the subsystems
that would become the final product for shipping to the customer.

312 REBECCA E. GRINTER

Because right now development does all of its things and then it throws over a
very high fence to release and then release has a whole other different process
to managing these configurations, and literally they have only one version at
any given point in time and then the next release window happens they get an
entirely different version and if the first one is completely overlaid. Manager,
Computer Corp.

At Comms Corp each large product had an individual release group. Some of the
larger products had multiple release groups each focused on bringing together
more parts of the overall product. Beta, for example, had three levels of release
management.

As Beta grew in size and importance within the company a number of the
release functions were formalized. The process of formalization involved estab-
lishing three distinct groups to coordinate different parts of the overall release.
I have already described the first group, a distributed group of build managers
assigned to different large components of Beta, such as Betalite.

The second group focused on subsystem integration and test. This group took
subsystems such as Betalite and built it with another complete subsystem and
tested their interactions. This group did these one-on-one subsystems tests for all
the subsystems. The purpose of this intermediary stage was to test interactions
between the subsystems prior to the third stage of release management, which
was the process of bringing together the whole system for testing and subsequent
shipping to customers. Beta’s release group did this.

Creating these groups for Beta was inevitable. Prior to having a full-time staff
devoted to the coordination of Beta the overall assembly of the product was almost
impossible. The project was growing at such a rate that informally it was hard for
anyone to know who was working on it and how all the pieces would fit together.
The creation of Beta’s integration and release groups solved this problem for the
development staff who now knew that there were people responsible for building
their code.

The creation of official release groups for Beta was more problematic for the
people assigned to be in them. The first problem for those working on the release
was figuring out what components made up Beta and how they were related. Beta,
like many large software products, cannot be described with the use of a single
architectural diagram. Each architectural diagram captures a facet of the structure
of the product such as the subsystem structure, the run-time architecture, the hard-
ware components, and so forth. From these diagrams and visits to the development
leaders they slowly managed to piece together the information they would need to
build the test suites and order the sequence by which the product was built.

The second problem stemmed from the formalization of this process itself. The
three groups worked in a chain: the build managers passed code to the subsystems
integration group, who then passed their code onto the release group. By the time
the code got to the release group it was very far away from the development staff.
This, in turn, led to real difficulties fixing problems in that final stage.

SOFTWARE DEPENDENCIES 313

Sometimes these problems were caused by complex three-way interactions
among subsystems. These had been missed in the second stage of testing because
of the focus on one-on-one subsystem testing. However the problems occurred,
when the release group discovered difficulties they were faced with the problem
of determining who to report the problem too. They did not know the developers
responsible and probably were not geographically collocated with them. As a result
they immediately had to report the problem to a fairly senior level of management
who would delegate the challenge of finding who and what caused the problem
down into their own organizations.

Consequently, problems that wound up in the final stages of the release process
became highly visible within the organization. This put a lot more pressure on the
developers to get the problem fixed and if possible ensures that their code was
not responsible. It created a difficult environment to debug dependencies among
subsystems since the nature of cooperation was changed from being a cordial team
effort to being an environment where the problem was highly visible.

Moreover, it was not a problem that developers could easily resolve by unit
testing their code more rigorously prior to entering it into the build. Since the bugs
found at the final stages often involved spurious interactions among subsystems
that did not always appear to be related, it was not a dependency that developers
even thought they had. When they did know that they shared such a dependency
it was difficult for them to coordinate the changes with their distant partners. For
example, sometimes they would not have the name of the corresponding developer,
sometimes that person would be several time zones away, and more importantly
they rarely had easy access to the current version of the code from the other group
to test their own work against.

5.2. SOFTWARE ARCHITECTURE: UNOFFICIAL COORDINATION ROLE

Individuals working in build and release groups have an organizationally estab-
lished role that focuses on coordinating change among large software systems.
The architects at Computer and Comms Corp did not have that role officially,
but it constituted a considerable percentage of their day-to-day work. In fact, in
both companies it was impossible for them to become a “good” architect without
coordinating work among the groups responsible for developing their designs.

At both Computer and Comms Corp architecture was a distinct function within
the development life cycle. At both companies, architects designed new features
and enhance their existing range of products as well as design new ones for
emerging markets. They work hard to define the overall product structure, and then
get involved in breaking down the sections into subsystems that different groups
can work on. Because they usually start from existing code, the architects often
find themselves in the position of mapping out the new extensions and directions
for the products, in technical terms, and then assigning the work to the appropriate
groups. As this architect put it,

314 REBECCA E. GRINTER

the job isn’t so much thinking up new architectures but getting them accom-
plished. . . . that’s the larger part of the effort . . . in many ways the act of coming
up with a specific architecture is you know just draw some lines and boxes and
arrows and it’s almost a dime a dozen. Lots of people have intellectual architec-
tures and not too many people can translate those into actions and agreement
and creation, that’s really where the rubber meets the road. Architect, Computer
Corp.

The role of the architects at both companies was to turn a problem, often ill defined
at best, into a solution and find development groups to build their solution. The first
step for the architects at Comms Corp was to assemble a team of people to help
work on aspects of the solution space.

The explanation of why the architects assembled a team to work on the solution
was always given as deriving from the fact that a single architect could not produce
the best overall design. Architects and their managers felt that each architect was a
specialist in aspects of design and in certain products so by working in a team they
would broaden their skill set and produce better designs. The architects chose team
members with that in mind.

The teams that the architects assembled consisted of two kinds of individuals:
core team members and consultants. Core team members usually came from
the architect’s home department and attended all meetings. These individuals
broadened the design space by being familiar with other products. This bought
an understanding of possible interactions between the new or enhanced product
being designed and other products.

Consultants did not come from the architect’s department but anywhere in the
company. Architects used networks of contacts (derived from their many years
of service within the company) to find these consultants.4 Consultants attended
specific meetings where they contributed detailed design comments. In fact, it was
the consultants who helped Comms Corp’s architects transition their solutions from
paper designs to tangible products. The following field note excerpt illustrates how
consultants aided in that transition:

7:00 a.m. Architecture Meeting. The lead architect hands out slides of the
current design for the controller. Each person in the room has copies of the
slides. Unlike the previous meetings I’ve attended, the core team is expanded
with three consultants, two “software specialists” (senior developers), and a
hardware person.

The lead architect begins presenting the solution. He begins with the highest-
level overview of the product. After about 10 minutes, the hardware person
stops the architect. He offers a slightly different design of the overall footprint
of the product. He then relays some news that he’s heard about the factory that
will likely manufacture the new design. Apparently they’ve been swamped with
orders for a similar product in terms of size and geared their production lines
for that product. He suggests that one way to get this into production faster
is to change the layout so that it has the same physical footprint as this other

SOFTWARE DEPENDENCIES 315

product thus saving the factory having to change their production lines with the
associated loss in time. He stresses that he doesn’t think that the factory will
incur the downtime to change lines because of their production goals, and urges
a redesign.

The architect takes close notes and asks for a name of someone that he can
call there to get the latest news. The architect continues on, moving to the soft-
ware architecture. The two software specialists have been invited because it is
their departments who would be the best candidates to implement the solutions.
They seem agreeable to this. The architect explains how he thinks the work
could be divided among the departments and the kinds of dependencies that
exist between the two departments. In exchange the software specialists discuss
the technical merits of the proposal with each other as well as the architect.
During this discussion each developer also describes the current development
plans that the department has, and how this might fit into those. Again the
architect takes notes.

Architects invite consultants to meetings for much more than technical feedback
on the design. In addition to gathering critical information about difficulties in the
technical design, architects also gather vital information about the technical trajec-
tories of development organizations that might implement their design. This was
vital information because the software and hardware groups who might implement
the design had their own schedules and commitments for months and even years
in advance. One way to transition the design into development was to design a
solution that fitted into these trajectories. Consultants provided that kind of design
information.

This information was cycled into the design in various technical ways. For
example, the news relayed by the hardware person was followed up by a call to the
factory to learn more about the current production schedules. The architects then
followed up with a meeting of the core team members where the lead confirmed
the news from the factory and they spent the next hour reworking the design to take
the suggested form. They did this to increase the chances that the factory would be
able to work the new product more easily into their production plans.

The two software specialists invited to this meeting had attended previous
meetings individually. In previous meetings the architects had worked with each
specialist on designing the software that the specialist’s department would build.
The architects called this process “buy-in.” Buy-in from all departments involved
meant involving the developers early and often by inviting influential developers to
their meetings to work on the design. Influential developers were those people who
could take the design back to their departments and through their communication
skills and standing within their own organization could convince others that this
was the right solution (Curtis et al., 1988). By bringing the influential developers
into the design process the architects encouraged those developers to feel like they
had contributed to the solution and be invested in seeing it get implemented.

316 REBECCA E. GRINTER

Architects at Comms Corp told me that without this kind of buy-in products
would not get built; instead, during the transition from design to development they
would fall apart. No one within the candidate development groups would make
the design a high-priority and it would be left to compete with either a solution
designed by the development department itself or other work commitments.

In this meeting, the software specialists, now committed to their individual
parts were bought together. The architects did this to see whether the software
groups could work together. Without the necessary collaboration among develop-
ment departments the architects’ solution would unlikely be implemented. At both
Comms and Computer Corp, architects could tell me the names of departments that
could not work together easily or at all.

That kind of thing can happen and when you do have a pair of groups who have
this dependency it becomes difficult to accomplish change and when change
is really needed in order to deal with technology advances with competitive
requirements things like that we need to kind of revisit the interfaces between
the software components that those two groups produce and as a result we need
to revisit the interfaces on a personal level. Architect, Computer Corp.

If the solution consisted of an enhancement to an existing product or required the
coordinated efforts of multiple independent development organizations then the
architects had to factor this into their matching process.

Meetings like the one above and the many others held throughout the course
of a design show how architects who were formally working on the process of
decomposition were also working informally on the process of recomposition.
While designing a solution space that could be separated and implemented by
departments, they were also facilitating relationships that spanned hardware and
software, trying to make all the connections visible to all the people involved. The
architects did this by introducing different constituents in the overall product design
to each other.

6. Recomposition in the face of change

In the previous two sections I have focused on how individuals in organization
use communications and their role within the organization to either formally or
informally engage in recomposition work. All the time individuals engage in
recomposition, the circumstances of the organization around them change. For
example, when Beta grew in size it acquired a formal release process that made
some dependencies visible to senior management in new ways. In this section, I
describe a dramatic organizational change with consequences for one project I call
Shape.

Shape was a particularly interesting project because it was a reuse project. Soft-
ware reuse is the process of building a piece of software once and then reusing
that product inside others. The advantages claimed are that by reusing software a

SOFTWARE DEPENDENCIES 317

development effort receives reliable software quickly and cheaply. The software is
more reliable because it has been built and rigorously tested once and now can be
simply adopted by another group and incorporated into their product. Of course,
reusing software means that many projects come to technically depend on what
they reuse. This was certainly true for Shape and its customers.

Shape was launched with several other reuse projects about seven years ago. The
corporation set up a division of the company that contained all the reuse projects
and funded it by levying a “tax” on the product development groups. However,
after a couple of years the corporation changed its priorities away from reuse and
reorganized. The reuse division was dismantled and all the reuse projects were
encouraged to follow their largest potential customers into the same development
division. At the same time as the reorganization occurred the financial model for
reuse changed. Instead of all development groups being “taxed,” reuse projects
were told that they would need to raise revenue directly by charging internal
customers for reusing Shape.

Unsurprisingly, the architects were among the first people who changed their
use of Shape. Project Delta was one such architecture project. Delta incorporated
a technology called Middle that in turn reused Shape. Field notes from the first
meeting after the corporate announcement was made illustrate how restructuring
can influence relationships:

10:30 a.m. Project Delta Architecture Meeting. This is not a scheduled meeting.
The lead architect arranged the meeting as a result of the recently announced
reorganization. All the core team members are present along with two repre-
sentatives one from Middle and one from Shape. The lead architect hands out
slides with the current design on it. Along side the designs is a print out of the
e-mail that outlines the reorganization. At this time some of the implementation
details about the reorganization are not written out but all of the people in the
meeting have been through at least one such reorganization prior to this.

The architects and representatives review the materials. After a short period
of reviewing both sets of materials the discussion begins. First, they discuss the
likely implications of the restructuring. In particular the Shape representative
tells everyone that she believes that the project will be moved into Division
A. She bases this on what her manager has told her and the fact that Shape’s
largest customer (who will pay the most) has moved into Division A too. The
representative from Middle then says that he believes that their project is going
to stay in Division B. The architects working on Delta believe that their project
will be funded and built in Division B.

The meeting then begins to examine the reasons behind the creation of
Divisions A and B. The discussion focuses on the technical trajectories of
both divisions. What products are in each division, what can be deduced about
whether the technical directions of A and B will diverge. Divergent technical
directions will make Shape less and less reusable inside products headed in a
different technical direction.

318 REBECCA E. GRINTER

After gathering this information, and lots more speculation besides, they
turn to the question of whether the funding can be raised in Division B to
pay Division A to use Shape. The answer comes in the form of examining the
new organizational chart. It appears on the chart that the most senior levels of
management have to be involved to gain a funding commitment. While that’s
not impossible, it seems improbable. The end result of the meeting is that after
six months of work they abandon the design that uses Shape. The architects
thank the Shape representative for her help and she leaves. The lead architect
decides to call a meeting of the core team to start the process of reworking the
architecture.

Within a month of this meeting Delta had completely changed. Delta abandoned
Shape because of the concerns about future technical direction and potential
financing. The architects then searched for another solution to avoid completely
reworking the solution. They found it in the form of a recent acquisition that
happened to be in Division B. Unfortunately, the acquired company’s product also
removed the need for Middle too. The architecture of Delta was reworked and
implemented on top of the acquired company’s product and Middle was quietly
abandoned.

It was this meeting that first alerted me to the significance of corporate change
on recomposition. In this case, a change in the corporation had introduced tech-
nical and financial divisions that were considered too difficult to work with. It was
challenging enough that the architects and representatives thought the best solution
was to abandon six months of design work because the coordination required to
ensure that all the pieces could be assembled was too difficult.

It was this meeting that introduced me to Shape. I decided I wanted to follow up
with Shape to see how their customer base had changed since the restructuring. The
opportunity to do so came through an invitation to participate in a Shape project
retrospective where 15 people from the project held a daylong meeting to discuss
the lessons learned from the previous year on Shape.

Unsurprisingly, the restructuring took up a considerable part of the discussion.
Within a few weeks of the announcement Shape’s customer base had changed
dramatically. First, there were the projects like Delta, and others that were past
design and into development, whose management decided to stop using Shape.
For many it was not an overnight decision in the sense that according to Shape
developers they were going to transition from Shape to their own development
efforts. In other words, these projects took one last “free Shape” and now had
development plans that included building their own Shape-like functionality.

Another change to Shape was the arrival of new customers. When it was known
that Shape would join Division A, a variety of small projects in Division A decided
that they could afford to take advantage of Shape in their own code. Although
Shape had been free before, some development projects had felt that Shape was
too distant from their actual needs and it would be more effective to build their
own Shape function. The arrival of Shape in Division A, and the implication that

SOFTWARE DEPENDENCIES 319

that would focus Shape on to concerns that permeated all of the projects in Division
A, attracted smaller Division A projects.

The project retrospective concluded with an analysis of the changing trajectory
of Shape itself. Shape had finally abandoned the premise that its functionality could
be widely reusable. Instead its functionality now focused on technical objectives of
all the products that comprised Division A. Those developers recognized that it was
a fear of this close technical alignment with the largest Division A customer that
Shape originally followed into Division A that had driven many other potential
reuse customers outside the Division away. One the other hand, they recognized
that they had also gathered new customers interested in reusing Shape, precisely
because it was now a more focused effort.

7. Discussion

Recomposition is all the coordination required to manage the dependencies among
software components. In the previous sections I outlined some techniques indi-
viduals use to manage this coordination: communication through email and
meetings, and informal and formal organizational roles. I also described how
environmental circumstances, such as corporate change, influence recomposition
work.

The need for recomposition arises from the association between the process
of decomposition and the division of labor. Decomposition does not just separate
the software system into components, but also creates work for the indi-
viduals assigned those responsibilities. However, while modular decomposition has
received much attention among software engineering researchers, the coordination
of the process across the division of labor has received far less within the liter-
ature. When it arises, it is often in the form of discussion about how various team
and organizational structures should reduce the need for communication among
developers (see for example, Brooks Jr., 1995; Sommerville, 1996). In other words,
the coordination overhead that the division of labor creates is something that must
be designed to be minimized (which is what Parnas (1972) proposed with modular
decomposition).

So, while the theory of software engineering proceeds with the goal of reducing
communication among and across teams and organizations, the practice of software
development remains highly communicative. The examination of recomposition as
practiced in real software development projects reveals a number features of the
work that may shed light on the difficulties of trying to reduce communication as
well as offering other alternatives for managing dependencies. Specifically, in the
remainder of this section I describe three features of software development work
that are revealed by recomposition: the affects of environmental disturbances on
development work, the types of dependencies that require recomposition, and the
images of organizations required to manage the recomposition.

320 REBECCA E. GRINTER

8. Environmental disturbances

First, recomposition work makes visible the articulation of problems that might be
described as environmental disturbances that disrupt development. Environmental
disturbances are disruptions to the production process that come from outside
that process. For example, the Network Project meeting revealed two sources of
environmental disturbance that delayed development: waiting for external vendors
or internal development departments to deliver hardware and software. Delta and
Shape experienced another example of an environmental disturbance, one gener-
ated by the corporation in the form of a reorganization that changed who they could
work with easily by altering financial arrangements and technical trajectories.

The presence of these kinds of environmental disturbance generates the need for
some recomposition work among those affected by the delays and changes. These
disturbances also come with a cost to the production process because they create
instability in that production process. In particular, organizations that depend on a
stable sequence of production processes often work hard to protect that work from
environmental disturbances (Thompson, 1967). An assembly line in a manufac-
turing plant is an example of a production process that requires protection from
environmental disturbances. Organizations can and do use “buffering strategies”
such as having groups to manage the procurement of inputs (purchasing), and the
distribution of outputs (sales), and many other options (Scott, 1992).

The production of software is typically described in terms of stable sequences
of processes. These sequences of processes are often known as the software devel-
opment life cycle (see for example, Boehm, 1988; Royce, 1970; Sommerville,
1996). Moreover, software development corporations use buffering strategies to
protect themselves from environmental disturbances, such as purchasing and sales.
However, software development seems to have other sources of environmental
disturbance that still affect the production process.

Software engineering researchers have long known of one type of environ-
mental disturbance: requirements volatility (Curtis et al., 1988; Sommerville,
1996). Requirements volatility occurs when, for example, market forces or clients’
requirements change during the development process forcing modifications to the
software. Software engineers have tried to accommodate this type of environmental
disturbance into their life cycle models by recommending that requirements are
revisited multiple times and/or eventually freezing the ability to change the require-
ments. The presence of recomposition work suggests that requirements volatility
is not the only source of environmental disturbance that impedes development.
Disturbances in the dependencies on external and internal sources for inputs into
the development process create delays and difficulties.

Moreover, it highlights the fact that organizations are not always the passive
recipients of dependency disturbances; indeed, they can generate them themselves.
Specifically, reorganizations can change who depends on whom for what and how
easy that will be to coordinate. A focus on recomposition provides some rationale

SOFTWARE DEPENDENCIES 321

for why considerable lateral, informal, communication plays a critical role in
managing environmental disturbances, legitimizing and providing the means for
accounting for this type of work within software development. It may also provide
a starting point for considering the application of buffering strategies not yet
considered by software development organizations.

8.1. TYPES OF DEPENDENCIES

Second, recomposition work focuses on the types of dependencies that individuals
are trying to coordinate. For example, Alpha meetings surfaced dependencies
among the development teams who needed to be made aware of the adjustments
to other pieces so that they could incorporate those changes into their own work.
In addition to providing status on their own pieces, team leaders needed to know
about their colleagues’ components. In other words, there was a mutual dependence
among the team leaders.

Sometimes coordinating dependencies via broadcast surfaced unknown mutual
dependencies. Occasionally people would e-mail back the initial developer and
inform them of reasons why they could not make that change. In fact it was
possible for a developed to share a mutual dependency that they did not even
recognize as such. The role of build and release managers often mediated these
mutual dependencies for developers who shared them.

Organizational theorists interested in how organizations organize dependent
tasks have made distinctions between different types of dependencies based on
how much work it takes to coordinate them. In Thompson’s (1967) classification
“reciprocal” dependencies are those where two (or more) pieces of work mutually
depend on each other. He argues that while other kinds of dependencies may be
managed through rules, routines, plans and schedules, mutual dependencies require
communication to coordinate.

Galbraith (1977) suggests a number of lateral coordination mechanisms by
which organizations can communicate their most complex dependencies. One solu-
tion, liaisons, focuses on having a special position or group designed to facilitate
interchange among dependent groups. The recomposition work of build managers
suggests that they are liaisons among multiple developers working on related code.
The architects also serve as liaisons among multiple developers working on related
components. Although it is not a formal requirement of their job, to coordinate
dependencies, it is a practical requirement of their work. Indeed, without engaging
in recomposition work to coordinate all the parties that will work on their design,
it is impossible to realize the paper design as a product.

Both the build managers and the architects illustrate the power of liaisons to
coordinate shared dependencies. Beta’s release group illustrates some of the diffi-
culties of the same approach. Unlike the build managers and architects who could
communicate and coordinate with individuals who shared a dependency, the release

322 REBECCA E. GRINTER

groups did not always know who was responsible for the code that shared a mutual
dependency. In the absence of this, their liaison role was limited by their need to
make any problems with dependencies highly visible within the organization.

The software engineering literature recognizes the technical difficulties of
dependencies. The focus on reducing coupling, for example, recognizes the tech-
nical value of creating independent components. This attempts to reduce depend-
encies from reciprocal to something similar to what Thompson characterizes as
pooled interdependencies (Thompson, 1967). Pooled dependencies contribute to
the whole but have no direct connection to each other. Interface specifications and
information hiding allow independent groups of developers to pursue their own
development work with only the knowledge of what functionality is provided and
how that functionality is called. When this works, it is the common standard that
they share that provides the coordination required.

A focus on recomposition suggests that many reciprocal dependencies remain,
even when some have been reduced to pooled dependencies. Recomposition work
makes those dependencies visible for organizational analysis. The dependencies
do not appear as just technical problems, but also as mutually dependent work
activities that require communication and coordination.

Practical attempts to cope with the recomposition work created by mutual
dependencies have tried informal and formal organizational solutions that allow
those responsible for the dependencies to coordinate with each other. These
examples may suggest that recomposition is most successful when the individuals
have direct contact with each other, and without the intervention of the formal
organization. The focus on recomposition highlights organizational theoretic
aspects of dependency management, and suggests a direction for corporations to
pursue if they wish to coordinate mutual dependencies: examining mechanisms for
facilitating lateral communications beyond liaisons.

8.2. ORGANIZATIONAL ANALYSIS IN PRACTICE

Third, recomposition requires organizational thinking by the individuals trying
to coordinate their efforts. Previously I argued that recomposition makes the
organization visible for analysis, mainly in those cases by researchers and practi-
tioners interested in understanding and improving software development. However,
recomposition work also shows that the people who manage dependencies must
also engage in organizational analysis. They need to develop an understanding of
their organization in order to coordinate their dependencies. In fact, the developers,
architects, and managers used a number of metaphors of organization to explicitly
talk about and implicitly manage their recomposition (Morgan, 1986). These
metaphors helped the individuals manage recomposition work.

The first metaphor of organization in use at all three organizations was of
organization as machine. This metaphor decomposes an organization into a set of
interlocking elements that work together. Individuals used the machine metaphor to

SOFTWARE DEPENDENCIES 323

think about recomposition. For example, the architects used information about the
structure of the organization to make a decision about whether to continue using
Shape in Delta. They used the reorganization announcement to made deductions
about what kinds of technical directions projects in Divisions A and B would take.
They also looked at the chain of management up from Shape and Delta. They were
searching for the first point of common management between Delta and Shape to
determine how easy it would be for Delta to pay Shape. When they discovered that
it was at the level immediately below the CEO the architects decided that it would
be very difficult for Delta to continue using Shape.

Beta’s release group used the formal structure of the organization much less
successfully. The distance between the release group and the development organi-
zations was not just a matter of lines on the organization chart, but also a gap in
their knowledge about who to communicate with. Left only with a formal means
of communicating that someone had failed to manage a dependency this failure
became known to their management who communicated upward and across to
the development managers who then had to search their own organizations for
resolution. This made any problem very visible, which violated expectations of
how people reported software failures. Many of these expectations were grounded
in the metaphor of the organization as a culture, with norms and practices.

This was most explicit in the Alpha meetings. The culture of Alpha came
with specific expectations about how dependencies were discussed. Team leaders
knew that difficulties should be resolved outside the meeting with the other person
responsible, and that the department head should be informed. The department
heads had a slightly different set of cultural norms associated with managing
changes across departments. They did not ever raise them to the level of the
Vice President. Instead they talked directly to the other department head. It is
this “knowing” of the practices that smoothed some of the potential difficulties
surrounding recomposition. Indeed, the Alpha department head also illustrates the
multiple cultural practices within the Network Project. Specifically, she moved
between two different settings where she used two slightly different sets of prac-
tices to manage the reporting of delays resulting from dependencies that needed to
be resolved.

The people of Alpha used a third metaphor. The influence of the environment on
the organization is Morgan’s metaphor of organism, which comes from a biological
perspective that a system can only sustain itself in terms of its environment. For
Alpha, the environment was not always good at sustaining them internally. The
environment was full of third party vendors who delayed shipment of hardware
and software that the Alpha staff needed including chips, processors, operating
systems, compilers and debuggers. Alpha staff articulated their schedule delays as
dependencies on these outside inputs.

The final metaphor that the architects used was an understanding of the organi-
zation as a political system. This metaphor emphasizes how individuals and groups

324 REBECCA E. GRINTER

use various resources to control outcomes. The architects both saw politics in other
parts of the organization and made use of political means in their own work.

They saw politics in development organizations that could not work together.
They used their insight into these difficulties in their design process. They tried
to avoid technical designs that made the best qualified to implement departments
be groups who could not work together. Although I did not see this phenomenon
occurring in the design meetings that I attended the architects I interviewed spoke
about this in terms of political rivalries.

The architects also used their own and their colleagues’ networks of contacts to
gather and apply information to their design. For example, they found consultants
to their design projects from all over the company. The information that these
consultants provided helped the architects better ensure the outcome of their design
was an implemented product. This was essential to their own success, inside their
department at merit review time, and externally as being someone who other groups
wanted to help with the design of enhancements or new products. Like any good
politician, the architects worked hard to maintain those networks.

Faced with the reality of needing to coordinate dependencies, software practi-
tioners use metaphors of organizations to guide their attempts. A focus on
recomposition allows us to see when and how successfully software practitioners
apply different metaphors to manage their dependencies. The use of metaphors,
particularly in the development of solutions to coordination difficulties offers an
opportunity to see how those doing development work conceive of their own
circumstances. For individuals, such as the Network Project department heads and
the architects, the organization that they needed to understand and work within
was substantial and complex, spanning formal structures, geography, culture, and
multiple technical trajectories.

9. Conclusions

This paper described “recomposition” which is all the work necessary to coordinate
the assembly of software systems. The need for recomposition arises when the
software problem is decomposed into component solutions. Recomposition is the
process of coordinating the assembly of these pieces so that they can become
a whole software system, and it is made harder because the pieces have mutual
dependencies.

The paper emphasized how individuals working on large projects engage in
many forms of recomposition as part of their day-to-day work. Individuals commu-
nicate through e-mail and meetings, and others have special roles designed to
facilitate recomposition. Still others, architects, have roles that involve recomposi-
tion informally, even though it is not part of their job description. I also described
how changes in an organization could change the nature of recomposition.

What makes recomposition hard is the dependencies among those compo-
nents, that manifest themselves in relationships among individuals that need to

SOFTWARE DEPENDENCIES 325

be coordinated. These relationships are the layer of administration that comes as
a result of the division of labor (Scott, 1992). Beyond the definition of recom-
position – making all the work to coordinate dependencies visible – re-establishes
the connection between the software components and the division of labor. The
perspective offers a perspective on software development that makes some of the
sources of coordination difficulties visible and available for analysis. Specifically,
I described three features of software development work that are revealed by
recomposition: the affects of environmental disturbances on development work, the
types of dependencies that require recomposition, and the images of organizations
required to manage the recomposition.

Acknowledgements

I would like to thank all the people who have talked to me about software
development over the years. This paper is dedicated to Nancy.

Notes

1. It is worth observing here that many other communities also study software development work
including human-computer interaction researchers interested in design work, empirical studies
of programmers interested in questions of cognition in individual programmers, social scientists
interested in the production of software and not least software engineering researchers concerned
with the improvement of practice through process and tool enhancement.

2. A configuration management system is typically constrained by the code that the database can
hold. Modern CM systems use database technology to manage all the code and manage the
relationships among the components. Therefore the constraints tend to be how much code the
database can hold and how many people it can support accessing the code base at the same time.
It is the lower of these two bounds that determines how large the group using the tool can be.

3. Cusumano and Selby (1995) describe the consequences of being known as the person who
broke the build at Microsoft as being the person who wore a special hat and also had the job
of coordinating all the build work until the next build broke.

4. All the architects at Comms Corp had worked with the company for at least a decade. Their
experience was typically as a developer on a product that they now produced architectures
for. They were often well known individuals within the corporation who had been promoted
technically into their architecture role.

References

Boehm, B. (1988): A Spiral Model of Software Development and Enhancement. IEEE Computer,
vol. 21, no. 5, pp. 61–72.

Brooks Jr., F.P. (1995): The Mythical Man-Month: Essays on Software Engineering 20th Anniversary
Edition. Reading, MA: Addison-Wesley Publishing Company Inc.

Bucciarelli, L.L. (1994): Designing Engineers. Cambridge, MA: MIT Press.
Button, G. and W. Sharrock (1996): Project Work: The Organisation of Collaborative Design and

Development in Software Engineering. Computer Supported Cooperative Work: The Journal of
Collaborative Computing, vol. 5, no. 4, pp. 369–386.

Conway, M.E. (1968): How Do Committees Invent? Datamation, vol. 14, no. 4, pp. 28–31.

326 REBECCA E. GRINTER

Curtis, B., H. Krasner and N. Iscoe (1988): A Field Study of the Software Design Process for Large
Systems. Communications of the ACM, vol. 31, no. 11, pp. 1268–1287.

Cusumano, M.A. and R.W. Selby (1995): Microsoft Secrets: How the World’s Most Powerful Soft-
ware Company Creates Technology, Shapes Markets, and Manages People. New York, N.Y.: The
Free Press.

Galbraith, J. (1977): Organization Design. Reading, MA: Addison-Wesley.
Ghezzi, C., M. Jazayeri and D. Mandrioli (1991): Fundamentals of Software Engineering. Engle-

wood Cliffs, N.J.: Prentice-Hall.
Grinter, R.E. (1998): Recomposition: Putting It All Back Together Again. In D.G. Durand (ed.):

Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW ’98),
Seattle, Washington, November 14–18. New York, N.Y.: ACM Press, pp. 393–403.

Herbsleb, J.D. and R.E. Grinter (1999): Splitting the Organization and Integrating the Code:
Conway’s Law Revisited. In Proceedings of the 21st International Conference on Software
Engineering (ICSE 99), Los Angeles, CA, May 16–22. ACM Press, pp. 85–95.

Herbsleb, J.D., H. Klein, G.M. Olson, H. Brunner, J.D. Olson and J. Harding (1995): Object-Oriented
Analysis and Design in Software Project Teams, Human-Computer Interaction, vol. 10, nos. 2–3,
pp. 249–292.

Herbsleb, J.D., A. Mockus, T.A. Finholt and R.E. Grinter (2000): Distance, Dependencies and
Delay in a Global Collaboration. In D.G. Durand (ed.): Proceedings of the ACM Conference on
Computer Supported Cooperative Work (CSCW 2000), Philadelphia, PA, December 2–6. New
York, N.Y.: ACM Press, pp. 319–328.

Mockus, A., R.T. Fielding and J.D. Herbsleb (2000): A Case Study of Open Source Development:
The Apache Server. In H. Gall (ed.): Proceedings of the 22nd International Conference on
Software Engineering (ICSE 2000), Limerick, Ireland, 4–11, June. IEEE Press, pp. 263–272.

Morgan, G. (1986): Images of Organization. Sage Publications, Inc.
NATO (1969): Working Conference on Software Engineering, Report, NATO Scientific Affairs

Division.
Palen, L. (1999): Social, Individual and Technological Issues for Groupware Calendar Systems.

In Proceedings of the ACM Conference on Human Factors in Computing Systems CHI ’99,
Pittsburgh, PA, May 11–13. ACM Press, pp. 17–24.

Parnas, D.L. (1972): On the Criteria to be Used in Decomposing Systems into Modules. Communi-
cations of the ACM, vol. 15, no. 12, pp. 1053–1058.

Parnas, D.L. and P.C. Clements (1986): A Rational Design Process: How and Why to Fake It. IEEE
Transactions on Software Engineering, vol. 12, no. 2, pp. 251–257.

Perry, D.E., N.A. Staudenmayer and L.G. Votta (1994): People, Organizations, and Process
Improvement. IEEE Software, vol. 11, no. 4, pp. 36–45.

Potts, C. and L. Catledge (1996): Collaborative Conceptual Design: A Large Software Project Case
Study. Computer Supported Cooperative Work: The Journal of Collaborative Computing, vol. 5,
no. 4, pp. 415–445.

Royce, W.W. (1970): Managing the Development of Large Software Systems. In Proceedings of the
IEEE WESCON, Los Angeles, CA. IEEE Press, pp. 1–9.

Scott, W.R. (1992): Organizations: Rational, Natural and Open Systems, 3rd edn. Englewood Cliffs,
New Jersey: Prentice-Hall, Inc.

Sommerville, I. (1996): Software Engineering, 5th edn. Menlo Park, CA: Addison-Wesley Publishing
Company.

Strauss, A. (1987): Qualitative Analysis for Social Scientists. New York: N.Y.: Cambridge University
Press.

Strauss, A. and J. Corbin (1990): Basics of Qualitative Research: Grounded Theory Procedures and
Techniques. Newbury Park, CA: Sage Publications, Inc.

SOFTWARE DEPENDENCIES 327

Tellioglu, H. and I. Wagner (1997): Negotiating Boundaries: Configuration Management in Software
Development Teams. Computer Supported Cooperative Work: The Journal of Collaborative
Computing, vol. 6, no. 4, pp. 251–274.

Thompson, J.D. (1967): Organizations in Action. New York, NY: McGraw-Hill.
Whittaker, S. and H. Schwarz (1999): Meetings of the Board: The Impact of Scheduling Medium

on Long Term Group Coordination in Software Development. Computer Supported Cooperative
Work (CSCW): The Journal of Collaborative Computing, vol. 8, no. 3, pp. 175–205.

Yates, J. (1989): Control through Communication: The Rise of System in American Management.
Baltimore, Maryland: The Johns Hopkins University Press.

