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a b s t r a c t 

Multi-view subspace clustering, which aims to partition a set of multi-source data into their underly- 

ing groups, has recently attracted intensive attention from the communities of pattern recognition and 

data mining. This paper proposes a novel multi-view subspace clustering model that attempts to form an 

informative intactness-aware similarity based on the intact space learning technique. More specifically, 

we learn an intact space by integrating encoded complementary information. An informative similarity 

matrix is simultaneously constructed, which enforces the constructed similarity to have maximum depen- 

dence with its latent intact points by adopting the Hilbert–Schmidt Independence Criterion (HSIC). A new 

explanation on the advantages of such intactness-aware similarity has been provided ( i.e. , the similarity 

is learned according to the local connectivity). To effectively and efficiently seek the optimal solution of 

the associated problem, a new ADMM based algorithm is designed. Moreover, to show the merit of the 

proposed joint optimization, we also conduct the clustering in two separated steps. Extensive experimen- 

tal results on six benchmark datasets are provided to reveal the effectiveness of the proposed algorithm 

and its superior performance over other state-of-the-art alternatives. 

© 2018 Published by Elsevier Ltd. 
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1. Introduction 

Clustering data points into different groups such that the ob-

jects in the same group are highly similar to each other is one of

the most fundamental topics in data mining and pattern recog-

nition [1–6] . In the last two decades, a number of clustering

approaches have been developed, such as hierarchical clustering

based methods [7,8] , k-means based methods [9,10] , the iteration

based methods [11–13] , the collaboration based methods [14–16] ,

the factorization based methods [17–21] , spectral-based clustering

[22–26] , and of which, the spectral-based clustering method is ar-

guably the most popular one. 

Spectral-based clustering mainly contains two steps, i.e. firstly

constructing the similarity matrix and then performing spectral

clustering on it. Arguably, the first step to learn the similarity ma-

trix is of utmost importance, as the success of spectral cluster-

ing algorithm is largely dependent on constructing an informa-

tive similarity matrix. To learn such a good similarity matrix, Ng
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t al. [27] try to learn it based on the data locality. Nie et al.

28] develop a more sophisticated method to build the similar-

ty matrix according to the distance of raw data points. For sim-

licity, Euclidean distance is used. To learn the similarity matrix

ith structure priors, SSC [29] and LRR [30] try to find a sparse

nd a low-rank self-representation, and directly use it to construct

he similarity matrix. Lu et al. [31] propose a least square regres-

ion based method to take advantages of data correlation for the

imilarity matrix construction. To further refine the representa-

ion, Feng et al. [32] impose a block-diagonal prior on the self-

epresentation, which makes the learned similarity matrix to be

xactly block-diagonal. Guo et al. [22] simultaneously learn the

elf-representation and the similarity matrix of self-representation

nto a unified framework, which shows a reasonable improve-

ent on the clustering results. You et al. [33] adopt the orthog-

nal matching pursuit to make the subspace-preserving represen-

ation under broad conditions. Additionally, Li et al. [34] propose a

ovel structured sparse norm on the learned self-representation,

nd achieve promising results by integrating the sparse self-

epresentation learning and the spectral clustering into one frame-

ork. In fact, most of these methods can achieve promising per-

ormance for single view data. However, for multi-view one, the

bove methods are usually difficult to find good clusters due to

he potential presence of view insufficiency or high dimensionality
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f data. Generally, they can not be directly applied to multi-view

ases. This paper concentrates on multi-view subspace clustering. 

In practice, many kinds of real-world data appear in multiple

iews. For instance, web pages contain texts, hyperlinks and pos-

ibly existing visual information. As another example, images and

ideos are often described by different kinds of features, such as

olor, texture and edge. In general, these multi-view representa-

ions can seamlessly capture the rich information from multiple

ata cues as well as the complementary information among dif-

erent cues, and can be beneficial to clustering task. To incorpo-

ate different views, early methods focus on the setting of two

iews. De et al. [35] utilize a bipartite similarity matrix to con-

ect two types of features and adopt the standard spectral cluster-

ng to obtain the final results. Bickel et al. [10] extend k-means

o handle the cases with two conditionally independent views.

owever, these methods depend on the assumption that there are

nly two views, and can not handle the cases of three or more

iews. To incorporate more views, Cai et al. [36] propose a multi-

iew spectral clustering model to integrate heterogeneous visual

escriptors for image categorizations. Tang et al. [37] fuse the mul-

iple graphs information with linked matrix factorization. The co-

egularized multi-view spectral clustering is introduced in [38] to

erform clustering on different views simultaneously with a co-

egularization constraint. Collins et al. [39] learn a common rep-

esentation under the spectral clustering framework by combin-

ng Laplacians of different views. Gao et al. [40] unify the repre-

entation learning and spectral clustering into one framework. To

apture the high-order cross information among multiple views,

hang et al. [24] propose a multiple features clustering model with

ow-rank tensor constraint. Although various existing methods in-

eed improve the spectral clustering performance for multi-view

ata, they mainly suffer from constructing an invalid similarity

raph due to the insufficient information between different views

r without considering the high-order dependence between the in-

act information and the constructed similarity. 

In this paper, we propose a novel multi-view subspace clus-

ering model, termed as Multi-view Subspace Clustering with

ntactness-Aware Similarity (MSC _ IAS), which intends to construct

n intactness-aware similarity matrix under the assumption that

he similarity should have maximum dependence with the cor-

esponding points in the intact space. Specifically, to avoid the

ommon issue in most of existing multi-view subspace cluster-

ng methods, i.e. the information loss from insufficient views, we

ry to recover an intact space from multi-view data. As indicated

y the work [41] , “intact” means complete and not damaged in

erriam-Webster, which are the favorable properties for similar-

ty construction. Meanwhile, rather than directly using k-means or

tandard spectral clustering on the latent intact space, we adopt

he Hilbert–Schmidt Independence Criterion (HSIC) to guide the

ntactness-aware similarity matrix building. More concretely, the

ontributions of this paper can be summarized as follows: 

• We propose a novel multi-view subspace clustering model,

namely Multi-view Subspace Clustering with Intactness-

Aware Similarity (MSC _ IAS), that constructs the similarity

based on the intact space learning technique, and unifies

them into one framework. Moreover, two separated steps are

conducted to validate the superiority of such joint optimiza-

tion. 
• We construct the similarity based on the assumption that

the constructed similarity has maximum dependence with

its corresponding intact space, which can be measured by

the Hilbert–Schmidt Independence Criterion (HSIC). More-

over, a new explanation (local connectivity) on the similar-

ity has been provided, that is, the learned intactness-aware
similarity has a larger value if their data points in the intact

space have a small � 1 distance. 
• We demonstrate the efficacy and the superior performance

of our proposed framework over the state-of-the-art alterna-

tives by conducting experimental results on six benchmark

datasets. 

The rest of this paper is organized as follows. In Section 2 ,

e briefly review the background of multi-view subspace clus-

ering. Then we revisit the preliminary knowledge in Section 3 .

n Section 4 , we introduce the proposed Multi-view Subspace

lustering with Intactness-Aware Similarity (MSC _ IAS) algorithm.

ection 5 provides a new ADMM based solution. Experiments and

nalysis on the benchmark datasets are conducted in Section 6 . Fi-

ally, Section 7 gives the conclusion to this paper. 

. Related work 

In this section, we briefly introduce the background of multi-

iew subspace clustering. To perform clustering by integrating

ulti-view information, according to the works [42–44] , there ex-

st three distinctions, i.e. late integration, intermediate integration

nd early integration. 

1) Late integration applies a clustering algorithm to each individ-

ual view and subsequently combines the results. Bruno and

Marchand-Maillet [45] treat the optimal clustering as hid-

den factors to produce the clustering of different views.

Greene and Cunningham [46] concatenate the clustering re-

sults of different views into one matrix, and then perform

non-negative matrix factorization to obtain the final results.

Xia et al. [47] first learn from each view and then recover

a shared low-rank transition probability matrix as a cru-

cial input to the standard Markov chain method for clus-

tering. In the work [48] , authors use mapping functions to

make clusters of different views comparable and learn the

best clusters. Besides these, the fuzzy clustering approaches

[15,49] that generalize the three fusion strategies have also 

been developed. 

2) Intermediate integration computes separate similarity ma- 

trices on different views and produces a fused pairwise

representation which is then passed to a clustering algo-

rithm. In this regards, most of spectral-based methods [24–

26,37,38,40,42,50–52] belong to this category. For example,

Kumar et al. [38] co-regularize the clustering hypotheses

to exploit the complementary information between differ-

ent views. Tang et al. [37] fuse the multiple graphs infor-

mation with linked matrix factorization. Li et al. [50] in-

troduce a subspace technique to address the transforma-

tion invariant issue. Wang et al. [52] propose an angular

based regularization to coordinate all views to yield a cor-

relations consensus. Cao et al. [51] exploit the complemen-

tary information between different views to form an infor-

mative representation. Zhang et al. [24] consider the self-

representation of each view as a tensor equipped with low-

rank constraints, and directly construct the similarity matrix

on the self-representation. 

3) Early integration involves the direct combination of data from

views into a single view representation before data clustering.

Guo et al. [53] formulate the subspace learning with multi-

ple views as a joint optimization problem with a common

subspace representation matrix and a group sparsity induc-

ing norm. White et al. [54] explicitly learn a common rep-

resentation based on multiple views as a joint optimization

problem with a common subspace representation matrix. Lu

et al. [3] try to find a low-dimensional embedding of data by
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1 For instance, according to the works [34,59] , the Frobenius norm will be used 

if the data are contaminated with dense noise; the � 1 -norm will be adopted if the 

data are contaminated with sparse corruptions; the � 21 -norm will be used if the 

data are contaminated with gross corruptions over a few columns; or the combi- 

nation of these norms ( e.g. , GMM) will be used for mixed patterns of noise and 

corruptions. In the work [41] , the authors employed the Cauchy norm for the case 

of outliers. 
2 One may refer to [41] for detailed proof. 
computing the eigenvectors of the normalized Laplacian ma-

trix. Zhang et al. [25] seek the underlying latent representa-

tion and simultaneously perform data reconstruction based

on the learned latent representation. 

However, despite the promising results have achieved by the

above methods, they mainly suffer from two shortcomings, one

is that making the similarity consensus may greatly degrade the

performance due to the fact that although the block structures in

different similarity matrix are similar, their values can be dramati-

cally different. In other words, the assumption of similarity consen-

sus may not hold. The other one is that the similarity constructed

by the above methods is less informative since most of them ig-

nore the local connectivity. In this paper we report the develop-

ment of a new method for early data fusion to solve the above

shortcomings based on the intact space learning technique [41] . 

3. Preliminary knowledge 

3.1. Notation 

Throughout the paper, if not specified, we write scalar as lower-

case letter u and vector as bold lowercase letter u . Bold uppercase

letter U stands for a matrix. The trace, transpose and inverse of

U are represented by tr (U ) , U 

T and U 

−1 , respectively. Particularly,

given a matrix U = [ U i j ] , its i th row is denoted as U 

i while its j th

column U j . The � 1 -norm and the Frobenius norm of U is designated

as || U || 1 , ‖ U ‖ F , respectively. In addition, 1 and I are all-ones matrix

and identity matrix with appropriate sizes, respectively. 

3.2. Hilbert–Schmidt Independence Criterion 

The Hilbert–Schmidt Independence Criterion (HSIC) is proposed

in the work [55] to measure the (in)dependence of two random

variables X and Y, and has been widely used in many applications,

including feature selection [56] , matching [57] and multi-view sub-

space clustering [51] . To introduce the HSIC, we first revisit the

definition of cross-covariance C xy . Let us define mapping φ( x ) from

x ∈ X to kernel space F , such that the inner product between

vectors in that space is given by a kernel function k 1 (x i , x j ) =
〈 φ(x i ) , φ(x j ) 〉 . Let G be a second kernel space on Y, with a kernel

function k 2 (y i , y j ) = 〈 ϕ (y i ) , ϕ (y j ) 〉 . The cross-covariance between

two random variables can be defined as: 

 xy = E xy [(φ(x ) − μx ) � (ϕ(y ) − μy )] (1)

where μx = E(φ(x )) and μy = E(ϕ(y )) , and � is the tensor prod-

uct. Then, according to the work [55] , we have: 

Definition 1. Given two separable reproducing kernel Hilbert

spaces F , G and a joint distribution p xy , we define the HSIC as the

Hilbert–Schmidt norm of the associated cross-covariance operator

C xy : 

HSIC (p xy , F, G) := || C xy || 2 HS , (2)

where || · || HS denotes the Hilbert–Schmidt norm of a matrix. 

However, the joint distribution p xy is usually unknown or hard

to estimate. For practical uses, HSIC has to be estimated using a

finite number of data samples. As a consequence, we have the fol-

lowing empirical definition. 

Definition 2. (HSIC) Consider a series of n independent observa-

tions drawn from p xy , Z := { (x 1 , y 1 ) , . . . , (x n , y n ) } ⊆ X × Y, an em-

pirical estimator of HSIC( Z, F , G), is given by: 

HSIC (Z, F, G) = (n − 1) −2 tr (K 1 HK 2 H ) , (3)

where K 1 and K 2 are the Gram matrices with k 1 ,i j = k 1 (x i , x j ) ,

k 2 ,i j = k 2 (y i , y j ) . k 1 ( x i , x j ) and k 2 ( y i , y j ) are the kernel functions
efined in the kernel space F and G, respectively. H = I − n −1 11 T 

enters the Gram matrix to have zero mean. 

It is important to note that according to Eq. (3) , to maximize

he dependency between two random variables X and Y, the em-

irical estimate of HSIC, i.e. , tr (K 1 HK 2 H ) should be maximized. For

ore details about the HSIC, please refer to the papers [55,58] . 

. Problem formulation 

.1. Intact space learning 

As described in the work [41] , in intact space learning, it is

ractical to assume that each individual view only captures partial

nformation while all the views together possess redundant infor-

ation about the latent intact representation (please see Fig. 1 for

xample). Therefore, integrating multi-view information is valuable

nd necessary. Supposing that X i ∈ R 

d is a sample of the latent in-

act space and is represented by V -view features F v 
i 

∈ R 

d v , where

 ∈ { 1 , 2 , . . . , V } , d v denotes the feature dimension of the v th view.

ach view F v 
i 

can be obtained from a proper view generation func-

ion W 

v ∈ R 

d v ×d , i.e. W 

v X i , which could thus be understood as a

articular reflection of the sample. Consequently, the intact space

earning is to recover the latent intact space from the following

onstraint: 

in 

X , W 

v 

1 

V 

V ∑ 

v =1 

|| F v − W 

v X || , (4)

here F v = [ F v 
1 
, F v 

2 
, . . . , F v n ] ∈ R 

d v ×n and X = [ X 1 , X 2 , . . . , X n ] ∈ R 

d×n ,

nd n is the total amount of data points. In addition, ‖ · ‖ repre-

ents a certain norm to penalize the error. It is sure that the choice

f penalty ( i.e. , the norm) is important to different tasks. The norm

 · ‖ on such error term (4) depends upon the prior knowledge

bout the pattern of noise, corruptions or outliers. 1 Moreover, for

he sake of stability, two additional terms to regularize the de-

ired intact space X and the linear sample matrix W 

v are adopted.

pecifically, we adopt the Frobenius norm for the intact space X

nd the additional constraints ( i.e. , ∀ i, || W 

v 
i 
|| 2 ≤ 1 ) for the linear

ample matrix W 

v . In the sequel, the intact space learning model

an be formulated as: 

min 

X , W 

v 

1 

V 

V ∑ 

v =1 

|| F v − W 

v X || + λ1 || X || 2 F , s . t . ∀ i, || W 

v 
i || 2 ≤ 1 

(5)

here λ1 is a non-negative weight to balance the corresponding

erm. 

To recover the intact space, Xu et al. [41] have proved two facts

ased on information theory. One is that more views will bring in

ore information with respect to the intact space, we can learn

he latent intact space by exploiting the complementarity between

ultiple views, although each individual view is insufficient. The

ther one is that we may not obtain all the necessary views to

earn the latent intact space, but we can approximately restore it

hen provided with enough views. These two rules 2 give the the-

retical guarantee for successfully recovering the intact space. 

Although in the work [41] , the authors have analyzed that the

auchy distance is better than � 2 distance for handling large cor-

uptions such as outliers. In this paper, we do not focus on the
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Fig. 1. View insufficiency assumption provided in the work [41] . Each individual view only captures partial information but all views involve the intact information. So 

intact space learning aims to recover the latent intact space X from its partial views F v , where v ∈ { 1 , . . . , V } . Specifically, the work [41] assumes that the partial view F v at 

hand is obtained from its latent intact space X through a linear sample matrix W 

v . Details are provided in Section 4.1 . 
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better” choice of the penalty ( i.e. , Cauchy loss) and simply employ

he � 2 loss, say ‖ · ‖ 2 2 (or the square of Frobenius norm ‖ · ‖ 2 F ), to

o the job. The reasons are mainly summarized in the following

hree aspects. 

The first one is that the square of Frobenius norm ‖ · ‖ 2 
F 

is more

fficient to solve than the Cauchy loss provided in the work [41] .

he second one is that the employed norm depends on the prior

nowledge of data. In practice, it is hard to decide which norm is

he best. Thus we simply adopt the square of Frobenius norm. Last

ut not least, even if the data contain outliers, please note that

he aim of this paper is to learn an intactness-aware similarity to

o the clustering, the robustness to outliers can also be handled

n the process of similarity construction 

3 In other words, this pa-

er mainly focuses on the informative similarity construction for

ulti-view clustering task. Finally, the intact space learning model

an be simply formulated as: 

min 

X , W v 

1 

V 

V ∑ 

v =1 

|| F v − W 

v X || 2 F + λ1 || X || 2 F . s . t . ∀ i, || W 

v 
i || 2 ≤ 1 

(6) 

urthermore, it is interesting to note that the objective of intact

pace learning in Eq (6) is almost the same as the non-negative

atrix factorization works like [20,60,61] or the multi-view dictio-

ary learning works [62] . But differently, the intact space learn-

ng model is more elastic since it does not contain non-negative

enalty on the learned matrix. Here, we take the objective (6) di-

ectly and mainly focus on the following informative similarity

onstruction. 

.2. Intactness-aware similarity construction 

After obtaining the intact space X , the next step is to gather

he data into their underlying clusters. In general, the spectral-

ased clustering methods like normalized cuts [63] usually show

etter performance than the k-means method, due to the man-

fold information utilized in these clustering models. As pointed
3 The details will be provided in Section 4.3 . 
ut in [64] , the key in spectral clustering is the similarity graph con-

truction . So before applying the spectral clustering algorithm, we

hould construct an informative similarity matrix S ∈ R 

n ×n . In this

aper, we aim to learn an intactness-aware similarity S that has

aximum dependence with the intact space X by resorting to the

ilbert–Schmidt Independence Criterion (HSIC). Specifically, given

 set of intact space data X = [ X 1 , . . . , X n ] , we adopt the inner ker-

el K 1 = X 

T X for the intact space X , and simply employ the linear

ernel K 2 = S − D for the similarity space S, where S 
0 and D is

efined as a diagonal matrix where the i th diagonal entry is �j S ij .

hen according to the empirical estimate of HSIC, we have the fol-

owing constraint: 

max 
S 

HSIC (X , S ) = max 
S 

tr (K 1 HK 2 H ) = max 
S 

tr (X 

T XH (S − D ) H ) 

= − max 
S 

tr (XHL ( XH ) 
T 
) = min 

S 
tr (XHL ( XH ) 

T 
) , (7) 

here H = I − n −1 11 T is a centering matrix to make the intact

pace to be centered, L = D − S can be viewed as the Laplacian ma-

rix of S . Moreover, to make the points of the constructed similarity

ie in a union of affine subspaces, we also enforce S T 
i 

1 = 1 . Thus,

e should minimize the following objective to get the informative

imilarity: 

min 

S 
tr (XHL ( XH ) 

T 
) s . t . S T i 1 = 1 , S i 
 0 . (8) 

.3. New insight on intactness-aware similarity 

Prior to giving the solution of the proposed intactness-aware

odel (8) , we further discuss its underlying implication. Specifi-

ally, if we assume that the intact space X is centered, then mul-

iplying the intact space X by the centering matrix H = I − n −1 11 T 

oes not make any change. In other words, X = XH . Thus, the ob-

ective of Eq. (8) can be rewritten as follows: 

min 

∀ i S T 
i 

1 =1 , S i 
0 
tr (XHL ( XH ) 

T 
) = tr (XLX 

T ) 

= min 

∀ i S T 
i 

1 =1 , S i 
0 

n ∑ 

i =1 

n ∑ 

j=1 

|| X i − X j || 2 2 S i j (9) 
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Thus, this constraint is consistent with the intuition, i.e. , data

points should have a larger similarity (probability) to be in the

same cluster if they have a smaller distance, or vice versa. How-

ever, simply solving the problem (9) may result in that only the

nearest data is assigned as the neighbor of X i with probability 1

and all the others with probabilities 0 ( i.e. , the learned similarity

matrix S is an identity matrix). So we enforce || S || 2 
F 

to prevent

from the trivial solution like: 

min 

S 
λ2 

n ∑ 

i =1 

n ∑ 

j=1 

|| X i − X j || 2 2 S i j + γ || S || 2 F s . t . S T i 1 = 1 , S i 
 0 . 

(10)

where λ2 and γ are non-negative trade-off parameters. 

Furthermore, remember that in intact space learning model, we

adopt the square of Frobenius norm to handle the case of dense

noise, while in large corruptions such as outliers, the recovered in-

tact space may not be perfect. We address this issue by replacing

the � 2 distance between X i and X j into � 1 distance in Eq. (10) . Fi-

nally, our proposed intactness-aware similarity learning model can

be formulated as follows: 

min 

S 
λ2 

n ∑ 

i =1 

n ∑ 

j=1 

|| X i − X j || 1 S i j + γ || S || 2 F s . t . S T i 1 = 1 , S i 
 0 . 

(11)

Note that constructing similarity based on distance, the most

popular way is the Gaussian similarity function: 

S i j = exp 

(−|| X i − X j || 2 2 

2 σ 2 

)
, (12)

which results in local neighborhoods are connected with relatively

high weights, while edges between far away points have positive,

but negligible weights. The trade-off parameter σ can be tuned in

practice. 

Comparing our intactness-aware similarity with the Gaussian

similarity, our advantages can be mainly summarized in three as-

pects. First, the intactness-aware similarity is adaptively learned

based on the local distance of data. Second, the employed � 1 dis-

tance is more robust than � 2 distance to outliers. Last but not least,

empirically, considering all the connections like the Gaussian sim-

ilarity may not work very well in practice. Usually we can achieve

better performance if putting focus on the locality of data. In other

words, it is preferred to learn a sparse S i , i.e. , only the k nearest

neighbors of X i could have chance to connect to X i , rather than all

the data points. 4 

4.4. Multi-view Subspace Clustering with Intactness-Aware Similarity 

A straightforward way to accomplish the grouping is firstly re-

covering the intact space by Eq. (6) and then building the similar-

ity graph according to Eq. (12) (in this paper we call it MSC+Gauss )

or Eq. (11) ( MSC+IAS ), in two separated steps. However, separately

conducting the intact space recovery and the similarity measure-

ment may not be optimal for constructing the similarity matrix,

since the similarity is constructed based on the recovered intact

space. To address this issue, we further empirically propose to si-

multaneously learn the intact space and the similarity matrix in a

unified fashion. Specifically, combining (6) and (11) , and discarding

the stability term λ1 || X || 2 F in Eq. (6) since X has been regularized

by Eq. (11) , leads to our final Multi-view Subspace Clustering with
4 We will discuss this fact in the Section 5 . 

l

a

ntactness-Aware Similarity ( MSC _ IAS ) model as follows: 5 

min 

W v , X , S 

1 

V 

V ∑ 

v =1 

|| F v − W 

v X || 2 F ︸ ︷︷ ︸ 
Intact Space Learning 

+ λ2 

n ∑ 

i =1 

n ∑ 

j=1 

|| X i − X j || 1 S i j + γ || S || 2 F ︸ ︷︷ ︸ 
Intactness-Aware Similarity 

s . t . ∀ i, || W 

v 
i || 2 ≤ 1 ; S T i 1 = 1 , S i 
 0 . 

(13)

ig. 2 shows the main framework of the proposed method. 

. Optimization 

Prior to giving the solution of the proposed MSC _ IAS model

13) , we simplify it to be more concise. Specifically, according to

he work [65] , we know that 

n 
 

i =1 

n ∑ 

j=1 

|| X i − X j || 1 S i j = || XA S || 1 , (14)

here A S = U�
1 
2 , U and � are the eigen decomposition of the

aplacian matrix L = D − S = U�U 

T . 

For solving the MSC _ IAS model (13) , we observe that the objec-

ive function is not jointly convex to the variables { W 

v , X, S }, but

onvex with respect to each of them when the others are fixed.

herefore, we adopt the ADMM algorithm [66] to solve the asso-

iated optimization problem, which has proven to be an efficient

nd effective solver of problems like (13) . To make the subproblem

asy to solve, we introduce one auxiliary variable Q to replace the

pare term XA S . Accordingly, Q = XA S acts as the additional con-

traint. Note that the probability properties of every S i are enforced

s hard constraints. The augmented Lagrangian function of (13) is:

L {∀ i, || W 

v 
i 
|| 2 ≤1 ; S T 

i 
1 =1 , S i 
0 } (W , X , Q , S ) = 

1 

V 

V ∑ 

v =1 

|| F v − W 

v X || 2 F 

+ λ2 || Q || 1 + γ || S || 2 F + 	(Z , Q − XA S ) , 

(15)

ith the definition 	(Z , C ) = 

μ
2 || C || 2 F + 〈 Z , C 〉 , where 〈 · , · 〉 de-

otes the matrix inner product, μ is a positive penalty scalar and,

 is the Lagrangian multiplier. Therefore, there are mainly four

ariables, including W, X, Q and S , to solve. The designed solver

teratively updates one variable at a time by fixing the others. The

olutions of the subproblems are described below. 

X-subproblem : By leaving only terms in (15) that depend on X ,

e obtain: 

min 

X 

1 

V 

V ∑ 

v =1 

|| F v − W 

v X || 2 F + 	(Z , Q − XA S ) (16)

aking the derivative of the above objective respect to X and set-

ing it to zero, leads to the following equation: ( 

2 

V 

V ∑ 

v =1 

W 

v T W 

v 

) 

X + X (μA S A 

T 
S ) = 

2 

V 

V ∑ 

v =1 

W 

v T F v + ZA 

T 
S + μQA 

T 
S 

(17)

his is a standard Sylvester equation, which is solved by using the

artels–Stewart algorithm [67] . 
5 Empirically, we found that adding an extra λ1 || X || 2 F term in MSC _ IAS makes 

ittle difference to the clustering performance, but results in more complex solver 

nd higher computational cost. While for the MSC+Gauss and MSC+IAS, this term is 

needful to make the intact space learning stabilized. 
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Fig. 2. The framework of Multi-view Subspace Clustering with Intactness-Aware Similarity (MSC _ IAS). Given a collection of data points with multiple features, e.g. , F 1 , . . . , F V , 

the proposed MSC _ IAS integrates all the multi-view information to learn an intact space X , and constructs the intactness-aware similarity matrix S via the HSIC, into a unified 

optimization framework. Moreover, the proposed HSIC can be explained as that the similarity is learned by assigning the adaptive and optimal neighbors for each intact data 

point based on the local connectivity. Afterwards, the spectral clustering algorithm such as the normalized cuts is employed on the learned similarity to obtain the final 

clustering results. 
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6 http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html . 
7 http://cvc.yale.edu/projects/yalefaces/yalefaces.html . 
W-subproblem : It is obvious that W can be solved by views.

ropping the unrelated terms and taking derivative of L with re-

pect to W 

v reads: 

min 

W 

v 
|| F v − W 

v X || 2 F , ∀ i, || W 

v 
i || 2 ≤ 1 . (18) 

ccording to the work [68] , we know that the above subproblem

an be effectively solved by the following ADMM algorithm: 

 

 

 

 

 

 

 

 

 

 

 

 

 

W 

v (r+1) = argmin 

W 

v 
|| F v − W 

v X || 2 F + τ || W 

v − M 

(r) + T 

(r) || 2 F 

= (F v X 

T + τ (M 

(r) − T 

(r) ))(XX 

T + τ I ) −1 

M 

(r+1) = argmin 

M 

τ || W 

v (r+1) − M + T 

(r) || 2 F , s . t . || M i || 2 2 ≤ 1 

T 

(r+1) = T 

(r) + W 

v (r+1) − M 

(r+1) , 

(19) 

here τ is a penalty scalar and is updated ( τ (r+1) = 1 . 2 τ (r) ) if ap-

ropriate. r is the iteration index and the maximum number of it-

rations is 100. We use the same settings as the work [68] does.

or more details, one may refer to [68] . 

Q-subproblem : The corresponding subproblem is given by: 

min 

Q 
λ2 || Q || 1 + 	(Z , Q − XA S ) . (20) 

e can use the soft-thresholding operator to get Q as: 

 = sign 

(
XA S − Z 

μ

)
max 

(
| XA S − Z 

μ
| − λ3 

μ

)
. (21) 

S-subproblem : The associated problem is written as: 

min 

S 
λ2 

n ∑ 

i =1 

n ∑ 

j=1 

|| X i − X j || 1 S i j + γ || S || 2 F s . t . ∀ i, S T i 1 = 1 ; S i 
 0 .

(22) 

t can be separated into a set of smaller independent problems, 

 i S i =: argmin 

S T 
i 

1 =1 ; S i 
0 

|| S i + d 

X 
i || 2 2 , (23)

here d 

X 
i 

∈ R 

n is a vector, the j th element of which is d 

X 
i j 

=
λ3 || X i −X j || 1 

2 γ . For each S i , the closed-form solution can be easily ob-

ained [22,28] : 

 i = 

(1 + 

∑ k 
j=1 

˜ d 

X 
i j 

k 
1 − d 

X 
i 

)
+ , (24)
here the operator (u ) + turns negative elements in u to 0 while

eeping the rest. Please notice that the parameter k ∈ { 1 , . . . , n } is
ntroduced to control the number of nearest neighbors of X i that

ould have chance to connect to X i . Therefore, the local connec-

ivity is balanced by the parameter k , and shows more superior

han the popular Gaussian similarity in general. In addition, the el-

ments of ˜ d 

X 
i j 

are those of d 

X 
i j 

but with the ascending order. Since

he graph constructed according to S obtained by (24) is generally

n unbalanced digraph, we employ S + S T 
2 to achieve the balance.

oreover, the parameter γ can be determined by: 

= 

1 

n 

n ∑ 

i =1 

( 

k 

2 

d 

X 
i,k +1 −

1 

2 

k ∑ 

j=1 

d 

X 
i j 

) 

. (25) 

Multiplier : Besides, the multiplier Z needs to be updated,

hich can be simply done through: 

Z = Z + μ(Q − XA S ) ; μ = μρ. (26) 

he entire algorithm is summarized in Algorithm 1 , which ter-

inates when the maximal number (in all the experiments con-

ucted in this paper, 100 is used) of iterations is reached or the

bjective value f ( t ) in the t th iteration meets the stop criteria
| f (t+1) − f (t) | 

f (t) 
≤ 10 −2 . 

. Experiments 

.1. Experimental settings 

.1.1. Dataset description 

Six benchmark datasets adopted in the experiments are those

idely used in recent works [24,25,29] for face and image cluster-

ng, including: 

Extended Yale-B 

6 consists of 2414 face images of 38 individu-

ls. Each individual has 64 near frontal images under different illu-

inations. Similar to [24] , we select the first 10 classes as the final

ataset, which has 640 frontal face images in total. 

Yale 7 is composed of 165 grayscale images of 15 individuals.

ach individual has 11 images, with different facial expression and

onfiguration. 

http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Algorithm 1: M ulti-view S ubspace C lustering with I ntactness- 

A ware S imilarity (MSC _ IAS). 

Input : Multi-view data matrices: F 1 , F 2 , . . . , F V , latent intact 

space data dimension d, cluster number c, nearest 

neighbor number k , parameter λ2 . 

Initialize : X 

(0) , W 

v (0) , Q 

(0) , S (0) and Z 

(0) , μ(0) = 1 . 25 , ρ > 1 , 

t = 1 . 

while not converged do 

t = t + 1 ; 

Update X 

(t) via Eq. (17); 

for v from 1 to V do 

Update W 

v (t) via Eq. (19); 

end 

Update Q 

(t) via Eq. (21); 

for i from 1 to n do 

Update S (t) 
i 

via Eq. (24); 

end 

Balance S by S + S T 
2 ; 

Update the multipliers Z 

(t) via Eq. (26); 

μ(t+1) = μ(t) ρ ; 

end 

Apply the normalized cuts algorithm [63] on the 

intactness-aware similarity matrix S . 

Output : Final data clustering results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

o

 

p  

t

 

s

 

i  

m

 

fi  

o

 

c  

t

 

t  

t

 

r  

c  

a  

l  

o  

s  

i  

(  

n

6

 

M  

(  

a  

i  

P  

a  

r  

r  

t  

o

6

6

 

a  

t  

i  

s  

s  

i  

r  

d  

0  

0  

i  

b  
ORL 8 contains 400 face images of 40 distinct subjects. Each

subject has 10 different face images, which were taken at differ-

ent times, changing with the lighting, facial expressions and facial

details. 

COIL-20 9 consists of 1440 images of 20 object categories. Each

class has 72 images. All images are normalized to 32 × 32 pixel ar-

rays with 256 gray levels per pixel. 

MSRCV1 10 consists of 240 images of 9 object classes. We select

7 classes, i.e. , tree, building, airplane, cow, face, car and bicycle. 

BBCSport 11 contains the documents from the BBC Sport web-

site corresponding to the sports news in 5 topical areas. 

For the datasets Extended Yale-B, Yale, ORL and COIL-20, three

types of features, i.e. intensity, LBP [69] and Gabor [70] are

extracted to form the multi-view information. For the dataset

MSRCV1, six types of features are extracted from each image to

construct different view features. For the document dataset BBC-

Sport, two views are associated. All the processed datasets are pro-

vided by the works [24,25] . For more details, please refer to them.

6.1.2. Compared methods 

We compare our method with recently proposed state-of-the-

art alternatives, including 3 single-view methods and 8 multi-view

ones. 

SPC [27] : We select the most informative view to perform with

the standard spectral clustering scheme. 

LRR [30] : Low-rank constraint and the best performed single-

view feature are used in this method. 

RTC [71] : The method utilizes tensor to represent images and it

is robust to outliers. 

PCA+LRR : We first concatenate all the types of multiple fea-

tures and employ PCA to reduce the feature dimension to 300,

then do the clustering with LRR method. 
8 http://www.uk.research.att.com/facedatabase.html . 
9 http://www.cs.columbia.edu/CAVE/software/softlib/ . 

10 http://research.microsoft.com/en-us/projects/objectclassrecognition/ . 
11 http://mlg.ucd.ie/datasets/ . 

r  

t  

n  

0  

a  

p  
Min-Disagreement [72] : This method creates a bipartite graph

nd tries to minimize the disagreement. Then the final result is

btained by spectral clustering. 

Co-Reg SPC [38] : The method co-regularizes the clustering hy-

otheses to enforce that corresponding data points should be in

he same cluster. 

Co-Training SPC [73] : The co-training is adopted within the

pectral clustering framework. 

RMSC [47] : This method first clusters on each view and then

ntegrates them to exploit a shared low-rank transition probability

atrix. 

ConvexReg SPC [39] : A common representation for all views is

rst learned. Then the standard spectral clustering is carried out

n the similarity matrix. 

LT-MSC [24] : Low-rank tensor constraint is enforced to directly

onstruct the similarity matrix and then perform the spectral clus-

ering. 

LMSC [25] : This method seeks the underlying latent represen-

ation and simultaneously performs data reconstruction based on

he learned latent representation. 

As aforementioned, one might wonder the performance of first

ecovering X by optimizing the model of (6) and then somehow

onstructing the similarity matrix on the recovered X , in two sep-

rated steps. To verify the advantages of our intactness-aware simi-

arity and the gain of our unified method, we add two extra meth-

ds, the difference between which comes from the way of mea-

uring the distance between data points to construct the similar-

ty. One employs the commonly used Gaussian similarity function

12) as the baseline, called MSC+Gauss , the other adopts the man-

er of (11) , termed as MSC+IAS . 

.1.3. Evaluation metrics 

To assess the performance, six metrics including Normalized

utual Information ( NMI ), Accuracy ( ACC ), Adjusted Rand Index

 ARI ), F-score, Precision and Recall are utilized, of which, the ACC

nd NMI are the most two popular metrics and have been adopted

n the literature, such as [71,74,75] . For other metrics ARI , F -score,

recision and Recall , detailed definitions can be found in [76,77] ,

nd also have been widely used in [24,78] . Overall, these six met-

ics favor different properties in the clustering. For all the met-

ics, a higher value indicates a better clustering quality. We report

he average accuracy and standard derivation of all the competitors

ver 30 independent trials. 

.2. Experimental results 

.2.1. Parameters effect 

We test the parameters effect on Extended Yale-B dataset as

n example, and the influence of ACC and NMI are displayed. For

he baseline MSC+Gauss , there are three parameters, the regular-

zer weights λ1 and the latent dimension d for learning the intact

pace in step one, and the trade-off parameter σ for the Gaussian

imilarity function (12) in step two. We tune one parameter by fix-

ng the others, as shown in Fig. 3 . We can see that all the four pa-

ameters have a certain effect on the Extended Yale-B. For all the

atasets, the space of parameter λ1 is {0.0 01, 0.0 05, 0.01, 0.05, 0.1,

.5, 1}, parameter d ∈ { 10 0 , 20 0 , . . . , 20 0 0 } and σ ∈ {0.01, 0.05, 0.1,

.5, 1}, respectively. The best performance is reported after tun-

ng the parameters in their corresponding spaces. For MSC+IAS ,

ased on the above analysis, we know that in step two, the pa-

ameters λ2 and γ can be determined by the parameter k . Thus

his model has three major parameters including λ1 , d and k that

eed to be tuned. Specifically, we tune the parameter λ1 ∈ {0.001,

.005, 0.01, 0.05, 0.1, 0.5, 1} , parameter d ∈ {10 0, 20 0, ���, 20 0 0}

nd k from 1 to 15, respectively. The parameter effects are dis-

layed in Fig. 4 . Similarly, the best performance are reported by

http://www.uk.research.att.com/facedatabase.html
http://www.cs.columbia.edu/CAVE/software/softlib/
http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://mlg.ucd.ie/datasets/
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Fig. 3. MSC+Gauss : From left to right, the parameter effect of λ1 , d and σ on Extended Yale-B dataset with ACC (dashed) and NMI (solid) metrics, respectively. 

Fig. 4. MSC+IAS : From left to right, the parameter effect of λ1 , d and k on Extended Yale-B dataset with ACC (dashed) and NMI (solid) metrics, respectively. 

Fig. 5. MSC _ IAS : From left to right, the parameter effect of λ2 , d and k on Extended Yale-B dataset with ACC (dashed) and NMI (solid) metrics, respectively. 
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uning the parameters in their corresponding spaces. For all other

ompared methods, their parameters tuning is done in the work

24] , here we simply copy the corresponding results from the pa-

er [24] . For MSC _ IAS , there are also three parameters λ2 , d and

 need to be tuned. Specifically, we tune the parameter λ2 by fix-

ng the other parameters. As shown in Fig. 5 , the λ2 influence with

CC and NMI metrics is displayed in the first sub-graph of Fig. 5 .

rom the curves, we can observe that, the ACC and NMI dramati-

ally rises as the value increases from 0.01 to 0.1, while it starts to

rop afterwards. This is reasonable since the spectral-based clus-

ering is a little sensitive to the input similarity matrix. The second

ub-figure of Fig. 5 gives the effect of the intact space dimension d

n Extended Yale-B, the ACC and NMI dramatically rises as the di-

ension increases from 100 to 500, and drops afterwards. The last

p  
lots of Fig. 5 shows the effect of the nearest neighbor number k ,

he trend of which shows a similar phenomenon with that of the

imension, i.e. the accuracy is improved by a larger k in a certain

ange, but degenerates when k is too large. Both the above two ex-

eriments indicate that the performance gains from the sufficiency

f information but would be hurt by the redundancy. 

.2.2. Performance comparison 

We report the detailed clustering results on six benchmark

atasets in Tables 1–5 . The values in bold-italic represent the best

erformance while the bold values are the second best perfor-

ance. 

Table 1 provides the quantitative comparison among the com-

etitors on Extended Yale-B dataset. It can be observed that most
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Table 1 

Results (mean ± standard deviation) on Extended Yale-B . We set d = 500 , k = 3 , λ2 = 0 . 1 in MSC _ IAS. 

Method NMI ACC ARI F-score Precision Recall 

SPCbest [27] 0.360 ± 0.016 0.366 ± 0.059 0.225 ± 0.018 0.303 ± 0.011 0.296 ± 0.010 0.310 ± 0.012 

Single-view LRRbest [30] 0.625 ± 0.004 0.615 ± 0.013 0.451 ± 0.002 0.508 ± 0.004 0.481 ± 0.002 0.539 ± 0.001 

RTC [71] 0.373 ± 0.001 0.360 ± 0.0 0 0 0.215 ± 0.005 0.291 ± 0.003 0.287 ± 0.005 0.294 ± 0.002 

PCA + LRR 0.568 ± 0.005 0.569 ± 0.012 0.400 ± 0.003 0.463 ± 0.002 0.433 ± 0.002 0.498 ± 0.002 

Min-Disagreement [72] 0.186 ± 0.003 0.242 ± 0.018 0.088 ± 0.001 0.181 ± 0.001 0.174 ± 0.001 0.189 ± 0.002 

Co-Reg SPC [38] 0.151 ± 0.001 0.224 ± 0.0 0 0 0.066 ± 0.001 0.160 ± 0.0 0 0 0.157 ± 0.001 0.162 ± 0.0 0 0 

Multi-view Co-Train SPC [73] 0.302 ± 0.007 0.186 ± 0.001 0.043 ± 0.001 0.140 ± 0.001 0.137 ± 0.001 0.143 ± 0.002 

RMSC [47] 0.157 ± 0.019 0.210 ± 0.013 0.060 ± 0.014 0.155 ± 0.012 0.151 ± 0.012 0.159 ± 0.013 

ConvexReg SPC [39] 0.163 ± 0.022 0.216 ± 0.019 0.072 ± 0.012 0.164 ± 0.010 0.163 ± 0.010 0.165 ± 0.011 

LT-MSC [24] 0.637 ± 0.003 0.626 ± 0.010 0.459 ± 0.030 0.521 ± 0.006 0.485 ± 0.001 0.539 ± 0.002 

LMSC [25] 0.715 ± 0.011 0.736 ± 0.010 0.578 ± 0.021 0.618 ± 0.009 0.654 ± 0.010 0.786 ± 0.009 

Baseline MSC + Gauss 0.441 ± 0.005 0.451 ± 0.007 0.266 ± 0.005 0.348 ± 0.005 0.309 ± 0.004 0.961 ± 0.003 

MSC + IAS 0.702 ± 0.010 0.718 ± 0.009 0.597 ± 0.005 0.637 ± 0.008 0.615 ± 0.008 0.716 ± 0.012 

Proposed MSC _ IAS 0.809 ± 0.008 0.783 ± 0.006 0.701 ± 0.008 0.735 ± 0.003 0.698 ± 0.012 0.802 ± 0.011 

Table 2 

Results (mean ± standard deviation) on Yale . We set d = 500 , k = 3 , λ2 = 0 . 05 in MSC _ IAS. 

Method NMI ACC ARI F-score Precision Recall 

SPCbest [27] 0.654 ± 0.009 0.616 ± 0.030 0.440 ± 0.011 0.475 ± 0.011 0.457 ± 0.011 0.495 ± 0.010 

Single-view LRRbest [30] 0.709 ± 0.011 0.697 ± 0.0 0 0 0.515 ± 0.004 0.547 ± 0.007 0.529 ± 0.003 0.567 ± 0.004 

RTC [71] 0.607 ± 0.013 0.594 ± 0.016 0.371 ± 0.005 0.412 ± 0.012 0.384 ± 0.005 0.443 ± 0.025 

PCA + LRR 0.632 ± 0.006 0.582 ± 0.038 0.353 ± 0.009 0.396 ± 0.008 0.360 ± 0.007 0.441 ± 0.008 

Min-Disagreement [72] 0.645 ± 0.005 0.615 ± 0.043 0.433 ± 0.006 0.470 ± 0.006 0.446 ± 0.005 0.496 ± 0.006 

Co-Reg SPC [38] 0.648 ± 0.002 0.564 ± 0.0 0 0 0.436 ± 0.002 0.466 ± 0.0 0 0 0.455 ± 0.004 0.491 ± 0.003 

Multi-view Co-Train SPC [73] 0.672 ± 0.006 0.630 ± 0.011 0.452 ± 0.010 0.487 ± 0.009 0.470 ± 0.010 0.505 ± 0.007 

RMSC [47] 0.684 ± 0.033 0.642 ± 0.036 0.485 ± 0.046 0.517 ± 0.043 0.500 ± 0.043 0.535 ± 0.044 

ConvexReg SPC [39] 0.673 ± 0.023 0.611 ± 0.035 0.466 ± 0.032 0.501 ± 0.030 0.476 ± 0.032 0.532 ± 0.029 

LT-MSC [24] 0.765 ± 0.008 0.741 ± 0.002 0.570 ± 0.004 0.598 ± 0.006 0.569 ± 0.004 0.629 ± 0.005 

LMSC [25] 0.754 ± 0.009 0.768 ± 0.010 0.659 ± 0.011 0.649 ± 0.008 0.623 ± 0.006 0.701 ± 0.003 

Baseline MSC + Gauss 0.562 ± 0.009 0.442 ± 0.008 0.286 ± 0.010 0.338 ± 0.005 0.284 ± 0.009 0.881 ± 0.006 

MSC + IAS 0.769 ± 0.011 0.773 ± 0.009 0.582 ± 0.008 0.603 ± 0.006 0.578 ± 0.009 0.683 ± 0.012 

Proposed MSC _ IAS 0.821 ± 0.008 0.823 ± 0.006 0.709 ± 0.005 0.706 ± 0.007 0.698 ± 0.010 0.759 ± 0.011 

Table 3 

Results (mean ± standard deviation) on ORL . We set d = 500 , k = 7 , λ2 = 0 . 05 in MSC _ IAS. 

Method NMI ACC ARI F -score Precision Recall 

SPCbest [27] 0.884 ± 0.002 0.726 ± 0.025 0.655 ± 0.005 0.664 ± 0.005 0.610 ± 0.006 0.728 ± 0.005 

Single-view LRRbest [30] 0.895 ± 0.006 0.773 ± 0.003 0.724 ± 0.020 0.731 ± 0.004 0.701 ± 0.001 0.754 ± 0.002 

RTC [71] 0.792 ± 0.001 0.601 ± 0.0 0 0 0.450 ± 0.002 0.465 ± 0.002 0.388 ± 0.003 0.581 ± 0.001 

PCA + LRR 0.867 ± 0.003 0.750 ± 0.033 0.650 ± 0.007 0.658 ± 0.007 0.624 ± 0.007 0.696 ± 0.008 

Min-Disagreement [72] 0.876 ± 0.002 0.748 ± 0.051 0.654 ± 0.004 0.663 ± 0.004 0.615 ± 0.004 0.718 ± 0.003 

Co-Reg SPC [38] 0.853 ± 0.003 0.715 ± 0.0 0 0 0.602 ± 0.004 0.615 ± 0.0 0 0 0.567 ± 0.004 0.666 ± 0.004 

Multi-view Co-Train SPC [73] 0.901 ± 0.003 0.730 ± 0.005 0.656 ± 0.007 0.665 ± 0.007 0.612 ± 0.008 0.727 ± 0.006 

RMSC [47] 0.872 ± 0.012 0.723 ± 0.025 0.645 ± 0.029 0.654 ± 0.028 0.607 ± 0.033 0.709 ± 0.027 

ConvexReg SPC [39] 0.883 ± 0.013 0.734 ± 0.031 0.668 ± 0.032 0.676 ± 0.035 0.628 ± 0.041 0.731 ± 0.030 

LT-MSC [24] 0.930 ± 0.002 0.795 ± 0.007 0.750 ± 0.003 0.768 ± 0.007 0.766 ± 0.009 0.837 ± 0.004 

LMSC [25] 0.931 ± 0.011 0.819 ± 0.017 0.988 ± 0.002 0.758 ± 0.009 0.735 ± 0.008 0.832 ± 0.006 

Baseline MSC + Gauss 0.791 ± 0.006 0.610 ± 0.008 0.494 ± 0.012 0.507 ± 0.009 0.469 ± 0.007 0.891 ± 0.009 

MSC + IAS 0.912 ± 0.011 0.805 ± 0.006 0.732 ± 0.013 0.742 ± 0.009 0.687 ± 0.008 0.809 ± 0.010 

Proposed MSC _ IAS 0.939 ± 0.007 0.845 ± 0.005 0.806 ± 0.009 0.802 ± 0.010 0.772 ± 0.011 0.851 ± 0.013 

Table 4 

Results (mean ± standard deviation) on COIL-20 . We set d = 700 , k = 3 , λ2 = 1 in MSC _ IAS. 

Method NMI ACC ARI F-score Precision Recall 

SPCbest [27] 0.806 ± 0.008 0.661 ± 0.061 0.619 ± 0.018 0.640 ± 0.017 0.596 ± 0.021 0.692 ± 0.013 

Single-view LRRbest [30] 0.829 ± 0.006 0.761 ± 0.003 0.719 ± 0.020 0.734 ± 0.004 0.717 ± 0.001 0.751 ± 0.002 

RTC [71] 0.755 ± 0.002 0.654 ± 0.021 0.543 ± 0.001 0.568 ± 0.005 0.522 ± 0.002 0.623 ± 0.0 0 0 

PCA + LRR 0.832 ± 0.004 0.770 ± 0.031 0.718 ± 0.007 0.732 ± 0.011 0.725 ± 0.004 0.739 ± 0.011 

Min-Disagreement [72] 0.789 ± 0.002 0.661 ± 0.052 0.597 ± 0.005 0.619 ± 0.005 0.579 ± 0.007 0.666 ± 0.003 

Co-Reg SPC [38] 0.765 ± 0.001 0.560 ± 0.0 0 0 0.568 ± 0.003 0.593 ± 0.0 0 0 0.558 ± 0.003 0.627 ± 0.002 

Multi-view Co-Train SPC [73] 0.813 ± 0.005 0.648 ± 0.016 0.604 ± 0.012 0.625 ± 0.011 0.588 ± 0.016 0.671 ± 0.005 

RMSC [47] 0.801 ± 0.018 0.685 ± 0.045 0.637 ± 0.044 0.656 ± 0.042 0.620 ± 0.057 0.698 ± 0.026 

ConvexReg SPC [39] 0.815 ± 0.023 0.693 ± 0.049 0.647 ± 0.055 0.666 ± 0.051 0.622 ± 0.071 0.720 ± 0.033 

LT-MSC [24] 0.862 ± 0.002 0.804 ± 0.011 0.748 ± 0.004 0.761 ± 0.007 0.741 ± 0.009 0.776 ± 0.006 

LMSC [25] 0.879 ± 0.011 0.802 ± 0.009 0.821 ± 0.017 0.794 ± 0.006 0.783 ± 0.008 0.898 ± 0.012 

Baseline MSC + Gauss 0.910 ± 0.010 0.801 ± 0.007 0.783 ± 0.005 0.793 ± 0.009 0.707 ± 0.007 0.961 ± 0.009 

MSC + IAS 0.914 ± 0.009 0.811 ± 0.008 0.801 ± 0.010 0.804 ± 0.011 0.798 ± 0.014 0.823 ± 0.007 

Proposed MSC _ IAS 0.958 ± 0.005 0.845 ± 0.009 0.849 ± 0.010 0.839 ± 0.012 0.803 ± 0.008 0.910 ± 0.006 
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Table 5 

Results (mean ± standard deviation) on MSRCV1 and BBCSport . We set { d = 700 , k = 5 , λ2 = 1 } and { d = 500 , k = 3 , λ2 = 0 . 1 } in MSC _ IAS, respectively. 

MSRCV1 BBCSport 

Method ACC NMI F -score ACC NMI F-score 

SPCbest [27] 0.668 ± 0.050 0.574 ± 0.031 0.535 ± 0.043 0.836 ± 0.035 0.715 ± 0.060 0.767 ± 0.038 

Single-view LRRbest [30] 0.593 ± 0.013 0.492 ± 0.011 0.453 ± 0.044 0.787 ± 0.002 0.692 ± 0.001 0.769 ± 0.002 

RTC [71] 0.457 ± 0.017 0.329 ± 0.003 0.298 ± 0.007 0.710 ± 0.005 0.654 ± 0.005 0.740 ± 0.009 

PCA + LRR 0.557 ± 0.009 0.483 ± 0.012 0.415 ± 0.011 0.763 ± 0.004 0.674 ± 0.001 0.743 ± 0.007 

Min-Disagreement [72] 0.692 ± 0.034 0.606 ± 0.032 0.574 ± 0.004 0.797 ± 0.049 0.776 ± 0.001 0.769 ± 0.006 

Co-Reg SPC [38] 0.653 ± 0.016 0.569 ± 0.012 0.537 ± 0.021 0.733 ± 0.058 0.717 ± 0.008 0.766 ± 0.013 

Multi-view Co-Train SPC [73] 0.601 ± 0.007 0.582 ± 0.006 0.554 ± 0.003 0.732 ± 0.006 0.702 ± 0.009 0.698 ± 0.008 

RMSC [47] 0.691 ± 0.007 0.585 ± 0.006 0.576 ± 0.016 0.857 ± 0.009 0.812 ± 0.012 0.866 ± 0.009 

ConvexReg SPC [39] 0.575 ± 0.011 0.523 ± 0.012 0.508 ± 0.009 0.798 ± 0.016 0.776 ± 0.013 0.743 ± 0.015 

LT-MSC [24] 0.783 ± 0.012 0.692 ± 0.015 0.672 ± 0.017 0.851 ± 0.615 0.810 ± 0.012 0.820 ± 0.012 

LMSC [25] 0.805 ± 0.012 0.653 ± 0.010 0.651 ± 0.017 0.900 ± 0.004 0.825 ± 0.006 0.886 ± 0.007 

Baseline MSC + Gauss 0.723 ± 0.004 0.654 ± 0.003 0.621 ± 0.006 0.754 ± 0.018 0.732 ± 0.011 0.750 ± 0.006 

MSC + IAS 0.806 ± 0.012 0.701 ± 0.011 0.679 ± 0.016 0.846 ± 0.007 0.821 ± 0.009 0.835 ± 0.018 

Proposed MSC _ IAS 0.857 ± 0.050 0.777 ± 0.050 0.737 ± 0.050 0.892 ± 0.008 0.856 ± 0.012 0.882 ± 0.009 
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f the comparisons have relatively low performances. The ma-

or reason is the large variation of illumination of this dataset.

ur proposed MSC _ IAS algorithm still achieves significant improve-

ents around 9.4%, 4.7%, 12.3%, 11.7%, 4.4% and 1.6% over the most

ompetitive method LMSC [25] in terms of NMI, ACC, AR, F -score,

recision and Recall, respectively. Moreover, we can see that the

SC+Gauss generally has poor performance due to the connections

f all data points for constructing the similarity. But interesting, we

nd that the MSC+Gauss has high values on the metric of Recall.

or the MSC+IAS, it outperforms the state-of-the-art method LT-

SC [24] , and also achieves better performance than MSC+Gauss.

he reason of this is likely that the intactness-aware similarity is

earned by adaptively according to the local connectivity. For the

roposed MSC _ IAS, it achieves the highest performance on this

ataset, which shows not only the powerful of local connectivity

n constructing the similarity graph but also the superiority of the

nified optimization. 

Table 2 displays the clustering results on Yale dataset. Simi-

ar trend to Table 1 , MSC+Gauss achieves lower performance than

ost of compared methods. However, from the values, we can see

hat MSC+IAS excels all the baselines, both single-view and multi-

iew methods. The main reason is that the intactness-aware sim-

larity we constructed is based on the local connections. More-

ver, the more robust to outliers � 1 distance has been adopted.

he most three competitive multi-view clustering methods RMSC,

T-MSC and LMSC, have achieved a relatively promising results.

he single-view method LRR also has competitive results. However,

SC+IAS is still comparable with them. As a comparison, the pro-

osed MSC _ IAS algorithm further gains significant (at least 5%) im-

rovements over MSC+IAS, which has validated the superiority of

he unified optimization of the proposed MSC _ IAS. 

Table 3 shows the performance comparison on ORL dataset,

rom which we notice that all of SPC, Co-Reg SPC, Co-Train SPC,

MSC, ConvexReg SPC perform relatively poorly. The methods LRR,

T-MSC and LMSC produce more promising results on this dataset.

t seems that the self-representation models are more suitable for

onstructing the similarity matrix on this dataset. The improve-

ent of MSC _ IAS over these two methods is not very significant.

owever, our method introduces k nearest neighbor concept (with

elatively small k ) in the similarity matrix, which may connect the

bjects of the same subject with slight pose changes. Thus, our

ethod achieve higher performance based on this informative sim-

larity matrix. 

Table 4 gives the clustering results on COIL-20 dataset. Consis-

ently, the proposed MSC _ IAS outperforms the other competitors

hanks to the intactness-aware similarity matrix constructed on

he latent intact space. There are at least 3% improvements over

a  
SC+IAS in terms of all the six evaluation metrics. In addition,

rom the numbers in the four tables, MSC+Gauss competes very fa-

orably with LT-MSC, which implies that the recovery of the intact

pace is beneficial. MSC+IAS continuously improves MSC+Gauss.

hat is to say, the similarity construction strategy (11) is more

owerful than simply using the Gaussian distance. By comparing

ur MSC _ IAS with MSC+IAS, we can clearly observe the advantages

f jointly recovering the intact space and optimizing the similarity.

Table 5 gives the clustering results on MSRCV1 and BBCSport,

espectively. On MSRCV1 dataset, we can see that our MSC _ IAS

utperforms the compared methods by a large margin. The rea-

on behind this is that the learned intact space can benefit from

ore views. As a consequence, the similarity learned by our

odel Eq. (13) is more reliable for spectral clustering. On BBCSport

ataset, the non-image processing case, we can see that the pro-

osed MSC _ IAS achieves at least 2% improvements over the com-

etitors RMSC and LT-MSC. Comparing with the recent proposed

MSC, our method MSC _ IAS still achieves higher performance on

ost of evaluation metrics. Moreover, on these two datasets, we

an see a similar trend as that shown on the former four datasets,

hat is, the jointly recovering the intact space and optimizing the

imilarity MSC _ IAS is generally better than the two separated steps

SC+IAS and the similarity constructed using the Gaussian dis-

ance. 

.3. Exploratory experiments 

.3.1. Visualization 

Fig. 6 gives the similarity matrices of our method on Extended

ale-B, Yale, ORL and COIL-20 datasets, respectively. We plot these

imilarity matrices according to the intended clusters. It can be

een that our method can reveal the underlying diagonal-block

tructures very well (please see the zoomed-in regions shown in

ig. 6 for details), which are desired by spectral-based cluster-

ng methods. This further validates the advantages of our unified

odel. 

To further validate the advantages of our proposed MSC _ IAS al-

orithm, we also give the visualization of clustering results. The

lustering examples are shown in Fig. 7 . We select the first 3

lusters, and for each cluster, 10 images are randomly chosen to

how. As shown in Fig. 7 (a), each row contains incorrect faces and

he accuracy on the Extended Yale-B dataset is not very high. In

ig. 7 (b), each cluster consists few errors, which has demonstrated

hat the proposed MSC _ IAS is good for face clustering. The clus-

ering results on the ORL dataset are also promising. As shown in

ig. 7 (c), the clustering accuracies of the first 3 clusters (top-down)

re: 80%, 90% and 90%, respectively. On the COIL-20 dataset, our
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Fig. 6. From left to right : Visualization of similarity matrices by MSC _ IAS on Extended Yale-B, Yale, ORL and COIL-20, respectively. The zoomed-in patches in the lower 

row correspond to the regions bounded by red boxes in the upper row. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 7. Visualization of the MSC _ IAS clustering results on four datasets. 

Fig. 8. From left to right : convergence speed of the proposed MSC _ IAS algorithm on Extended Yale-B, Yale, ORL and COIL-20, respectively. 
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method achieves a significantly better clustering result, as shown

in Fig. 7 (d), only the third row contains incorrect images. 

6.3.2. Computational complexity 

The associated problem of our model ( Eqs. (13) and (15) ) is

solved by mainly dividing it into four optimisation subproblems

and solving them alternatingly. Among those subproblems, there

are three operations that give rise to high computational cost.

Specifically, the three operations are: (1) The eigen decomposition

of Laplacian matrix L , which has a complexity of O ( n 3 ). However,
ince the Laplacian matrix L is sparse, by employing the sparse

nalysis methods [79] , the complexity can be reduced to O ( rn 2 ),

here r is the ratio of nonzero samples in L to the total number

f samples n ; (2) The solving of Sylvester equation. As analysis in

67] , its complexity is of O ( n 2 ); (3) The matrix multiplication oper-

tion of A S A 

T 
S 

. By leveraging the eigen decomposition of the L ma-

rix, i.e. , we choose the first K largest eigenvalues to get A S . With

his reduced A S , the cost is O ( Kn 2 ). All in all, the fact that all three

perations have a complexity of O ( n 2 ) brings down the complexity

f the whole algorithm to O ( n 2 ). 
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.3.3. Convergence analysis 

It is worth noting that there is no established theory of

lobal convergence in literature for ADMM algorithms applied to

on-convex problems as the one solved in this work. Similar

o [22,24,78] , we show the convergence speed empirically. More

pecifically, the convergence speed of our algorithm on the four

atasets is given in the Fig. 8 . It suggests that the proposed algo-

ithm has very strong and stable convergence behavior. It can be

een that the MSC _ IAS converges in less than 40 iterations, and

unning the MSC _ IAS algorithm on Extended Yale-B, Yale, ORL and

OIL-20 only takes about 118 s, 76 s, 98 s, and 179 s (seconds) on

 laptop with 3.20 GHz Intel Core i5 CPU and 4GB RAM, respec-

ively. To allow more experimental verifications, our code can be

ownloaded from http://www.cbsr.ia.ac.cn/users/xiaobowang . 

. Conclusion 

This paper has proposed a novel multi-view subspace cluster-

ng model to construct an intactness-aware similarity based on

he recent intact space learning technique. Specifically, the in-

act space is recovered based on multi-view information and the

ntactness-aware similarity is constructed based on the local con-

ectivity of intact space. For the similarity construction, different

rom previous models, in our method, the data similarity matrix

s constructed by adaptively assigning the neighbors for each in-

act space data point according to the local connectivity. Moreover,

he robustness to outliers � 1 distance is employed. Finally, we have

ormulated the overall problem into a unified optimization frame-

ork and have designed an effective and efficient ADMM based

lgorithm to seek the solution. The experimental results on several

ommonly adopted benchmark datasets, in comparison with the

tate-of-the-art alternatives, have demonstrated the significant im-

rovement of the proposed method. In the future, it is interesting

o extend MSC _ IAS to handle incomplete multi-view data. 
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