
BIT 0006-3835/00/4004-0001 $15.00
Submitted August 2005, pp. xxx–xxx c© Swets & Zealander

SOLVING DIFFERENTIAL-ALGEBRAIC
EQUATIONS BY TAYLOR SERIES (II):

COMPUTING THE SYSTEM JACOBIAN∗

Nedialko S. Nedialkov1† and John D. Pryce2‡

1 Department of Computing and Software, McMaster University, Hamilton, Ontario,

L8S 4L7, Canada. email: nedialk@mcmaster.ca

2 Computer Information Systems Engineering Department, Cranfield University, RMCS

Shrivenham, Swindon SN6 8LA, UK. email: pryce@rmcs.cranfield.ac.uk

Abstract.

The authors have developed a Taylor series method for solving numerically an initial-
value problem differential-algebraic equation (DAE) that can be of high index, high
order, nonlinear, and fully implicit (BIT, accepted July 2005). Numerical results have
shown that this method is efficient and very accurate. Moreover, it is particularly
suitable for problems that are of too high an index for present DAE solvers.

This paper develops an effective method for computing a DAE’s System Jacobian,
which is needed in the structural analysis of the DAE and computation of Taylor
coefficients. Our method involves preprocessing of the DAE and code generation em-
ploying automatic differentiation. Theory and algorithms for preprocessing and code
generation are presented.

An operator-overloading approach to computing the System Jacobian is also dis-
cussed.

AMS subject classification: 34A09, 65L80, 65L05, 41A58.

Key words: Differential-algebraic equations (DAEs), structural analysis, Taylor se-
ries, automatic differentiation.

1 Introduction.

We have developed a Taylor series (TS) method for solving numerically an
initial-value problem (IVP) DAE that can be of arbitrary index, fully implicit,
nonlinear, and contain derivatives of order higher than one [2].

More specifically, our method solves a DAE IVP comprising n equations fi = 0
in n dependent variables xj = xj(t), with t a scalar independent variable. We
write informally

(1.1) fi(t, the xj and derivatives of them) = 0, 1 ≤ i ≤ n.

∗Received Revised Communicated by
†This work was supported in part by the Natural Sciences and Engineering Research Council

of Canada.
‡This work was supported in part by grants from the Leverhulme Trust and the Engineering

and Physical Sciences Research Council of the UK.

2 Nedialko S. Nedialkov and John D. Pryce

The fi are assumed sufficiently smooth. They can be arbitrary expressions
built from the xj and t using +,−,×,÷, other standard functions, and the
differentiation operator dp/dtp.

To solve (1.1), we use automatic differentiation (AD) to generate functions
for evaluating the Taylor coefficients (TCs) of the equations fi, and by equating
these coefficients to zero, we solve implicitly for the TCs of the solution compo-
nents xj(t). Then we sum these coefficients with appropriate stepsize to find an
approximate Taylor series solution, which we project to satisfy the constraints
of the DAE. We repeat this process on each integration step in a standard time-
stepping manner.

To determine what equation to solve, and for which TCs of the solution, we
apply Pryce’s structural analysis (SA) [4]: we preprocess the given DAE to
find the signature matrix and then the offsets of the problem. These offsets
prescribe the overall process for computing TCs, as well as how to form the
System Jacobian J that is central to both the theory and the algorithm.

A common measure of the numerical difficulty of a DAE is its differentiation
index νd, the number of times the fi must be differentiated (w.r.t. t) to obtain
equations that can be solved to form an ODE system for the xj . Our method
does not find high index inherently hard. The SA derives a structural index,
which is the same as that found by the well-known method of Pantelides [3], and
is always ≥ νd.

Underlying theory, algorithms, numerical results, and implementation issues
are presented in [2]. This method is implemented in the authors’ DAETS code,
which is written in standard C++. The numerical results in [2] show DAETS can
be very accurate, efficient, and particularly suitable for problems that are of too
high an index for existing methods and solvers.

This is the second paper on the theory behind DAETS. We focus on prepro-
cessing a DAE and computing its System Jacobian. Our main contribution is
the theory and algorithms of a source-code translation method for evaluating
this Jacobian. We also describe a method for computing it based on operator
overloading. Algorithmic details for the preprocessing phase of constructing a
signature matrix of a DAE are given.

Section 2 summarizes Pryce’s SA. Section 3 illustrates how TCs are calculated.
The computation of the signature matrix is presented in Section 4. Section 5
develops an efficient method, based on source-code translation, for evaluating
J. Section 6 describes an operator-overloading approach for computing J. Con-
cluding remarks are in Section 7.

2 Summary of Pryce’s SA.

When computing TCs for the solution of a DAE, we employ Pryce’s SA to
determine what equations to solve and for which coefficients of the solution. The
steps of this SA are outlined below.

SOLVING DAES BY TAYLOR SERIES (II): COMPUTING JACOBIANS 3

1. Form the n× n signature matrix Σ = (σij) with

σij =

{
−∞ if xj does not occur in fi; or

order of the highest derivative to which xj occurs in fi.

2. Find a highest-value transversal (HVT) in Σ. A transversal of an n × n
matrix is a set of n positions in this matrix with one entry in each row and
each column. A HVT is a transversal T that makes

∑
(i,j)∈T σij as large

as possible.

3. Calculate the offsets of the problem. These are two nonnegative integer
n-vectors c and d that satisfy

dj − ci = σij for all (i, j) in some HVT T and(2.1)
dj − ci ≥ σij for all i, j = 1, . . . , n.(2.2)

The conditions (2.1, 2.2) are independent of the T chosen. However, the
offsets are never unique. When computing TCs, it is advantageous to
choose the smallest or canonical offsets [2], smallest being in the sense of
a ≤ b if ai ≤ bi for each i.

4. Form the System Jacobian of (1.1):

J =
∂
(
f

(c1)
1 , . . . , f

(cn)
n

)
∂
(
x

(d1)
1 , . . . , x

(dn)
n

) .(2.3)

By results in [4], (2.3) has the equivalent reformulation:

Jij =
∂fi

∂x
(dj−ci)
j

=

∂fi

∂x
(σij)
j

if dj − ci = σij and

0 otherwise.
(2.4)

Informally, a consistent initial point is the values of an appropriate set of the
xj and their derivatives, at a time t∗, that specify a unique solution; see [2] for
a more rigorous discussion. If J is nonsingular at a consistent point, then the
SA has succeeded, and the DAE is solvable in a neighborhood of this point.

The subject of this paper is steps 1 and 4. Steps 2 and 3 comprise a linear
assignment problem (LAP), solvable by a suitable LAP code; see [2, 4].

Example 2.1. The simple pendulum is a DAE of differentiation-index 3:

0 = f = x′′ + xλ

0 = g = y′′ + yλ−G

0 = h = x2 + y2 − L2.

(2.5)

4 Nedialko S. Nedialkov and John D. Pryce

Here gravity G>0 and length L>0 of pendulum are constants, and the dependent
variables are the coordinates x(t), y(t) and the Lagrange multiplier λ(t).

For (2.5), there are two HVTs, marked • and ◦ in the tableau below. The
canonical offsets are c = (0, 0, 2) and d = (2, 2, 0):

x y λ ci[]f 2• −∞ 0◦ 0

g −∞ 2◦ 0• 0

h 0◦ 0• −∞ 2

dj 2 2 0

The system Jacobian is

J =

∂f/∂x′′ 0 ∂f/∂λ

0 ∂g/∂y′′ ∂g/∂λ

∂h/∂x ∂h/∂y 0

 =

 1 0 x
0 1 y
2x 2y 0

 .(2.6)

Now J is nonsingular since its determinant is −2(x2 + y2) = −2L2 6= 0.

3 Computing TCs.

The offsets ci and dj prescribe how to organize the computation of TCs for
the xj . Denote the rth TC of xj by (xj)r and the rth TC of fi by (fi)r.

We compute TCs in stages starting from stage kd = −maxj dj . At each stage
k = kd, kd + 1, . . . , we solve a system of equations

(fi)k+ci = 0 for all i such that k + ci ≥ 0(3.1)

to determine values for

(xj)k+dj
for all j such that k + dj ≥ 0.(3.2)

All previously computed (xj)r in any equation (3.1) are treated as constants.
The equations in (3.1) are generated using AD for computing TCs of explicit

functions, here fi. For example, if sufficient TCs of xj and xk are known, we
can evaluate the pth TCs for xj + xk, xj · xk, and x

(d)
j by

(xj + xk)p = (xj)p + (xk)p,(3.3)

(xj · xk)p =
p∑

r=0

(xj)r(xk)p−r, and(3.4)

(
x

(d)
j

)
p

= (p + 1)(p + 2) · · · (p + d) · (xj)p+d.(3.5)

Similar formulas can be written for division and the standard functions.

SOLVING DAES BY TAYLOR SERIES (II): COMPUTING JACOBIANS 5

Then, the values in (3.2) are found by an implicit solution process. The
Jacobian that we have to form at stage k has entries

∂(fi)k+ci

∂(xj)k+dj

=
∂f

(k+ci)
i /(k + ci)!

∂x
(k+dj)
j /(k + dj)!

=
(k + dj)!
(k + ci)!

∂f
(k+ci)
i

∂x
(k+dj)
j

,

where k + ci ≥ 0 and k + dj ≥ 0.
Denote by Jk the Jacobian formed from ∂f

(k+ci)
i /∂x

(k+dj)
j , for those i and j

for which k + ci ≥ 0 and k + dj ≥ 0. We show in Subsection 5.1 that for k < 0,
Jk is the submatrix of J formed by deleting rows i where k+ci < 0 and columns
j where k + dj < 0. If k ≥ 0 then Jk = J, since no rows or columns are deleted.

Example 3.1. For the pendulum example (2.5), we write TCs without paren-
theses for brevity: xr rather than (x)r, etc. Then using (3.1, 3.2) and (3.3–3.5)
applied to the pendulum equations, we obtain the scheme:

stage uses equations to obtain
k = −2 0 = h0 = x2

0 + y2
0 − L2 x0, y0

k = −1 0 = h1 = 2x0x1 + 2y0y1 x1, y1

0 = f0 = 2x2 + x0λ0

k = 0 0 = g0 = 2y2 + y0λ0 −G x2, y2, λ0

0 = h2 = 2x0x2 + x2
1 + 2y0y2 + y2

1

...
...

...

0 = fp = . . .

k = p 0 = gp = . . . xp+2, yp+2, λp

0 = hp+2 = . . .

At stages k = −2 and k = −1,

∂h0

∂(x0, y0)
=

∂h1

∂(x1, y1)
= [2x0, 2y0] = J−2 = J−1.

At stage k = 0, we have the linear system

0 =

 2 0 x0

0 2 y0

2x0 2y0 0

x2

y2

λ0

+

 0
−G

x2
1 + y2

1

 = A0ξ + b, say.

Matrix A0 is a diagonally-scaled version of the pendulum’s System Jacobian J,
given in (2.6). Namely

A0 =
∂(f0, g0, h2)
∂(x2, y2, λ0)

= diag[1, 1, 2]−1 J diag[2, 2, 1].

Similarly for k > 0, we solve a linear system fk, gk, hk+2 = 0 to determine
xk+2, yk+2, λk. The matrix in each of these systems is a diagonally-scaled J.

Generally, (3.1) can be nonlinear for k ≤ 0 and underdetermined for k < 0.
For k > 1, it is always linear with a diagonally-scaled J. For details, see [2].

6 Nedialko S. Nedialkov and John D. Pryce

4 Computing Σ.

First we define a signature vector of a variable in the code list of a DAE. Then,
we give a Lemma relating the signature vectors of these variables. Finally, we
outline an algorithm for computing Σ based on this Lemma.

Definition 4.1 (Signature vector). Let v be a variable in the code list.
The signature vector of v is the n vector σ(v) with jth component

σj(v) =

{
−∞ if v does not depend on xj; or
the highest order of derivative of xj on which v formally depends.

By “formally” we mean dependence in the code list without simplifications. For
instance, the order of highest derivative of x in x′ + x− x′ is 1, not 0; similarly,
the order of the highest derivative of x in (xy)′ − x′y is 1, not 0.

Lemma 4.1. Let v be a variable in the code list.

(i) If v is an input-variable xj then

σl(v) = σl(xj) =

{
0 if l = j

−∞ if l 6= j.
(4.1)

(ii) If v is a constant then

σl(v) = −∞ for l = 1, . . . , n.

(iii) If v is an algebraic function of a set U of variables u, then

σl(v) = max
u∈U

σl(u) for l = 1, . . . , n.(4.2)

(iv) If v ≡ dpu/dtp then

σl(v) = σl(u) + p for l = 1, . . . , n.(4.3)

The proof is trivial, and we omit it. This Lemma immediately gives:

Algorithm 4.1 (Signature matrix).

Input
code list encoding a DAE

Output
signature matrix Σ

Compute
for each term v in the code list

if v is an input-variable xj then
σl(v)← 0 if l = j
σl(v)← −∞ for l 6= j

elseif v is a constant then
σl(v)← −∞ for l = 1, . . . , n

SOLVING DAES BY TAYLOR SERIES (II): COMPUTING JACOBIANS 7

elseif v is an algebraic function of a set U of previous variables u then
σl(v)← maxu∈U σl(u) for l = 1, . . . , n

elseif v ≡ dpu/dtp then
σl(v)← σl(u) + p for l = 1, . . . , n

for i = 1, . . . , n
(ith row of Σ)← σ(fi)

By the remark after Definition 4.1, Algorithm 4.1 may overestimate the “true”
Σ, but never underestimates it. A detailed study, showing that such overestima-
tions do not deceive the numerical method, is given in [2].

The DAETS solver implements this algorithm through operator overloading.

5 Computing Jacobians through source-code translation.

We show how to compute efficiently Jk for k ≤ 0 from the code list of a DAE.
Our method is suitable for an implementation based on source-text translation.
We call it a single-pass method.

In the next subsection, we start with a result quoted as Lemma 3.7 in [4],
but used by Griewank in [1], and establish the relation between Jk and J. In
subsection 5.2, we define the offset of a variable in the code list and give an algo-
rithm for computing such offsets. Subsection 5.3 states a Theorem on which our
single-pass method is based, shows an algorithm implementing it, and illustrates
this method on an example.

5.1 Griewank’s Lemma

Lemma 5.1 (Griewank). Let v be a function of the xj(t) and their derivatives
(j = 1, . . . , n). Denote v(p) = dpv/dtp. If v does not depend on any derivative
of xj higher than the qth, then

(5.1)
∂v′

∂x
(q+1)
j

=
∂v

∂x
(q)
j

.

Hence by iterating

(5.2)
∂v(p)

∂x
(q+p)
j

=
∂v

∂x
(q)
j

for all p ≥ 0.

Example 5.1. Consider v = xx′ + yy′ = v(x, x′, y, y′), where the dependent
variables are x, y. Then v′ = xx′′ + x′

2 + yy′′ + y′
2 = v′(x, x′, x′′, y, y′, y′′).

Griewank’s Lemma asserts that

∂v′

∂x′′
=

∂v

∂x′
and

∂v′

∂x′′′
=

∂v

∂x′′

(both sides are zero), but
∂v′

∂x′
6= ∂v

∂x
,

8 Nedialko S. Nedialkov and John D. Pryce

since a derivative of x higher than x itself occurs in v.
By the definition of σij , and because dj − ci ≥ σij , fi does not depend on

any derivative of xj higher than (dj − ci). Applying (5.2), when k + ci ≥ 0 and
k + dj ≥ 0,

Jij =
∂fi

∂x
(dj−ci)
j

=
∂f

(k+ci)
i

∂x
(k+dj)
j

= (Jk)ij .

This gives
Lemma 5.2. For k < 0, Jk is the submatrix of J comprising the rows for

which k + ci ≥ 0 and columns for which k + dj ≥ 0. For all k ≥ 0, Jk = J.
For example, for the pendulum,

J1 =
∂(f ′, g′, h′′′)
∂(x′′′, y′′′, λ′)

=
∂(f, g, h′′)
∂(x′′, y′′, λ)

= J.

5.2 Code offsets.

Denote

(5.3) ∇k =

(
∂

∂x
(k+d1)
1

, . . . ,
∂

∂x
(k+dn)
n

)
.

If k+dj < 0, the jth component of ∇k is taken as 0. For k+ci ≥ 0, ∇k

(
f

(k+ci)
i

)
is the ith row of J.

The following definitions will be convenient later. Below v denotes a variable
in the code list of a DAE.

Definition 5.1. We say that ∇k covers v if k+dj ≥ σj(v) for all j = 1, . . . , n.
We say that ∇k touches v if
• ∇k covers v, and
• k + dj = σj(v) for at least one j.

The offset of v is the unique value α(v) ≥ 0 such that ∇−α(v) touches v.
Equivalently,

(5.4) α(v) = min
j

(
dj − σj(v)

)
≥ 0.

The computation of these offsets is based on
Lemma 5.3.

(i) If v ≡ xj, then
α(v) = α(xj) = dj .

(ii) If v is an output variable fi, then

α(v) = α(fi) = ci.

SOLVING DAES BY TAYLOR SERIES (II): COMPUTING JACOBIANS 9

(iii) If v is an algebraic function of a set U of variables u, then

α(v) = min
u∈U

α(u).

(iv) If v ≡ dpu/dtp, then
α(v) = α(u)− p.

Proof. (i) follows from (4.1) and (5.4).
For (ii), consider the defining relation (2.2) that dj − ci ≥ σij for all i, j, with

equality on a transversal. Since σij = σj(fi), for fixed i, one has dj − σij =
dj − σj(fi) ≥ ci for all j. By the transversality condition dj − ci = σij , at least
one j gives dj − σj(fi) = ci, and therefore α(fi) = ci.

For (iii), using (5.4) twice and (4.2) once, we obtain

α(v) = −max
j

(
σj(v)− dj

)
= −max

j

((
max
u∈U

σj(u)
)
− dj

)
= −max

j

(
max
u∈U

(
σj(u)− dj

))
= min

u∈U

(
−max

j

(
σj(u)− dj

))
= min

u∈U
α(u).

Finally, (iv) comes from (4.3) and (5.4).
This Lemma justifies:
Algorithm 5.1 (Code offsets).

Input
code list of a DAE
offset vectors c and d

Output
α(v) for each variable v in the code list

Compute
for each variable v in the code list

if v ≡ xj then
α(v)← dj

elseif v is an algebraic function of a set U of variables u then
α(v)← minu∈U α(u)

elseif v ≡ dpu/dtp then
α(v)← α(u)− p

At termination of this algorithm, by Lemma 5.3, α(fi) = ci.

5.3 Single-pass method.

Now suppose that ∇k covers v. This is equivalent to

k + dj ≥ σj(v) for each j,

10 Nedialko S. Nedialkov and John D. Pryce

equivalently
k ≥ −α(v),

by Definition 5.1. Setting q = k + dj in (5.2) of Griewank’s Lemma gives

(5.5)
∂v(p)

∂x
(k+dj+p)
j

=
∂v

∂x
(k+dj)
j

for each j.

Using (5.5) in the definition (5.3) of ∇k, we have

(5.6) ∇k+p

(
dpv

dtp

)
= ∇k(v) if k = −α(v), that is ∇k touches v;

while

(5.7) ∇k(v) = 0 if k > −α(v), that is ∇k covers but does not touch v,

since then all differentiations are with respect to variables v does not depend on.
In addition, each ∇k obeys the normal rules of a gradient operation: for

v = x + y and v = xy,

∇k(x + y) = ∇k(x) +∇k(y) and ∇k(xy) = ∇k(x)y + x∇k(y),(5.8)

respectively. More generally, if v is an algebraic function e(x, y, . . .) of code list
variables then

(5.9) ∇k(v) =
∂e

∂x
∇k(x) +

∂e

∂y
∇k(y) + · · · .

The factors ∂e/∂x, . . . are to be evaluated at (x, y, . . .) and thus are also functions
of the input variables and their derivatives. If ∇k touches v, then by (4.2) it
must cover each of x, y, From (5.7), any term in (5.9) for which ∇k does not
touch the corresponding variable is zero.

The following Theorem, most of which has been proved already, summarizes
the facts on which the single-pass method relies.

Theorem 5.4.

(i) If v ≡ xj, then
∇−α(v)(v) = ∇−dj

(xj) = ej ,

the jth unit row vector.
(ii) If v is an output variable fi, then

(ith row of J) = ∇−ci(fi).

(iii) If v is an algebraic function e(x, y, . . .) of a set U of previously computed
code list variables, then

∇−α(v)(v) =
∑
u∈U

α(u)=α(v)

∂e

∂u
∇−α(u)(u).

SOLVING DAES BY TAYLOR SERIES (II): COMPUTING JACOBIANS 11

(iv) If v ≡ dpu/dtp, then
∇−α(v)(v) = ∇−α(u)(u).

Proof. (i) When v = xj , α(v) = dj by Lemma 5.3(i). From (5.3), the jth
component of ∇−α(v)(v) = ∇−dj

(xj) is

∂xj

∂x
(k+dj)
j

=
∂xj

∂x
(dj−dj)
j

=
∂xj

∂xj
= 1.

The other components are clearly 0.
(ii) By Lemma 5.3(ii), α(fi) = ci; hence ∇−α(v)(v) = ∇−ci(fi). From (5.3,

5.6),

∇−ci
(fi) = ∇0

(
f

(ci)
i

)
=

(
∂f

(ci)
i

∂x
(d1)
1

, . . . ,
∂f

(ci)
i

∂x
(dn)
n

)
,

which is the definition of the ith row of the system Jacobian; cf. (2.3).
(iii) re-states what was stated and justified in the paragraph containing (5.9),

while (iv) comes from (5.6).

The resulting method is shown in Algorithm 5.2. We denote ∇−α(v)(v) by
G(v). In practice, the values of v and of G(v) should be computed simultaneously
in the same loop. For clarity, this simultaneous computation is not shown here.

Algorithm 5.2 (System Jacobian).

Input
code list of a DAE

Output
code list for computing J

Compute

Σ by Algorithm 4.1
c, d by solving an LAP
α(v) for each variable v in the code list by Algorithm 5.1

for each variable v in the code list
if v ≡ xi then

G(v)← ei

elseif v is an algebraic function e(x, y, . . .) of a set U of variables u then

G(v)←
∑
u∈U

α(u)=α(v)

∂e

∂u
G(u)

elseif v ≡ dpu/dtp then
G(v)← G(u)

for i = 1, . . . , n
(ith row of J)← G(fi)

Example 5.2. Consider the pendulum problem, but with the first equation
changed to

f =
[
(x2)′x

]′ + (x2)′ + x2λ = 0.

12 Nedialko S. Nedialkov and John D. Pryce

Code list σ(v) α(v) Calculating ∇−α(v)(v) Gradient
code list

x = input 0 – – 2 ∇−2(x) = (1, 0, 0) X = unit(1)

y = input – 0 – 2 ∇−2(y) = (0, 1, 0) Y = unit(2)

λ = input – – 0 0 ∇0(λ) = (0, 0, 1) Λ = unit(3)

v1 = x2 0 – – 2 ∇−2(v1) = 2x∇−2(x) V1 = 2xX

= (2x, 0, 0)

v2 = v1λ 0 – 0 0 ∇0(v2) = ∇0(v1)λ + v1∇0(λ) V2 = v1Λ

= (0, 0, x2)

v3 = v′1 1 – – 1 ∇−1(v3) same as ∇−2(v1)

v4 = v3x 1 – – 1 ∇−1(v4) = ∇−1(v3)x + v3∇−1(x) V4 = xV1

= (2x2, 0, 0)

v5 = v′4 2 – – 0 ∇0(v5) same as ∇−1(v4)

v6 = v5 + v3 2 – 0 0 ∇0(v6) = ∇0(v5) +∇0(v3) V6 = V4

= (2x2, 0, 0)

f1 = v6 + v2 2 – 0 0 ∇0(f1) = ∇0(v6) +∇0(v2) F1 = V6+V2

= (2x2, 0, x2)

v7 = y′′ – 2 – 0 ∇0(v7) same as ∇−2(y)

v8 = yλ – 0 0 0 ∇0(v8) = ∇0(y)λ + y∇0(λ) V8 = yΛ

= (0, 0, y)

f2 = v7 + v8 −G – 2 0 0 ∇0(f2) = ∇0(v7) +∇0(v8) F2 = Y +V8

= (0, 1, y)

v9 = y2 – 0 – 2 ∇−2(v9) = 2y∇−2(y) V9 = 2yY

= (0, 2y, 0)

f3 = v1 + v9 − L2 0 0 – 2 ∇−2(f3) = ∇−2(v1) +∇−2(v9) F3 = V1+V9

= (2x, 2y, 0)

Figure 5.1: Computing f1, f2 and f3 and their gradients. Sample code to com-
pute Jacobian is given in the last column. The terms that are zero because of
(5.7) are crossed out. Function unit(i) returns the ith unit row vector.

This change does not alter the signature matrix, so the offsets remain unchanged:
c = (0, 0, 2) and d = (2, 2, 0).

Figure 5.1 illustrates how gradient code can be generated for a code list that
computes f1 ≡ f , f2 ≡ g = y′′ + yλ − G, and f3 ≡ h = x2 + y2 − L2. The
last column of the table shows how the code list in the first column can be
augmented, line by line, to compute the rows of J. Here, gradients are denoted
by uppercase letters. All terms that are known to be zero are omitted in the
gradient code.

Where the phrase “X same as Y” occurs in the penultimate column (from a
use of (5.6)), this is taken to mean that no copy is made: X is just another name
for Y. Otherwise, no code optimization has been done.

The mathematical relations between the ∇r(v), and the sample code above,

SOLVING DAES BY TAYLOR SERIES (II): COMPUTING JACOBIANS 13

Code list α(v) Gradient
code list

x = input 2 X = unit(1)

y = input 2 Y = unit(2)

v1 = x2 2 V1 = 2xX

v9 = y2 2 V9 = 2yY

f3 = v1 + v9 − L2 2 F3 = V1+V9

if k < 0, exit

v3 = v′1 1

v4 = v3x 1 V4 = xV1

λ = input 0 Λ = unit(3)

v2 = v1λ 0 V2 = v1Λ

v5 = v′4 0

v6 = v5 + v3 0 V6 = V4

f1 = v6 + v2 0 F1 = V6+V2

v7 = y′′ 0

v8 = yλ 0 V8 = yΛ

f2 = v7 + v8 −G 0 F2 = Y +V8

Figure 5.2: The code from Figure 5.1 reordered for computation of Jk when
k < 0. For clarity, columns 2 and 4 of the table in Figure 5.1 are not shown.

assume that all vectors involved have length n. That is, columns with k+dj < 0
are not suppressed, but contain padding zeros. This is for notational convenience
— a practical implementation could use a sparse storage scheme.

The case k < 0. When k < 0, stage k of the overall Taylor coefficient genera-
tion algorithm [2] requires the partial Jacobian Jk, which comprises the rows i
and columns j of J for which k + ci ≥ 0 and k + dj ≥ 0 (Lemma 5.2). In this
case, we wish to execute only the gradient code list corresponding to Jk, not the
code list for the whole J.

To let Algorithm 5.2 handle efficiently the case k < 0, just reorder the code
list such that the lines that compute the fi are in descending order of ci. In
doing so, one must ensure that no variable comes before one that it depends on.
A simple way to do so is to perform a stable descending sort on the code list
with α(v) as key (a sorting method is stable when items with the same value of
the sort key appear in the output in the same order as they do in the input).

Then if k < 0, execute only the initial segment of the code list up to where
the needed fi are computed. To achieve this, it is sufficient to execute just those
lines for which k + α(v) ≥ 0.

Example 5.3. Figure 5.2 shows the sorted code list from Figure 5.1. The full
System Jacobian is

J =

 ∇0(f1)
∇0(f2)
∇−2(f3)

 =

2x2 0 x2

0 1 y
2x 2y 0

 .

14 Nedialko S. Nedialkov and John D. Pryce

Jacobian J−2 comprises the x, y columns (for which −2 + dj ≥ 0) and the f3

row (for which −2 + ci ≥ 0): J−2 = [2x 2y] . This Jacobian is calculated from
the first block of rows in Figure 5.2. Jacobian J−1 happens to be the same.

Note that executing the lines for which k+α(v) ≥ 0 is not always optimal. For
instance, when k = −1, this would cause the lines with α(v) = 1 in Figure 5.2
to be needlessly executed.

Finally, the last example makes clear that, using source-text translation, this
method can produce very concise code for computing the matrices Jk, with at
most one vector operation inserted per scalar elementary operation in the code
list of the DAE.

6 Computing Jacobians through operator overloading.

In DAETS, the TCs in (3.1) are evaluated using operator overloading. Simul-
taneously with their computation, the necessary Jacobians are evaluated, again
through operator overloading. This approach is carried out using the C++ pack-
age FADBAD++ [5]. It provides a template class F implementing the forward
mode of AD. If F is instantiated with double, the class F<double> implements
the forward mode on C/C++ double’s by operator overloading. FADBAD++ also
provides a template class T implementing a TC computation. This class can be
instantiated with a scalar data type, for example double as T<double>. Further-
more, it can be instantiated with a “differentiation” type F<double>, resulting
in a T< F<double> > class. When a TC computation with T< F<double> > ob-
jects is performed, it computes both TCs and their gradients, that is the ∇k(v)
of the last section.

Example 6.1. For illustration, consider again the pendulum (2.5) with the
first equation changed to

f =
[
(x2)′x

]′ + (x2)′ + x2λ = 0.(6.1)

Denote

∇ =
(

∂

∂x2
,

∂

∂y2
,

∂

∂λ0

)
.

We show how ∇f0,∇g0, and ∇h2 are evaluated.
Applying (3.3, 3.4, 3.5) to (6.1), the computation of the expression for the

zero-order TC of f using operator overloading would be

f0 =
([

(x2)′x
]′ + (x2)′ + x2λ

)
0

=
([

(x2)′x
]′)

0
+
(
(x2)′

)
0

+ (x2λ)0

=
(
(x2)′x

)
1

+ (x2)1 + (x2)0λ0

=
(
(x2)′

)
1
x0 +

(
(x2)′

)
0
x1 + 2x0x1 + x2

0λ0

= 2(x2)2 x0 + (x2)1x1 + 2x0x1 + x2
0λ0

= 2(2x0x2 + x2
1)x0 + (2x0x1)x1 + 2x0x1 + x2

0λ0.

(6.2)

SOLVING DAES BY TAYLOR SERIES (II): COMPUTING JACOBIANS 15

Now, each TC x0, x1, x2, and λ0 is represented by an F<double> object, which
contains the corresponding TC value and a gradient with respect to (x2, y2, λ0).
On input, we associate with x2, y2, λ0 gradients ∇x2 = (1, 0, 0), ∇y2 = (0, 1, 0),
and ∇λ0 = (0, 0, 1), respectively. For the rest of the TCs, we associate gradient
vectors with zero components.1

The arithmetic operations between F<double>’s follow the rules of gradient
computation (5.8). Then, with the evaluation of (6.2), the following computation
involving nonzero gradients occurs:

line 4 in (6.2): x2
0∇λ0 = x2

0 · (0, 0, 1) = (0, 0, x2
0)

line 6 in (6.2): 2(2x0∇x2)x0 + x2
0∇λ0 = 2

(
2x0 · (1, 0, 0)

)
x0 + (0, 0, x2

0)

= (4x2
0, 0, x2

0) = ∇f0.

This may seem simpler than the source-code translation approach, but gener-
ally it is less efficient. For example, consider the term 2x0x1 in the fourth line
of (6.2). The multiplication of the objects corresponding to x0 and x1 results in
the calculation

∇(x0x1) = x0∇x1 +∇x0 x1 = x0 · (0, 0, 0) + x1 · (0, 0, 0) = (0, 0, 0),

since x0 and x1 are represented in F<double> objects, and their multiplication
involves gradient operations.

Similarly, we have for the g function

g0 = (y′′ + yλ−G)0 = 2y2 + y0λ0.

The operations between the F<double>’s corresponding to y0, y2, and λ0 gener-
ate the calculation

∇g0 = 2∇y2 +∇y0λ0 + y0∇λ0

= 2(0, 1, 0) + λ0 · (0, 0, 0) + y0 · (0, 0, 1)
= (0, 2, y0).

Finally, we compute for h,

h2 =
(
x2 + y2 − L

)
2

=
(
x2
)
2

+
(
y2
)
2

= 2x0x2 + x2
1 + 2y0y2 + y2

1

and ((0, 0, 0) terms are omitted)

∇h2 = 2x0∇x2 + 2y0∇y2

= 2x0 · (1, 0, 0) + 2y0 · (0, 1, 0)
= (2x0, 2y0, 0).

Hence

∂(f0, g0, h2)
∂(x2, y2, λ0)

=

4x2
0 0 x2

0

0 2 y0

2x0 2y0 0

 = diag[1, 1, 2]−1 J diag[2, 2, 1].

1In practice, storing a zero vector is not necessary; one can store a flag indicating that the
gradient is zero.

16 Nedialko S. Nedialkov and John D. Pryce

7 Concluding remarks.

Given a DAE described by a computer program, we have shown how the
necessary structural analysis data and System Jacobian can be readily obtained
via operator overloading, as in DAETS; or how they can be generated through
source-text translation.

The single-pass method is expected to be much more efficient than an operator-
overloading approach for computing the System Jacobian. However, the former
has not been implemented yet, while the latter is incorporated into DAETS
without major obstacles.

The techniques described in this paper can be used on their own to perform
SA of a DAE: if J is nonsingular at a consistent point, within round off, then
the DAE is solvable in a neighbourhood of this point. By results in [2, 4], we
can determine the structural index of the DAE, which is an upper bound on its
differentiation index, and we can also find the degrees of freedom of the DAE.
Moreover, simulation software that automatically generates the equations of a
DAE system need not produce them in a particular (first-order or lower-index)
form: they can be a direct, compact translation of the model.

REFERENCES

1. A. Griewank, On automatic differentiation. In Mathematical Programming:
Recent Developments and Applications, M. Iri and K. Tanabe, eds., Kluwer
Academic Publishers, Dordrecht, 1989, pp. 83–108.

2. N. S. Nedialkov and J. D. Pryce, Solving differential-algebraic equations
by Taylor series (I): Computing Taylor coefficients. BIT, Accepted 2005.

3. C. C. Pantelides, The consistent initialization of differential-algebraic sys-
tems. SIAM. J. Sci. Stat. Comput., 9 (1988), pp. 213–231.

4. J. D. Pryce, A simple structural analysis method for DAEs. BIT, 41 (2001),
pp. 364–394.

5. O. Stauning and C. Bendtsen, FADBAD++ web page, May 2003. FAD-
BAD++ is availabe at www.imm.dtu.dk/fadbad.html.

