Algorithm XXX: DAESA — a Matlab Tool for Structural Analysis of
Differential-Algebraic Equations: Software

NEDIALKO S. NEDIALKQV, McMaster University
JOHN D. PRYCE, Cardiff University
GUANGNING TAN, McMaster University

DAESA, Differential-Algebraic Equations Structural Analyzer, is a MATLAB tool for structural analysis of
differential-algebraic equations (DAEs). It allows convenient translation of a DAE system into MATLAB and
provides a small set of easy-to-use functions. DAESA can analyze systems that are fully nonlinear, high-
index, and of any order. It determines structural index, number of degrees of freedom, constraints, variables
to be initialized, and suggests a solution scheme. The structure of a DAE can be readily visualized by this
tool. It can also construct a block-triangular form of the DAE, which can be exploited to solve it efficiently
in a block-wise manner.

Categories and Subject Descriptors: 1.6.7 [Computing methodologies]: Simulation support systems; G.4
[Mathematical software]: Matlab, Algorithm design and analysis

Additional Key Words and Phrases: Differential-algebraic equations, structural analysis, modeling

ACM Reference Format:

Nedialkov, N., Pryce, J, Tan, G., 2012. DAESA— A MATLAB Tool for Structural Analysis of DAEs: Software
ACM Trans. Math. Softw. V, N, Article B (YYYY), 21 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

We present DAESA, Differential-Algebraic Equations Structural Analyzer, a MATLAB
tool for structural analysis (SA) of differential-algebraic equations (DAEs). It allows
convenient translation of a DAE into MATLAB and provides (currently 18) easy-to-
use functions for determining the structural index, the number of degrees of freedom
(henceforth referred to as the DOF), the constraints and a solution scheme, and for
visualizing the structure of the DAE. DAESA can also construct a block-triangular form
(BTF), which can be exploited for efficient solution in a block-wise fashion.

Our package is applicable to DAE systems of the general form
fi(t, x; and derivatives of them) =0, i=1,...,n, (1)

where ¢ is the independent variable, and the z;(t) are n state variables. The formula-
tion (1) includes high-order systems and systems that are nonlinear in leading deriva-

Author’s addresses: N. Nedialkov and G. Tan, Department of Computing and Software, McMaster Univer-
sity, Hamilton, Ontario, Canada. J. Pryce, Cardiff School of Mathematics, Cardiff University, UK.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© YYYY ACM 0098-3500/YYYY/-ARTB $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

B:2 Nedialkov, Pryce, Tan

tives. Furthermore, (1) includes systems of ordinary differential equations (ODEs) and
pure algebraic systems.

DAESA performs analysis similar to that of the C++ solver DAETS [Nedialkov and Pryce
2008}; Nedialkov and Pryce 2009]. However, DAETS is not suitable for rapid investiga-
tion of DAEsS, as it requires C++ knowledge and compiling the user code. The goal of
this work is to produce a light-weight, easy-to-use tool with convenient facilities for
rapidly exploring a DAE’s structure. The present tool is based on Pryce’s SA [Pryce
2001]] and recent developments by the authors on improving this analysis using block-
triangularization of the DAE. The choice of MATLAB is due to its ubiquity and ease-of-
use, as well as its operator overloading, which is central to our implementation.

We do not define the terminology we use here, nor present the underlying theory—for
this see the companion paper [Pryce et al. 2013]] and the references therein.

This article is organized as follows. Section [2| gives an overview of DAESA. Section
presents several examples of analyzing DAEs. Section [4]investigates the performance
of this package and the relative amount of work of various parts of it. Section
is a study of applying DAESA to a large number (1616 in total) of “pseudo-random”
DAEs generated from matrices from the Florida Sparse Florida Sparse Matrix Collec-
tion [Davis and Hu 2011]. Conclusions are given in Section [6]

2. OVERVIEW OF DAESA

DAESA exploits MATLAB’s operator overloading to process a DAE given by a user-
supplied function for evaluating the f; in (I). In particular, it extracts the signature
matrixE] and determines for each equation if it is quasilinear in the leading derivatives
in the sense explained in the companion paper, see also [Nedialkov and Pryce 2008].

After the signature matrix is constructed, DAESA finds out if the problem is struc-
turally well-posed, and if so, solves a linear assignment problem to calculate the off-
sets of the problem, and then determines structural index and DOF. Since it knows the
structure of the analyzed DAE, DAESA reduces it to block triangular form (BTF), finds
local offsets, and determines block by block quasilinearity. Based on the offsets and
linearity information, DAESA deduces which variables and derivatives of them need to
be initialized and what the constraints are.

This package provides functions for reporting the constraints, initialization summary,
and a solution scheme, and functions for displaying the original structure of the DAE,
as well as for displaying coarse and fine BTF's of the DAE structure.

The DAESA package builds around three classes: sigma, qla, and SAdata. The signature
matrix is obtained by executing the function defining the DAE with objects of the class
sigma. The quasilinearity analysis is carried out by executing this function with objects
of the class qla. In both cases, the processing of the DAE is done through operator over-
loading of the arithmetic operators and the elementary functions. The SA is performed
by the function daeSA. It returns an object of the class SAdata, which encapsulates all
the data obtained from the SA. Each of the remaining DAESA functions takes an object
of this class as a parameter and extracts from it the data it needs. This mechanism
(of the main function returning an object, and the remaining functions querying this
object) ensures simple and consistent function interfaces.

LConcepts explained in the companion paper are typeset in slanted font on first occurrence.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

DAESA— a MATLAB Tool for Structural Analysis of DAEs: Software B:3

Remark. The structural index computed by DAESA is an upper bound on the differ-
entiation index, and often they are the same. Although successful on many problems
of interest, the underlying SA theory (and DAESA) may fail to determine the correct
structural, and therefore differentiation index on some problems; see e.g. [Pryce 2001}
Nedialkov and Pryce 2007].

We would have a “certificate” that the SA is successful if the system Jacobian J is non-
singular at a consistent point [Nedialkov and Pryce 2007]. The present tool does not
compute consistent points and does not evaluate J: it performs symbolic-type analysis
of DAEs. We plan to incorporate the evaluation of J in a future version of DAESA.

3. DAESA EXAMPLES

In this section, we illustrate some of the capabilities of DAESA. Namely, we show SA on
a simple DAE, the chemical Akzo Nobel problem [Mazzia and Iavernaro 2003] (§3.1),
present results from analyzing a DAE arising from modeling a distillation column
(§3.2), and show how DAESA reports structurally ill-posed (SIP) problems (§3.3). For
details, see the DAESA user guide [McKenzie et al. 2013, which is also part of the
distribution of this package.

3.1. Simple DAE: Chemical Akzo Nobel

We show DAESA’s SA on the chemical Akzo Nobel problem, an index-1 DAE. The equa-
tions for this problem are given in §5.1 of the companion paper. The DAESA function
for evaluating them is displayed in Figure

function f = akzonobel(t,y)

k1 = 18.7; k2 = 0.58; k3 = 0.09; k4 = 0.42;
K = 34.4; k1A = 3.3; C02 = 0.9; H = 737;
Ks = 115.83;

rl = kilxy (1) 4xsqrt(y(2));

r2 = k2xy(3)*xy(4);

r3 = k2/Kxy(1)*y(5);

rd = k3xy(1)*y(4)~2;

r5 = k4xy(6) " 2xsqrt(y(2));

Fin = k1A*(C02/H - y(2));

£f(1) = -Dif(y(1),1) - 2.0*r1 + r2 - r3 - r4;
£(2) = -Dif(y(2),1) - 0.5*r1 - r4 - 0.5*r5 + Fin;
£(3) = -Dif(y(3),1) + r1 - r2 + r3;

f(4) = -Dif(y(4),1) - r2 + r3 - 2.0*r4;

£(5) = -Dif(y(5),1) + r2 - r3 + r5;

£(6) = Ks*xy(1)xy(4) - y(6);

end

Fig. 1. DAESA function for evaluating the chemical Akzo Nobel problem

Structural analysis is performed by the call daeSA(@akzonobel,6). The structure of
a DAE, and its coarse and fine BTFs, are displayed graphically by the showStruct
function. In Figure [2| we show the fine BTF for this problem as produced by the call
showStruct (sadata, ’disptype’,’fineblocks’): it decomposes into six fine blocks.

The solution scheme, for computing derivatives of the solution, is produced by
printSolScheme, the ‘compact’ form of whose output is on the left of Figure [3| This

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

B:4 Nedialkov, Pryce, Tan

AKZONOBEL: Fine BTF
Size 6, structural index 1, DOF 5
Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J)

Indices of Variables

1 2 3 4 5 6 ¢ ¢
il @ o o 0o o0 0o o
2l o [0 @ o o
2
S
3 o : 0o [o o 0 o
hij
]
g4 o0 o [o 0 o
:
51 0 0o : 0o : o : [j: @ |0 o
6 © 0 |0 o
d + 1 1 1 1 0
dj + 1+ 1110

Fig. 2. Fine BTF and solution scheme for the chemical Akzo Nobel problem

Solution scheme for ’akzonobel’ problem

Initialization summary:
yi, y2, y3, y4, y5

k= -1: H -VZ k=—-1| Give y1,y2,¥ys, Y4, y5 as initial values
0 gs k=0 | solve |for using
[: y2 initial values |computed
1 : y1 fo =0|ys |y Ya

k = 0: [f6]1 : y6 f5:O yé Y1 Y2 Y3 Ya Y6
LA fo=0lgi |y ws ws

R f3=01vs|y1 v2 Y1 ys

[£3] : y3 /
[£f2] : y2° f2:0 y% Y1 Ya Ye
[£1] : y1° fi=0|un Y2 Y3 Y4 Ys

Fig. 3. ‘Compact’ solution scheme for the chemical Akzo Nobel problem and inset, extra data provided by
the ‘full’ solution scheme.

says solution may be performed by giving initial values (IVs) for y1, y2, y3, y4+ and ys5 at
stage —1. Then using these IVs, at stage k£ = 0 we solve six linear scalar equations, one
per fine block. More detail is given by the ‘full’ form of the output, summarized in the
inset: e.g., it says one solves f5; = 0 for 3., using the values of y; to y4 given as IVs, and
the previously computed value of ;.

The computations at stage k& > 0 are deduced from stage k¥ = 0. That is, we solve first
fék) =0 for yék) and then solve fi(k) = 0 for yfkﬂ) in the order i = 5,4, 3,2, 1—all linear,
and using previously computed values for the derivatives of the solution.

In [Mazzia and Iavernaro 2003], this problem is classified as nonlinear, requiring IVs
for all variables and their first derivatives. Without the information produced by our
BTF it would be regarded as fully coupled, needing solution of a non-linear system of
(kH), 1=1,...,5,and yék) at stage k =0,1,....

size six to determine values for y,

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

DAESA— a MATLAB Tool for Structural Analysis of DAEs: Software B:5

3.2. Chemical engineering application: distillation column

Systems of DAEs are commonly used in chemical engineering to describe mass/energy
balances and constitutive relations, such as mass/energy transfer rates, reaction ki-
netics, thermodynamic properties and relations and control laws. Depending on the
assumptions used to construct the model, a DAE system with an index exceeding one
is possible. Then typically an index reduction is performed, and the resulting system
is simulated with a standard, index-1 DAE solver (e.g., SUNDIALS [Hindmarsh et al.
2005] or DASSL [Brenan et al. 1996]).

From a modeler’s perspective, one might be interested in determining the indices of
equations that need to be differentiated to reduce to a lower-index DAE. These are

{i|c;>0,i=1,...,n},

where c; is the global offset of equation 7, and they can be readily obtained by the
getOffsets function of DAESA.

In this section, we show results of DAESA’s SA on a separation model?| for a distil-
lation column with a partial reboiler and total condenser. The present model is an
index-2 system of 129 equations. We refer to this system as DISTCOL. In [Washing-
ton and Swartz 2011], it is reduced to index-1 using dummy derivatives [Mattsson
and Soderlind 1993|], resulting in 173 equations, and then simulated with SUNDIALS
[Hindmarsh et al. 2005]]. We refer to this system as DISTCOLDD. Their structures are
shown in Figure

2This model is provided by Ian Washington of the Department of Chemical Engineering of McMaster Uni-
versity.

DISTCOL DISTCOLDD
Size 129, structural Index 2, DOF 25 Size 173, structural Index 1, DOF 25
Shaded: structural nonzeros in system Jacobian J Shaded: structural nonzeros in system Jacobian J
Boxed: HVT Boxed: HVT

(a) DisTCOL (b) DisTCOLDD

Fig. 4. Distillation model: structure of index-2 and index-1 formulations. Offsets, and equations and vari-
able indices are not displayed for problems of size n > 40.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

Nedialkov, Pryce, Tan

DISTCOLDD: Coarse BTF
Size 173, structural index 1, DOF 25
Shaded: structural nonzeros in system Jacobian J

DISTCOL: Coarse BTF
Size 129, structural index 2, DOF 25
Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J) Boxed: positions that contribute to det(J)

W

g s @ o= o8 00 ' I“.""“u

. m [
oe '..m [T !
et] |
b i ;
& b o i ;
4 ooy

o "
J Ln I"
i o i ,

ol DY I o
- 1
A 1
B 0
L] I7n l
(b) DisTCOLDD

(a) DisTCOL
DISTCOLDD: Fine BTF
Size 173, structural index 1, DOF 25
Shaded: structural nonzeros in system Jacobian J

Fig. 5. Distillation model: coarse BTF's

DISTCOL: Fine BTF
Size 129, structural index 2, DOF 25
Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J) Boxed: positions that contribute to det(J)
" I: B |:) l wit ': . I,IS.-"
i et ; H
il "l
ol

4 0 GBS riiiiiociioiioniiniiiioHIEEE &
B]

81 :

e o

G P DI S W

o ill i

B n (1

v 8

: o) |

o y 8

AT
1] o ‘ I
“ ; g '. - *
(b) DiISTCOLDD

(a) DisTCOL
Fig. 6. Distillation model: fine BTFs

3.2.1. Coarse BTF. In Figure [5[a) and (b), we show the coarse BTFs of DISTCOL and
DisTCoLDD, respectively. Consider DISTCOL. With the getBTF function, we deter-
mine that there are 14 blocks of size 1 and one block of size 115. Using getQLdata, we
determine that blocks 1:1 and 3:117 are non-quasilinear. The rest are quasilinear. For

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

DAESA— a MATLAB Tool for Structural Analysis of DAEs: Software B:7

DisTCoLDD, we have 14 blocks of size 1 and one block of size 159. Blocks 2:2 and
3:161 are non-quasilinear; the rest are quasilinear.

3.2.2. Fine BTF. Figure[6[a) and (b) show the fine BTFs of DISTCOL and D1STCOLDD,
respectively. DISTCOL has 52 blocks of size 1, of which 13 are non-quasilinear, and 11
quasilinear blocks of size 7. Obviously, the 115 x 115 block (from the coarse BTF) has
decomposed into smaller blocks. For DISTCOLDD, we have 85 blocks of size 1, of which
13 are non-quasilinear, 11 non-quasilinear blocks of size 3, and 11 quasilinear blocks of
size 5. Either way, the BTF shows great potential for speeding up numerical solution.

3.3. Troubleshooting

DAESA can report missing equations and/or variables in problem formulation, and can
produce a diagnostic BTF, indicating over- and under-determined parts of the system.
This is illustrated here.

3.3.1. Reporting missing equations and/or variables. In the MOD2PEND problem from
the companion paper, we remove the third equation, apply daeSA, and then call
showStruct; see Figure Then we remove the occurrences of variable ;; and ap-
ply these two functions; see Figure The function showStruct displays missing
equations and/or variables in red.

ILLPOSED1 ILLPOSED2
Structurally ill posed Structurally ill posed
Indices of Variables Indices of Variables
1 2 3 4 5 6 1 2 3 4 5 6
1 2 0 1 2 0 |
2 2 0 2 2 0 |
1] [%2]
c c
il Ke]
sy 101 0B 1T 1 1 s 11 0B 1 1 1
i in]
kS k]
24 2 0 24 2 |
Q Q
© ©
£ £
5 3 0 5 I |
6 2 0 0 6 2 0 o |
(a) fs = 0 removed from MOD2PEND (b) f3 = 0 and p removed from MOD2PEND

Fig. 7. Displaying the structure of two ill-posed problems

For large problems, one may not be able to easily find missing equation and/or vari-
able indices from the displayed structure. The function getMissing produces indices of
equations and variables that are missing in the problem. For example, calling

[megn, mvar] = getMissing(sadata)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

B:8 Nedialkov, Pryce, Tan

function f = illPosed3(t, z)
x1 = z(1); x2 = z(2); x3 = z(3);
x4 = z(4); x5 = z(5); x6 = z(6);

£f(1) = x1 + x2 + x5 + x6;

£(2) = x1°3 + x2 + x5 + x6

£(3) = x5 * x6

f(4) = - x573 + x674;

£(5) = x1 + x2 + x3 + x4 + x5 + x6°3;

f(6) = x5 + x6
end

Fig. 8. Example of a SIP problem

on the second DAE (with missing equation 3 and variable 6) gives meqn=3, mvar=6.

3.3.2. Diagnosing SIP problems. When a DAE does not have missing equations or vari-
ables but is nevertheless SIP, we can use getBTF to identify under-, over-, and well-
determined subsystems. As an example, the function in Figure (8| gives a SIP problem.
Executing the commands

sadata3 = daeSA(@illPosed3,6);
[pe,pv,cb,fb] = getBTF(sadata3)
showStruct (sadata3,’disptype’,’blocks’);

produces the output in Figure [9] The output vectors pe and pv give the permutation
of equations and variables, respectively; cb is empty; and fb specifies the boundaries
of the under-, well- and over-determined blocks. Here, we have a structurally under-
determined equation 0 = f5 in variables x3 and x4, and a structurally over-determined
set of equations 0 = f3, fy, f¢ in variables x5 and z¢.

ILLPOSED3: Diagnostic BTF
Structurally ill posed
Shaded: under- and over—determined

Indices of Variables

4 3 1 2 5 6
pe =
5 1 2 3 4 6 sl @ @] o o o o
PV =
4 3 1 2 5 6 ; 0 0 0 0
cb = @
n] s
fb = §2 0 0 0 0
1 2 4 6 7 g
1 2 3 5 7 IE B B
2
4 B @
6 B @

Fig. 9. Output and diagnostic BTF of the SIP problem from Figure[g]

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

DAESA— a MATLAB Tool for Structural Analysis of DAEs: Software B:9

4. PERFORMANCE: PROBLEMS OF ADJUSTABLE SIZE

In this section we study the performance of the main function, daeSA. We apply it on a
fully dense problem and five sparse problems. We describe these problems in and
then present timing and profiling data in and respectively.

4.1. Problems used

4.1.1. Dense DAE. The Layne Watson exponential cosine curve example [Watson 1979]
is a standard problem for assessing continuation methods: we want to find a fixed point
of the nonlinear function g : R"” — R™ defined by

9i(X) = gi(x1,...,2,) = exp (cos(i-Zxk>> ,oi=1,...,m

k=1
that is a root of x = g(x).

Using DAETS [Nedialkov and Pryce 2009], we sought a fixed point of the parameterized
problem x = \g(x), that is a root of

f(\,x) =x—Ag(x)=0. (2)

When A\ = 0, equation (2) has the trivial solution x = 0. We tracked solutions to the
desired root at A = 1.

This was implemented in DAETS using arc-length continuation. Namely, we rewrote
the system (2) as n equations in n+1 unknowns:

f(y)=0, (3)

where y = (x; \), and using a new independent variable s, we added to (3) the equation
ldy/ds||3 = 1, that is

SyP-1=0. 4)
J

Combining (3) and (4), we have an index-1, fully dense, non-quasilinear system of n+1
equations and variables. We refer to the resulting systems as LW.

There is no nontrivial block structure, either coarse or fine, as shown in Figure
where the dimension is 12.

4.1.2. Sparse DAEs. The problems below consist of P chained pendula, where each
pendulum is of size 3. The resulting systems are of size n = 3P, and each pendulum is
quasilinear. The aim is to produce parameterized problems of similar sparsity patterns
but differing significantly in index and block structure.

MULTIPEND. The first and the ith pendula (2 < i < P) are

first pendulum ith pendulum

0=2a!+ Nz 0=z + N\,

0=9{ +Mys =G 0=y +Nyi — G
0=a?49° - L? 0=2a? 492 — (L+chi_1)>

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

B:10

Indices of Equations

© 0O N O O A W N =

HOE S E e e e el

Q)

LW: Fine BTF

Size 12, structural index 1,

DOF 1

Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J)

Indices of Variables

-

HEo e e e e e e ey
HEo e e e e e e e e
oo e e e e e e s>
HEoEo e e e e e E e e
oo e e e EE e e
oL EEEEEEE e Y
HEo O E e e e e e e e e
HEo e e e e e e e Efe

O 4 4 4 a4 A A A a4 aa)

Hoo e e e e e e e e Ele
oo oo e e e e e e~
oL B e EE e s

—- =

(a)

_- -

O A4 A4 a4 a4 a4 a4 A A a4 oan

o = N

Indices of Equations

N WA OO N 0 ©

1

Nedialkov, Pryce, Tan

MULTIPEND: Fine BTF
Size 12, structural index 9, DOF 8
Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J)

10 11 12 7 8 9 4 5 6 1 2 3

Indices of Variables

o [
2 [
o

0

] =]
=)

] =2
] =]
==

=)
] =]

O O N O O M O O N O O NO)
o O o A A O MDD N A O O NO

diz 2 02 2 0

dj

2 2 0

4 4 2

Fig. 10. LW and MULTIPEND: fine BTF's

[3\

(b)

~ O

]
o ° B ©E

o N
© N
@ N

The state variables of the ith pendulum (i > 1) are x;, y;, and \;; G > 0 is gravity,
L > 01is the length of the first pendulum, and c is a constant. A system of P pendula
hasindex 2n/3+1=2P + 1.

The coarse and fine BTFs are the same; we display in Figure [10(b)| the fine BTF,
where P = 4.

MULTIPENDA. This problem is obtained by replacing the third equation in each pen-
dulum, except in the first one, by

0=a7+y; — (L+caj_y)”

The index is 3, for any P. There are P coarse blocks of size 3, and each such block
except the top-left one is decomposed into 3 fine blocks of size 1.

The coarse and fine BTFs for P = 4 are displayed in Figure(11(a), [11(b)

MULTIPENDB. The pendula are

first pendulum

0=212!+Nz1 + cxo
Ozy’ll+/\1y1_G
0=af+yf—L?

ith pendulum, 2 <: < P -1

0=2a!+ Nz +criq

0=y + N\iyi —

0=af+y] — (L+ecx})

G

Pth pendulum

0:,@3/3+)\p$p
O=y3§+/\pyp—G
0=ap+yp— (L+cap_y)’

The index is P + 2, for any P. Here there is only one coarse block, which decomposes
into P fine blocks of size 3.

The coarse and fine BTF's for P = 4 are displayed in Figure

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

DAESA— a MATLAB Tool for Structural Analysis of DAEs: Software

1 2 35 6 4 8 9 7 111210 ¢; 1.2 3 5 6 4 8 9 7 111210 ¢ ¢
3| [o] [o] 2 3| [0 [o] 2 2
2 o 0 2] o o
1 o 0 1 o 0 o
L5 0 0 o S 0 0o o
é 4 0 B 0 % 4 o 2 0o o
26 0] g 6 0 1] ‘ 0 1
- S g 2 [0 0 o0
S 8 0 0 8
g d B o £ 7 o 2 0o o
e c -
2 T 9 0 0o 1
9 0 ! 11 0 0 0
" 0 0 10 O Bl o o
10 o 8] o 12 0 0 1
12 0 1 dj2 2 02 01 201 2 1
dj2 2 0 2 0 2 2 0 2 2 0 2 dj2 2 0 2 0 2 2 0 2 2 2
(a) (b)
Fig. 11. MULTIPENDA: coarse and fine BTFs
MULTIPENDB: Coarse BTF . Ei
Size 12, structural index 6, DOF 8 Sli\géj ;Tifrfgu?:i}]zgz 32'; 8
Shaded: structural nonzeros in system Jacobian J Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J) Boxed: positions that contribute to det(J)
Indices of Variables Indices of Variables
101112 7 8 9 4 5 6 1 2 3 ¢ 1011 12 7 8 9 4 5 6 1 2 3 ¢ ¢
12| [0 [o] 1 2 12| o] [o 1 2 2
11 o 0 11 o 0o o
10 o 0 10 o 0 0
9 o [1 3 o 9 d o i 2 3
2 S 8 o 0o 1
S 8] 1 g
g 700 o 1 g 70 e o 0 1
- S 6 [[0 1 2 4
S 6 o [0 1 4 8
£ s g 2 i - >
2 4 0 ol 0 2
4 0 o 2 3 O [2 5
3 o [5 2 O o 3
2 o] 3 1 0 bl o 3
1 0 o s dj2 2 02 20 2 2 2 2 0
dj2 2 0 3 3 1 4 4 2 5 5 3 dj2 2 0 3 3 1 4 4 5 5 3
(a) (b)
Fig. 12. MULTIPENDB: coarse and fine BTFs
MULTIPENDC. We replace the first equation in each pendulum i < P in MULTI-

MULTIPENDA: Coarse BTF
Size 12, structural index 3, DOF 11
Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J)

Indices of Variables

MULTIPENDA: Fine BTF
Size 12, structural index 3, DOF 11

Shaded: structural nonzeros in system Jacobian J

Boxed: positions that contribute to det(J)
Indices of Variables

PENDA by

o o ’
0=x; + \z; +cwyy .

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

B:12 Nedialkov, Pryce, Tan

The index is P + 2, for any P. There is one coarse block, which does not decompose
into fine blocks (figure omitted).

MULTIPENDD. Now we replace the first equation in each pendulum : < P in MULTI-
PENDA by

0= a:;' + Nz + CQ?;I_,'_l.
The index is P/2+(9—(—1)%)/4. For any P, there is one coarse block. However, if P is
odd, there is one fine block, and if P is even, there are n fine blocks. In Figure[13(a)|
13(b), we show the fine BTFs for P = 3 and P = 4 respectively.

MULTIPENDD: Fine BTF
Size 9, structural index 4, DOF 7
Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J)

MULTIPENDD: Fine BTF
Size 12, structural index 4, DOF 10
Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J)

Indices of Variables Indices of Variables

12 3 4 5 6 7 8 9 G ¢ 11210 9 8 4 3 2 1 5 6 7 & c
3 o [0 3 3 11 0)
5 6 19 10 o 2 0 o0
7 0 2l o o
g1 o v 8 b B 0 0
S 2
=9 o [2 2 S o o f @ o 2
=]
g g o [0 2 Z 1 E .- 0 1
2 5 2 o B 0 1
§5 o o 0 S 3 o © 0 3
£ S .
4 2 o 2 0 T 6 0 '@ 0 2
s d o o 5 0 0 0
4 2 o B 0 o
7 @] o o 12| 0 0 0 1
djs 3 1 3 2 0 2 2 0 dj2 o 2 2 001 2 0 1
dis3 3 1 3 2 0 2 2 0 dj2 o 2 3 1 3 3 2 0 2

(a) (b)

Fig. 13. MULTIPENDD: fine BTFs

4.2. CPU time vs. size

The results in this subsection, and later in §5.3.3] are produced with MATLAB R2013a
on a Linux server with 16 CPUs and 64GB of RAM. The CPUs are Intel Xeon E7-
8870 2.4GHZ. The implementation of DAESA does not take advantage of the parallel
capabilities of MATLAB; that is, it is a serial implementation.

Figure plots CPU time versus n for n = 600 : 600 : 9600, [14(a), and for n = 9600 :
600 : 18000, [14(b)l Denoting by ¢; the CPU time corresponding to size n;, we find the
constants in an’ using a least-squares fit on log o + 3logn; = logt; and plot these fits.

For dense problems, we might expect O(n?) work due to the complexity for finding a
HVT; here it is more like O(n?). For the sparse pendulum problems, the CPU time
behaves more like O(n~!?).

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

DAESA— a MATLAB Tool for Structural Analysis of DAEs: Software B:13

500 : : : : 1800 :
v 1.78:LW - 193:LW
*1.41 : MultiPend 1600f * 1.45:MultiPend
o 1.60 : MultiPendA o 1.37 : MultiPendA
40011 | 464 : MultiPendB 14001 + 1.53 : MultiPendB
¢ 1.65: MultiPendC ¢ 1.54 : MultiPendC
s = 1.68 : MultiPendD 5 12001 o 1.49: MultiPendD
& 300 2
2z < 1000
Q
£ £
= = 800t
2 200f z
o O 600f
100} 400}
200}
0 =4 . . . 8 : : : :
0 2000 4000 6000 8000 10000 8 1 1.2 1.4 16 1.8
n n 4
x 10
(a) n = 600 : 600 : 9600 (b) m = 9600 : 600 : 18000

Fig. 14. CPU time versus n. The constants in the legends are the computed 3’s in an?.

4.3. Work breakdown

We profile the execution of daeSA on the above problems, using P = 10, 100, 500, 1000
and 3000 pendula, with problem sizes n = 3P. We use the same n’s for the LW problem.

In Figure we display the percentages of time for computing X, HVT, offsets, and
performing quasilinearity analysis (QLA) for the LW and MULTIPEND problems. For
the remaining problems, the plots are very similar to Figure and we omit them
here.

For the LW problem, as n increases, the computing time is dominated by the time for
finding a HVT, Figure[15(a)} For the remaining problems, most the time is in computing
¥ and finding QLA information, the latter being the dominating time, Figure

Lw MultiPend
| Dsigma EEEIHVT [Joffsets [71aLA Erest
1 1 1t
0.8 081
5])
E £
Z 08 2 08t
[&] &)
04 & 04l
02 02t
300 1500 3000 9000
n n

(a) (b)
Fig. 15. Profiling daeSA. The percentages of the total time are denoted as: Sigma for computing the ¥ matrix;

HVT for finding HVT(s); 0ffsets for computing canonical offsets ¢ and d; QLA for performing quasilinearity
analysis; Rest the rest of daeSA.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

B:14 Nedialkov, Pryce, Tan

5. PERFORMANCE: PROBLEMS GENERATED FROM FMC MATRICES

In this section, we report results from a study using DAESA on DAESs generated from
matrices from the Florida Sparse Matrix Collection [Davis and Hu 2011]]. We describe
how we generate such DAEs in In §5.2] we study sample of around 70 to 100
such DAEs for each of three matrices. In 5.3 we experiment over a large number of
matrices, and respectively DAEs.

5.1. A way to generate DAEs with a given sparsity

To test the performance of DAESA, we generated a large number of “pseudo-random”
DAEs by a simple algorithm. It takes just two inputs: a matrix A and a non-negative
integer “seed vector” s = (s1,..., s,), and outputs (as MATLAB code accepted by DAESA)
a linear constant-coefficient DAE whose signature matrix ¥ has the same sparsity
pattern as does A. The N nonzero entries of A are listed column-by-column as N triples
(4,7, aij), as done by the MATLAB statement [i,j,aij] = find(A). Then s is repeated
cyclically to form a vector of length N which replaces the vector of a;;’s to form the
entries (i, j, 0;;) of ¥ (the remaining entries being —c0).

The entries of A were used in the actual DAE constructed by this scheme, the DAE

function f; is the sum -, ., aijxgo”), plus a constant b;. In these experiments, we

only used vectors s with entries O or 1. The DAE coefficients a;; # 0 and b; are irrele-
vant to the structure of the DAE—which only depends on A’s sparsity pattern and the
seed vector—but were included to make the DAE more interesting should we experi-
ment with numerical solution in future.

For example,

1.2 —-3.4 2 1
5.6 7.8 0 2
A= _93 45 and s = (0, 1,2) generate ¥ = TRE
6.7 1
where s has been replicated to form (0,1,2,0,1,2,0) whose 7 entries replace the 7
nonzeros of A, columnwise, to form Y. The actual DAE, with variables z1, ..., x4, is
0=f1= 1.2af — 34z + 1
0 = f» = 561, + 7827 + 1
0= f3= — 23x3 + 4524 + 1 (°
0= f4 = 67.13/1 + 1

and the MATLAB code describing f; might be
£(1) = 1.2%Dif(x(2),2) - 3.4*xDif(x(4),1) + 1;

In general, this method generates from A a DAE of the form
0= Aoz (t) + Ara/(t) + -+ + Az (t) + 1,

where p is the largest number occurring in s, A is decomposed as A = Ao+ A, +-- -+ A4,,
and the A, have disjoint sparsity patterns. Namely, A, has a nonzero entry equal to
a;; for those (i, j) such that o,; = r, and is zero elsewhere.

This testing scheme, like others based on generating artificial problems, faces the criti-
cism that the results may not represent real-life problems. By choosing real-life matri-
ces A from the Florida Matrix Collection, we hope to lessen the force of this criticism,

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

DAESA— a MATLAB Tool for Structural Analysis of DAEs: Software B:15

though the artificiality of the seed vector process remains. We call a DAE generated in
this way “pseudo-random” in that generally we do not expect a particular pattern in X,
though sometimes we have observed a “resonance” of s with the structure of A, giving
a high index, or a large change in the DOF, compared with other similar s.

5.2. Study of DAEs derived from some FMC matrices

In this group of tests a few FMC matrices A were chosen, and for each one a sample of
DAESs having the sparsity structure of A was generated as described above. Each DAE
was analyzed by DAESA, and we recorded: the CPU time taken by daeSA to analyze
the DAE; the index; the DOF; the sequence of sizes of coarse blocks; the same for fine
blocks.

As a crude numerical measure of how effective block decomposition had been, we
recorded cbratio = (matrix size)/(maximum coarse block size) and fbratio similarly
for fine blocks. (The coarse structure depends only on the matrix A; the fine structure
usually depends on the DAE, i.e., the seed vector.) We aimed to answer questions such
as the following:

(a) For a particular A, how do coarse block and fine block structure, and DOF and
index, vary across the sample?

(b) Can we relate answers to (&) to the underlying sparsity pattern (that of 4)?
(c) Are any of the metrics significantly correlated?

(d) Do the answers to these questions vary significantly with A of different structure:
e.g., banded sparsity versus apparently unstructured sparsity?

Three FMC matrices were chosen. Each DAE m-file was given a name made up of the
FMC ID number and the s-vector—for instance DAE_330_00000001.m was generated
from FMC330, that is matrix #330, using seed vector s = (0,0,0,0,0,0,0,1). It was
hard to see general patterns, so the report is mainly anecdotal.

FMC1. (a power network problem, name 1138_bus in the HB group, of size 1138 with
4054 nonzeros) is symmetric with a concentration of entries near the diagonal and
a somewhat uneven scattering elsewhere. We formed 76 DAEs from it with various
s-vectors of lengths from 6 to 13, all having just two 1’s. There was no coarse block
structure (i.e., cbratio = 1). All cases had a definite fine block structure in the
sense that all blocks were much smaller than the matrix size: the lowest fbratio
was 3.9, while the highest, for DAE_1_00000011, was around 60, with largest fine
block of size 19. However, no pattern was observed in the fine blocks; in each case
the blocks of size 1 far outnumbered the larger blocks, but the latter seemed to be
distributed randomly among the former. This contrasts with FMC217, where the
fine block sizes repeat in a fairly regular way.

The index varied from 3 to 6 and the DOF from 345 to 687. There were weak, but
statistically significant correlations of DOF negatively with CPU time, and posi-
tively with fbratio.

FMC217. (a structural problem, name nos1 in the HB group, of size 237 with 1017
nonzeros) is symmetrical and banded, with bandwidth 4 either side of the diagonal.
We formed 85 DAEs from it with s-vectors of length 4 to 13. The band conceals a
coarse block structure: a block of size 79, then one of size 158.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

B:16 Nedialkov, Pryce, Tan

For most cases, the fine block structure consisted of many small blocks, with fbratio
as high as 79 several times, indicating the fine blocks have size at most 3. E.g.,
DAE_217_001001100 has 164 blocks of size 1, 11 of size 2 and 17 of size 3.

Various s of length 13 showed an index-raising “resonance”: for instance
DAE_217_0101001010000 has index 39, while cyclically shifting its s one to the left
gives DAE_217_1010010100000, which only has index 1. These high-index cases had
a fine block of size around 155, the rest being of size 1 or 2.

Both the lowest and highest DOF values (DOF 119, index 39; DOF 196, index 21)
belonged to these resonance cases; for the rest, the index varied from 1 to 4 with no
strong correlation to the DOF.

FMC330. (a robotics problem, name rbsb480 in the Bai group, of size 480 with 17088
nonzeros) has a sparsity pattern made up of five similar horizontal bands but has no
other clear structure. We formed 96 DAEs from it, using s-vectors having either one
or two 1’s followed by several zeros, e.g. (1,1,0,0,0,0,0); and all cyclic permutations
of these, e.g. (0,0,0,1,1,0,0).

The index was either 1 or 2, except for DAE_330_00000001 and one other which had
index 3. The DOF varied from 371 to 477, tending to be smaller for s-vectors with
a smaller proportion of 1’s. There was no coarse block structure. Mostly there was
little fine block structure (fbratio close to 1), but DAE_330_00000001 had a less triv-
ial decomposition with a largest block of size 293 giving fbratio = 1.64. The largest
fine block was almost always at or near the top left, but DAE_330_00010000’s largest
block, of size 324, was a good way down the diagonal.

There were weak but statistically significant correlations of CPU time positively
with index, and negatively with DOF and with fbratio.

From these results—especially those for FMC1 and FMC330, where there is no rea-
son to expect resonance between s and the sparsity—it seems probable that, on the
one hand, many real-life DAEs with a nontrivial sparsity pattern will also have a non-
trivial fine-block decomposition that can be exploited to speed up numerical solution;
while on the other hand, for other DAEs such fine-block structure may be weak or ab-
sent. Resonance leading to high index may occur: physically, this probably relates to
coupling between components of a repetitive or otherwise strongly structured system.

5.3. Further problems derived from FMC

Using UFget [Davis and Hu 2011]], we create a list of matrices of size n < 10,000. If
there is more than one matrix of the same size, and/or more than one matrix with the
same number of nonzeros, we select the first one. This results in total of 535 matrices.
Then we use the seed vectors

[1100],[010001], and [1000000000000000000000 0]

to generate three sets of DAEs (each consisting of 535 DAEs), which we analyze with
daeSA. 82 of them are SIP, so finally we have three sets of 453 DAEs. The smallest and
largest in terms of n and number of nonzeros are:

n nnz id name kind
min =5 19 904 cage3 directed weighted graph
max = 10,000 | 40,000 532 G67 undirected weighted random graph
nnz n
min = 15 7 449 bl.ss chemical process simulation problem
max = 2,269,500 6001 1235 exdata.l optimization problem

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

DAESA— a MATLAB Tool for Structural Analysis of DAEs: Software B:17

5.3.1. Block sizes. In Figure'16ia§], we show a histogram of 1/cbratio for the problems
for which this ratio is < 1; that is, for problems that have at least two coarse blocks.
In Figure [16(b)[16(c), [16(d), we show histograms of 1/fbratio for DAEs obtained using
each of the seed vectors above, and for which this ratio is < 1.

193/453 DAEs [1100], 410/453 DAEs
80 : : : : ‘ ‘ : : : 120 ‘ ‘ ‘ ‘ ‘ i ‘
700
100
60}
7]
w (2]
50} i
5 S
S 40 5
19 9]
Q Qo
€ a0l
Ea0 §
! I
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
1/cbratio 1/foratio
(a) (b)
[010001],436/453 DAEs
- [10000000000000000000000], 451/453 DAES
120
100}
i}
w @ sof
=] <
: :
3 >
o)
§ £
< 2 40p

0.1 02 03 04 05 06 07 08 09 1 .
1/fbratio 1/foratio

(© (d)

02 03 04 05 06 07 08 09 1

Fig. 16. 1/cbratio is (maximum coarse block size)/(matrix size); 1/fbratio is (maximum fine block
size)/(matrix size). In the titles, M /N means in M of the N problems, the ratios are < 1.

Although it is difficult to find definite patterns, it seems that there is a large number
of structures, where we can exploit the fine BTFs for efficient numerical solution. E.g.,
with seed vector (1,1,0,0), over 70 matrices have 1/fbratio < 0.1, meaning no fine
block is larger than a tenth of the matrix size.

5.3.2. Fine blocks and index. In Figure [17, we display boxplots of 1/fbratio versus in-
dex. For indices with a non-trivial number of samples (e.g. more than 10 DAEs per
index), generally the DAEs seem to have finer block structure as the index increases.

Remark 5.1. These boxplots are produced with MATLAB’S boxplot command; see
Figure 18| for an interpretation.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

B:18 Nedialkov, Pryce, Tan
[1100]
71 14462 56 37 28 9 7 11 4 5 11 2 1 1 1 1 1 1 2 1
1= - - _ B
f ﬁ ST \
0817 | + [- - 1
2 o6kt ! LT ‘
= 06 _
71 i
= | I B - |
0.4, $ _ H _
02r% Q 0! - - - - - }
1 1
o+ # 1 1 - - - i
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 21 37 40 48 50 53 65 123 152 500
index
[010001]
18 88 94 83 60 30 18 7 14 125 4 2 1 2 1 1 2 1 1 1 1 1 1 1 1
1 _ _
ki . ‘T +
08F" . i} - il
o | ‘
© 0.6 | T B
j T
£ ! Lo ‘
— 04F | _ - *
+ ! ﬁ T
| -
2r B
0 E I ;- E} EH = _ E} -
of + L L LI L - - - - - -
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 28 35 36 63 64 67 84 89 133201554
index
[1T0000000000000000000000]
1 219 69 83 36 20 7 7 2 1 2 1 1 1 1 1 1
1fmm + B
T - —
0.8 T *
R T
T 06 \ - —_]
& ! \
— 04 Q [B
I
0.2f : 1 ‘ ‘ H _ - |
1
oF i 5‘5 iR L — 7 —— —]
0 1 2 3 4 5 6 7 8 11 12 18 19 23 52 53 134
index
Fig. 17. Boxplots of 1/fbratio versus index. The number above a box, corresponding to an index, is the

number of DAEs of this index.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

DAESA— a MATLAB Tool for Structural Analysis of DAEs: Software B:19

+ largest value, excluding outliers 50% of the values (here number of DAEs) are
| upper quartile above the median (thick line). The top edge of
the box divides the top 25% percent (upper quar-

median tile) from the rest; the bottom edge of the box di-
vides the bottom 25% (lower quartile) from the

| lower quartile rest. The difference between the top and bottom
-~ smallest value, excluding outliers quartiles is the interquartile range (IQR). Out-

4 outlier liers are marked at 1.5 x IQR.

Fig. 18. Boxplot interpretation

5.3.3. CPUtime. We record the CPU time for each execution of daeSA and plot it versus
n and number of nonzeros (nnz) in Figure (19| A rough estimate of the complexity (using
least-squares fits) shows about O(n!-°2?) and O(nnz''?) running times; cf.

1359 DAEs 1359 DAEs
- time - time i
—357e-04xn"%? —2.32e-04 x nnz"*
_10% ¢ ,6102 b
3 3
a @
(9]
E g
& 10° Z 0
g_) 10 o 10 .
Y
.
o
107] 1072
10' 10° 10° 10* 10° 10* 10°
n nnz

Fig. 19. CPU time vs. n and vs. nnz

6. CONCLUSION AND FUTURE WORK

The PhD thesis of P. Bunus [2004] clearly stated the goal of building software to ana-
lyze DAESs generated by modeling languages, to diagnose errors in model construction
and to make numerical solution more efficient. He attacked it using methods based
on sparsity, but the relation of sparsity to DAE block structure was then insufficiently
understood.

Much progress has been made since then in such structural analysis software; we be-
lieve the DAESA package currently goes furthest towards Bunus’s goal. It is at present
unique in being based on a systematic theory for DAEs that can be fully implicit and
of arbitrary order and index. Its features:

— report structural index and DOF;
— report solution scheme plus information about initial values and constraints;
— display structure and BTF graphically;

are present in other systems, but not in so far-reaching a way. We believe no other sys-
tem exploits fine BTF to minimize the number of initial values required for numerical

solution.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

B:20 Nedialkov, Pryce, Tan

DAESA’s abilities to diagnose ill-posedness, and report under- and over-determined
parts of a system, potentially go beyond what is currently available in terms of suggest-
ing ways of correcting them. However, this needs considerable further development.

As for performance, tests on on a large number of problems of various sizes and sparsi-
ties show DAESA is well able to analyze DAEs of size up to 10,000. Though the current
version exploits sparsity only partially, the expected n® dependence on problem size
has not materialized. The tests reported here give an indication where to concentrate
effort to improve the algorithms. We are developing faster methods to compute the off-
sets, while future work will focus on reducing the time for QLA and computing the

matrix; cf. Figure

Further developments of this tool include implementation of the computation of the
system Jacobian, which will provide a check for the success of the SA. That is, if this
Jacobian is nonsingular (up to roundoff), the SA has succeeded. We have a prototype
implementation, which will be incorporated in a future version of DAESA.

A complete DAE solver (with the capabilities of DAETS) in MATLAB would enable re-
searchers and practitioners to use it readily within existing MATLAB code and to ex-
periment within this problem-solving environment. Building such a solver requires a
tool for computing Taylor coefficients (TCs). A suitable candidate is the ADTAYL [Pryce
et al. 2010]] package. It is designed to compute TCs for an explicit function, given TCs
of its argument(s), but it is inefficient for computing TCs for the solution to an ODE,
let alone a DAE. We are working on extending it to compute such coefficients. Finding
consistent initial point, stepsize control, and projections on each integration step can
be handled as in DAETS.

An exciting direction for research and implementation is parallelizing the algorithms
for DAE solving based on Pryce’s SA. The DAETS solver can handle efficiently a few
hundred equations, but would be unacceptably slow for thousands of equations. For
large and sparse problems, one could take advantage of the BTFs in two ways. First,
we could use the coarse BTF to integrate the DAE system in a block-wise manner,
similarly to how block-triangular linear systems are solved. Then we could pipeline
the integration of these subproblems, where the integrations advance asynchronously
in time (companion paper). Second, we could use the fine BTF to generate TCs for
smaller subproblems, versus computing TCs for the whole system. As a result, we
need to solve smaller linear systems, while in the original method (and DAETS), we
solve n x n systems [Nedialkov and Pryce 2005; Nedialkov and Pryce 2008].

The studies in §5|reveal that we can have fine BTFs with the size of the largest fine
block much smaller than the size of the problem: this would lead to efficient, block-wise
numerical integration.

In its present form, DAESA is a collection of MATLAB functions, so that its facilities
are invoked at the MATLAB command line or within code. We are developing a GUI
interface to DAESA that will allow interactive study of DAEs. This will allow zooming
into the structure of large matrices and identifying lines of code that lead to a given
pattern in the signature or system Jacobian matrix.

ACKNOWLEDGMENTS

The authors are grateful to Ian Washington from the Department of Chemical Engineering of McMaster
University for numerous discussions and suggestions on improving DAESA, providing DAE problems and
encoding them in DAESA, and in particular the model in

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

DAESA— a MATLAB Tool for Structural Analysis of DAEs: Software B:21

We acknowledge with thanks the support given to JDP by the Leverhulme Trust and the Engineering and
Physical Sciences Research Council, both of the UK, and to GT and NSN by the Canadian Natural Sciences
and Engineering Research Council and the McMaster Centre for Software Certification.

REFERENCES

BRENAN, K., CAMPBELL, S., AND PETZOLD, L. 1996. Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations second Ed. STAM, Philadelphia.

BUNUS, P. 2004. Debugging techniques for equation-based languages. Ph.D. thesis, Linkoping University,
Sweden, Department of Computer and Information Science.

DaAvis, T. A. AND Hu, Y. 2011. The University of Florida sparse matrix collection. ACM Trans. Math.
Softw. 38, 1, 1:1-1:25.

HINDMARSH, A. C., BROWN, P. N., GRANT, K. E., LEE, S. L., SERBAN, R., SHUMAKER, D. E., AND W0OOD-
WARD, C. S. 2005. SUNDIALS, Suite of Nonlinear and Differential/Algebraic Equation Solvers. ACM
Trans. Math. Softw. 31, 3, 363-396.

MATTSSON, S. E. AND SODERLIND, G. 1993. Index reduction in differential-algebraic equations using
dummy derivatives. SIAM J. Sci. Comput. 14, 3, 677-692.

MAZZIA, F. AND IAVERNARO, F. 2003. Test set for initial value problem solvers. Tech. Rep. 40, Department
of Mathematics, University of Bari, Italy. http://pitagora.dm.uniba.it/~testset/.

McKENZIE, R., NEDIALKOV, N. S., PRYCE, J., AND TAN, G. 2013. DAESA user guide. Tech. rep., De-
partment of Computing and Software, McMaster University, Hamilton, Ontario, Canada, L8S 4K1.
http://www.cas.mcmaster.ca/~nedialk/daesa/daesaUserGuide.pdf.

NEDIALKOV, N. AND PRYCE, J. 2008-2009. DAETS user guide. Tech. rep., Department of Computing and
Software, McMaster University, Hamilton, Ontario, Canada, L8S 4K1.

NEDIALKOV, N. S. AND PRYCE, J. D. 2005. Solving differential-algebraic equations by Taylor series (I):
Computing Taylor coefficients. BIT 45, 561-591.

NEDIALKOV, N. S. AND PRYCE, J. D. 2007. Solving differential-algebraic equations by Taylor series (II):
Computing the System Jacobian. BIT 47, 1, 121-135.

NEDIALKOV, N. S. AND PRYCE, dJ. D. 2008. Solving differential-algebraic equations by Taylor series (III):
The DAETS code. JNAIAM 3, 1-2, 61-80. ISSN 17908140.

PRYCE, J., GHAZIANI, R. K., WITTE, V. D., AND GOVAERTS, W. 2010. Computation of normal form co-
efficients of cycle bifurcations of maps by algorithmic differentiation. Mathematics and Computers in
Simulation 81, 1, 109 — 119.

PRYCE, J., NEDIALKOV, N. S., AND TAN, G. 2013. DAESA — a Matlab tool for structural analysis of DAEs:
Theory. Accepted for publication in ACM Trans. on Math. Softw.

PRYCE, J. D. 2001. A simple structural analysis method for DAEs. BIT 41, 2, 364-394.

WASHINGTON, I. AND SWARTZ, C. 2011. On the numerical robustness of differential-algebraic distillation
models. In 61st Canadian Chemical Engineering Conference. London, Ontario, Canada.

WATSON, L. T. 1979. A globally convergent algorithm for computing fixed points of C? maps. Appl. Math.
Comput. 5,297-311.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article B, Publication date: YYYY.

http://pitagora.dm.uniba.it/~testset/
http://www.cas.mcmaster.ca/~nedialk/daesa/daesaUserGuide.pdf

	Introduction
	Overview of daesa
	 daesa examples
	Simple DAE: Chemical Akzo Nobel
	Chemical engineering application: distillation column
	Coarse BTF
	Fine BTF

	Troubleshooting
	Reporting missing equations and/or variables
	Diagnosing SIP problems

	Performance: problems of adjustable size
	Problems used
	Dense DAE
	Sparse DAEs

	CPU time vs. size
	Work breakdown

	Performance: problems generated from FMC matrices
	A way to generate DAEs with a given sparsity
	Study of DAEs derived from some FMC matrices
	Further problems derived from FMC
	Block sizes
	Fine blocks and index
	CPU time

	Conclusion and future work

