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ABSTRACT

Global simulations of precipitation from climate models lack sufficient resolution and contain

large biases that make them unsuitable for regional studies, such as forcing hydrologic

simulations. In this study, the effectiveness of several methods to downscale large-scale

precipitation is examined. To facilitate comparisons with observations and to remove

uncertainties in other fields, large-scale predictor fields to be downscaled are taken from the

NCEP/NCAR reanalyses. Three downscaling methods are used: 1) a local scaling of the

simulated large-scale precipitation 2) a modified scaling of simulated precipitation that takes into

account the large-scale wind field, and 3) an analog method with 1000-mb heights as predictor.

A hydrologic model of the Yakima River in central Washington, USA, is then forced by the three

downscaled precipitation datasets. Simulations with the raw large-scale precipitation and gridded

observations are also made. Comparisons among these simulated flows reveals the effectiveness

of downscaling methods. The local scaling of the simulated large-scale precipitation is shown to

be quite successful and simple to implement. Furthermore, the tuning of the downscaling

methods is valid across phases of the Pacific Decadal Oscillation, suggesting that the methods

are applicable to climate-change studies.
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1. Introduction

Hydrologic models are an important tool in studying the effect of climate variability and

change on water resources by simulating the streamflow associated with climate scenarios. A

number of recent studies have attempted to link hydrologic models with climate scenarios (e.g.

Bergström, et al., 2001, Leung et al., 1999, Hay, et al., 2000,). Daily temperature and

precipitation are the principal atmospheric forcing parameters required for hydrologic studies,

and a spatial resolution of 0.125 degrees latitude and longitude is generally sufficient to simulate

monthly flow in mountainous river basins more than 10,000 km2 in size. Climate models,

however, are run at much coarser resolution (typically 2 degrees or more) and do not resolve

important mesoscale processes and surface features that control the regional precipitation. Thus,

downscaling methods have been developed to span the gap from climate models to regional

scales. In this paper, empirical methods to downscale precipitation will be compared in order to

asses the quality of the resulting mesoscale precipitation for driving a hydrologic model.

Downscaling methods are reviewed in Wilby and Wigley (1997) and Giorgi et al. (2001).

The downscaling methods presented here are statistical methods, and are based on empirical

relationships between large-scale and mesoscale climate variables. Statistical downscaling may

be contrasted to downscaling via a physical mesoscale model nested within the global model.

Most statistical methods for precipitation downscaling are based on a large-scale predictor other

than precipitation. A circulation parameter is the most common predictor, and often atmospheric

moisture is considered as well (see Wilby and Wigley, 2000, for an overview of various

predictors for downscaling precipitation). The methods presented here, however, are based upon

precipitation as the large-scale predictor, as motivated by Widmann and Bretherton (2000). A

simple analog method based on circulation is also presented for comparison. Streamflow may
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also be directly downscaled from large-scale fields (e.g. Landman et al., 2001, Cannon and

Whitfield, 2002).

The National Centers for Environmental Prediction/National Center for Atmospheric

Research (NCEP/NCAR) reanalyses (Kalnay et al., 1996) shall be used as the large-scale

predictor fields for this study, in an analogous manner to which a GCM would be used in a

climate change study. In the reanalyses, precipitation is determined entirely by the large-scale

model, not assimilated data. Thus the reanalysis precipitation is indicative of what a GCM might

simulate if the large-scale fields  such as temperature and heights are realistically simulated. By

using the reanalyses as the large-scale predictors, the downscaling method may be verified

against historical data with minimal interference from uncertainties in the simulated large-scale

circulation. Several statistical methods for downscaling Pacific Northwest precipitation based on

the NCEP reanalyses are proposed by Widmann et al. (2002) to produce monthly-mean

precipitation downscaled to a 50-km mesoscale grid. Two of these methods are applied in a

similar manner here to produce daily fields, as required by the hydrologic model. The relative

skill of a mesoscale model and statistical methods for a small mountainous basin was evaluated

by Wilby, et al., 2000, using a similar approach based upon the NCEP reanalyses. For

simulations of the Animas River basin, Colorado, in that study, the statistical method was quite

successful as compared to the mesoscale model.

In the Pacific Northwest region of the United States, the surface orography creates

dramatically different precipitation zones over a horizontal distance smaller than a climate-model

grid cell. Figure 1 shows the topography of the region; the dashed grid lines represent GCM

resolution and the pixel size for the elevation map reflects the resolution of the hydrology model.

The north-south oriented Coastal and Cascade Ranges create a powerful rainshadow.
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Considerable precipitation falls along the coast and Puget Sound region in the west while arid

conditions prevail in the central Columbia Basin and high desert regions of Washington and

Oregon to the east. Typical general circulation models (GCMs) do not resolve this topography,

neither explicitly nor in subgrid-scale parameterizations, and thus cannot simulate the

characteristic regional precipitation. In order to create precipitation fields sufficiently

representative of actual conditions to force a hydrologic model, additional information must be

added to the large-scale simulation through a downscaling method that accounts for the

mesoscale variations.

Figure 1 Elevation map of the study region, encompassing Washington and Oregon, USA. The
heavy black line indicates the Yakima River basin. Thin dashed lines indicate the large-
scale grid. The hydrology model is run at the resolution indicated by the elevation pixels.
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When the application of the downscaled precipitation is for hydrologic modeling, the skill of

the method may not be accurately illustrated simply by comparing spatial patterns of

precipitation. For example, the improved precipitation simulation of a more costly method may

not be realized in the hydrologic simulation if the details are smoothed out over time and space

by storage in snowpack or soil moisture. In many instances, the flow is simply a matter of total

winter snow accumulation with temperature controlling the timing of melt and thus changes in

flow. Alternatively, good temporal correlations and high spatial resolution over the region do not

ensure that precipitation is properly distributed with respect to the topography or that there are no

small local biases, which can have a critical effect on how the precipitation enters the hydrologic

cycle.

In this paper, empirical precipitation downscaling methods are evaluated against their skill in

driving a hydrological model of the Yakima River in central Washington, USA. The Yakima

River originates on the east, leeward, crest of the Cascade Range in southern Washington. The

basin is outlined in Figure 1, and is about the size of a single typical GCM grid cell. The river

flows southeast to join the Columbia River. The basin spans an altitude range of about 2400 m

and drains about 16,000 km2. The river is highly developed for hydropower and irrigation, and

the natural flow is substantially controlled for these uses. The regional economy of the basin is

based on agriculture and associated industry.

The Yakima provides a good test of the downscaling methods for several reasons. Significant

precipitation events are associated with large-scale storm systems, so large-scale simulations

have a good chance of representing the physical processes driving precipitation variability on the

daily, monthly, and interannual timescales. However, the basin is only about the size of typical

GCM grid cell and furthermore lies in the lee of the Cascade Range, which is typically not
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resolved by global models. Thus, we can expect GCM simulations or the NCEP/NCAR

reanalyses will capture the dynamics that control precipitation but cannot simulate the regional

patterns that depend on the interaction with local forcings, such as topography.

The seasonal flow pattern of the Yakima exhibits two peaks, one in fall when the seasonal

precipitation maximum begins, but while it is still warm enough that some precipitation falls as

rain, and a second peak in spring when the snowpack melts. These features are essentially

mesoscale by nature as they are linked to the details of the topography. During the late fall when

much of the precipitation occurs, only the higher elevation portions of the basin are below

freezing. Depending on the timing of precipitation events relative to temperature and on the

elevation where it falls, precipitation may fall as rain, producing a simultaneous peak in river

flow, or fall as snow, and thus not contribute to runoff until the following spring. The relative

magnitudes of these peaks and their timing varies considerably from year to year as a result both

of temperature and precipitation variability. Thus, considerable additional information beyond

what is in the reanalysis must be added by the downscaling method to simulate the annual cycle

of flow.

The simulations that follow will illustrate how much is lacking in the raw NCEP

precipitation, which is unsuitable for hydrologic studies. Considerable additional information

may be added by simple downscaling methods yielding quite acceptable results. There are

several other issues related to driving hydrologic models with large-scale atmospheric

simulations, which are not addressed by this study. Notably, radiative effects, such as from

variations in cloud cover, have a significant hydrologic influence. The approach considered here

does not address all relevant issues of using large-scale models in hydrologic modeling, but

rather focuses on the single issue of precipitation downscaling.
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2. Data and methods

A. Downscaling

For the purposes of this study, large-scale precipitation is taken from the NCEP/NCAR

reanalyses (hereafter referred to simply as NCEP fields), which represents a “perfect” GCM in

the sense that the daily large-scale circulation patterns and temperature are constrained to closely

follow daily observations by the assimilation of data (Kalnay, et al., 1996). The reanalysis

precipitation, however, is entirely model-generated, and simulates the precipitation that might

occur with the actual large-scale conditions over much smoother boundary conditions than

reality. In particular, the NCEP precipitation field is not forced by the true topography of the

Cascade and Coastal Ranges, but captures only a gradual east-west gradient representing the

western flank of the Rocky Mountains. Thus, there are severe biases in the NCEP precipitation,

changing sign from too dry upwind to too wet downwind of the Cascades. Nevertheless, as

shown by Widmann and Bretherton (2000), the NCEP precipitation is highly correlated in time to

station observations after accounting for the local bias. The NCEP reanalysis grid is indicated by

the dashed gridlines in Figure 1; note that the Yakima Basin overlaps two grid cells.

The observed mesoscale precipitation, used to fit the empirical methods, is from a 50-km

gridded dataset of daily precipitation over Washington and Oregon for 1949-1994 (Widmann and

Bretherton, 2000). This dataset was produced from 522 daily station records adjusted for sub-

gridscale topography to yield the long-term means from the Parameter-elevation Regressions on

Independent Slopes Model (PRISM) (Daly et al. 1994).
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Figure 2. Upper left: The precipitation field from the NCEP/NCAR reanalysis for December
1990. Upper right: Gridded observations at 50 km for 1 Jan 1992. Lower right: Scaling
factors used by the local scaling method for the DJF season. Lower right: Downscaled
precipitation for the same period as upper panels.
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Two downscaling methods developed in Widmann et al. (2002) will be presented here. These

are a local scaling and a dynamical scaling of the large-scale precipitation field. Each method

represents downscaled precipitation as the product of the large-scale precipitation and a scaling

factor that is resolved on the mesoscale grid. Results are also presented for a simple analog

method using 1000-hPa heights as a predictor.

For the downscaling results presented here, the period 1958-1976 is downscaled using scale

factors fit to the data for 1977-1994; likewise 1977-1994 is downscaled with scale factors fit to

1958-1976. This method alleviates the risk of over fitting the data. Furthermore, since the Pacific

Decadal Oscillation was in opposite phases during these two periods, this division of the data

indirectly illustrates the robustness of the method to shifts in the natural climate. Implications for

this result will be discussed in Section 4.

In the case of downscaling a climate change simulation with a GCM, a control run of the

GCM would be needed to derive the scaling factors for the local and dynamical scaling methods.

Ideally, this would be a “historic” run with external forcings (CO2, aerosol, solar input) matching

the variations during the period of the observations. This approach assumes the mesoscale

precipitation patterns are related to the large-scale precipitation in a similar way in current and

future climates. Furthermore, it assumes that the climate-change signal is captured in the

simulated large-scale precipitation and height fields.

i. LOCAL SCALING

In the local scaling method, the scaling factors are fixed for each three-month season and are

simply the ratios

† 

s = p / P , where p and P are observed and NCEP precipitation respectively,

and   

† 

L  is the climatological seasonal mean over the fitting period at each grid point. Thus, the

locally-scaled precipitation is constrained to have the same long-term seasonal mean as the
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observations at each 50-km gridpoint. The method relies on the fact that the NCEP precipitation

is well correlated in time to the observations at any point even though it has quite large biases

that vary from point to point (see Widmann and Bretherton, 2000). Figure 2 shows the monthly-

mean NCEP large-scale (upper left) and observed mesoscale precipitation (upper right) fields for

1 January 1992. The lower left panel shows the scaling factors for the December-January-

February season (DJF). The lower right panel is the locally-scaled precipitation for January 1992,

and is simply the product of the upper and lower left panels. The local scaling factor increases

the simulated NCEP precipitation in the various mountainous regions and decreases it in the

rainshadows.

ii. DYNAMICAL SCALING

The dynamical scaling method is a modification of the local scaling where the effect of

atmospheric circulation is taken into account, and the scaling factor depends also on the

monthly-mean 1000-hPa heights. On the east side of the Cascades, the small amount of

precipitation that does occur is highly dependent upon the atmospheric circulation, which

modulates how much moisture is carried past the mountains. To illustrate the influence of

circulation on the distribution of precipitation, consider variability associated with the leading

mode of 1000-hPa heights, as revealed by EOF analysis. This mode is a modulation of the mean

southwesterly onshore flow between a more southerly (Fig 3 left)  and a more westerly (Fig. 3,

right) phase. The composite precipitation pattern formed by averaging over all days of the first

1000-hPa phase shows more precipitation falls into the rain shadow during this phase (Fig 4,

left). In comparison, the second phase is associated with drier conditions east of the Cascades

and higher rainfall along the crest (Fig 4, right). Thus, the large-scale winds modulate the

strength of the rainshadow.



10

Similar dependence of the mesoscale precipitation distribution has been observed for South

West England (Phillips and McGregor, 2001). Should climate change be associated with a shift

in the statistics of the circulation patterns, this effect may have a significant effect on the

Figure 3. Two phases of the leading mode of variability of the 1000-hPa heights over the
Pacific Northwest. Left: Average 1000-hPa height for days with positive phase of leading
EOF. Right: Average over days with negative phase of leading EOF.

Figure 4. Observed precipitation composits for the two circulation patterns in Fig 3. The
strength of the rainshadow is modulated by the variability in the height pattern, with less
contrast across the Cascade Range on the left associated with more southerly flow and a
high contrast on the right associated with more westerly flow
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climatology of rainfall that would not be captured by downscaling methods based solely on

precipitation.

To account for the effect of circulation on the mesoscale precipitation field, the scaling factor

is derived by constraining the covariance between downscaled precipitation and the leading three

modes of the 1000-hPa heights to be the same as the covariance between observed mesoscale

precipitation and leading 1000-hPa height modes, in addition to preserving the long-term mean.

Thus, the downscaling is still performed by applying a high-resolution scaling factor, but the

scaling factor now varies by month according to the simulated 1000-hPa heights. In this case,

since we are testing the results for a “perfect” GCM, the NCEP reanalysis heights are used for

both the observations and GCM, but in general, the GCM heights would be different. The first

three EOF modes of the 1000-hPa heights explain 52%, 32%, and 8.5% of the variance  in the

DJF season, so truncating at three modes captures 92.5% of the total variance; results are similar

for the remaining seasons. For a complete description of this method, see Widmann et al. (2002)

Figure 5 shows the correlation of the two downscaling methods with the observed

precipitation at each gridpoint. Since the period 1958-1976 is downscaled with parameters tuned

to observation for the period 1977-1994 and vice versa, the downscaled and observed time series

are independent. Dynamical scaling (right) produces a significant improvement in the result over

the dry region in the lee of the Cascades, indicating a strong control of the precipitation

distribution due to circulation patterns. The Yakima Basin (outline region) falls along the edge of

the area where the dynamical scaling improves the downscaling. There is little difference (less

than 0.05) in the upper portion of the basin, where most of the rain and snow that supply the river

falls.
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iii. ANALOG METHOD

For comparison, also presented are results of a simple analog method, with 1000-hPa heights

as predictor. 1000-hPa heights are chosen as the predictor to illustrate the performance of a

purely circulation-based downscaling method of comparable simplicity to the local scaling. The

analog method is an attempt to find a day in the historical record that is an analog for each day in

the large-scale simulation that is to be downscaled. The sequence historical analogs is not

necessarily chronological.

With 1000-hPa heights as the predictor, the best historical analog is selected as that day when

the observed heights (as indicated by the NCEP/NCAR reanalyses) most closely match the

simulated heights. The best match is found by minimizing the sum of the mean-square difference

between the amplitudes of the leading five EOFs of 1000-hPa height. Regional observations for

the analog day, in our case, the gridded mesoscale precipitation, may then be assigned to the

Figure 5. Temporal correlation of monthly-mean observed and downscaled precipitation at each
gridpoint over the period 1958-1993. Dark areas indicate relatively poor correlations. Left:
Local scaling. Right: Dynamical scaling
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simulated day. In general, one would start with a GCM simulation of 1000-hPa heights and

search the NCEP/NCAR reanalysis for the best match. In this study, we are using the

NCEP/NCAR reanalyses as a surrogate for a GCM. Thus, to downscale a given day, we search

for the best analog in years other than the one that contains this day. As with the scaling methods,

this approach suggests how a perfect GCM, that accurately captures the well-resolved fields,

would perform.

The downscaled precipitation from this method is correlated at 0.5-0.7 over the Yakima

Basin, with higher correlations along the Cascade crest.

B. Hydrology simulations

In order to explore the implications of precipitation downscaling, streamflow simulations for

the Yakima River were made for the period 1958-1993 using the Variable Infiltration Capacity

(VIC) hydrology model (Liang et al., 1994) implemented at 0.125-degree resolution (Hamlet and

Lettenmaier, 1999a). The 0.125–degree VIC model for the Columbia is very similar to the model

implemented at 0.25 degrees described by Matheussen et al. (2000). Simulated grid cell runoff

and baseflow is then processed with a river routing model (Lohmann et al, 1996, 1998) to

produce streamflow in the Yakima basin. Data are presented for the magnitude of the flow where

the Yakima River joins the Columbia River. The simulation is for unregulated flow, that is, the

natural flow in the absence of any water management or groundwater interactions. Results of

yearly total and monthly flows are presented for the period 1963-1993, allowing the first five

years for model spin up. Each simulation is driven with a different precipitation dataset while

temperature is the same observed maximum and minimum for each simulation.

For the simulation with observed precipitation, the VIC model is driven by the 50-km

precipitation dataset used to fit the downscaling methods, with a resolution of 0.48°(lat) ¥
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0.62°(lon). The VIC model includes 0.125-degree precipitation data (Matheussen et al., 2000),

which is derived from the station observations in the same manner as the 50-km data. As noted in

Widmann and Bretherton (2000), the 50-km grid provides on average 2 stations per grid cell and

therefore grid-scale features are well resolved but sub-gridscale is not. Indeed, hydrologic

simulations with the 50-km data and the 0.125-degree data are indistinguishable; monthly flows

differ by less than a few hundredths of a percent. Thus, for the Yakima Basin, the 50-km spatial

resolution is sufficient to reflect the available information in the station data.

In Widmann et al. (2002), monthly-mean patterns were downscaled. For this study, daily

values are required to force the hydrology model, and the scaling factors are applied directly to

the daily NCEP precipitation fields. Since the local and dynamical scaling methods cannot alter

the number of wet days per month from what is predicted in the large-scale precipitation field,

this approach only works where there is reasonable confidence in the daily variability of the

predictor field. Widmann and Bretherton (2000) showed that, after removing the seasonal cycle,

the daily NCEP precipitation time series is correlated at 54% over the lower Yakima and at 73%

over the upper Yakima Basin. Thus, the reanalysis captures realistic daily precipitation variability

for this region. A free-running GCM, however, may not be able to simulate reasonable daily

variability despite capturing reasonable monthly variability. In this case, it would be appropriate

to downscale monthly means and apply another method to temporally disaggregate to the daily

time step.

For comparison, two additional precipitation datasets are used: 1) The raw NCEP

precipitation. As for the downscaling methods, the NCEP precipitation is taken as constant over

each large-scale grid cell; not interpolated. Differences between this simulation and simulations

using the downscaled precipitation illustrate the information added by the downscaling to the
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raw NCEP precipitation. 2) Daily climatological mean precipitation, which is formed by

averaging the 50-km observed precipitation over 1958-1994 for each calendar day. The

climatological precipitation is applied cyclically each year of the simulation, hence interannual

variability is due only to the temperature forcing. Differences between other simulations and this

“climate” simulation help separate the effects of precipitation and temperature variability.

Simulation Precipitation Dataset
Observed Observed precipitation processed to 50-km grid
Local Scale NCEP precipitation downscaled to 50-km grid using local

scaling method
Dynamical Scale NCEP precipitation downscaled to 50-km grid using

dynamical scaling method
Analog NCEP precipitation downscaled to 50-km grid using analog

method
NCEP Raw NCEP precipitation
Climatology Daily climatological mean (1958-1994) of observed 50-km

precipitation applied cyclically
Table 1. Precipitation datasets for each hydrology simulation

In order to facilitate comparison of the various precipitation datasets without confusion of

differing temperature time series, we drive all simulations with the same temperature data, the

default 0.125-degree VIC driving data. In general, correspondence between daily temperature

and precipitation is essential to modeling the hydrology. Hence, taking temperature and

precipitation from different sources for the NCEP and downscaling simulations may appear as a

potential source of error. However, in the context for which the NCEP reanalysis is used here, the

observed temperature, rather than assimilated temperature, is most appropriate. Since daily

temperature observations are assimilated into the reanalysis, a successful downscaling of the

large-scale NCEP surface temperature should return the observations.

The various simulations presented below differ only in the choice of precipitation data;

observed temperature is used for each. Table 1 summarizes the different simulations.



16

3. Results

In mountainous regions, where there is considerable storage in snowpack, streamflow is

determined both by temperature and precipitation. Temperature variability controls the fraction

of precipitation that contributes directly to runoff or is stored in the snowpack, the timing of the

melt of the snowpack leading to spring flows, and evapotranspiration. Precipitation affects the

total available water and also directly controls runoff and the resulting streamflow when the

precipitation falls as rain. Flow in the Yakima River has two principal seasonal maxima, one due

to melting of the high-elevation snowpack during early summer and a second due to rain in late

fall.

Figure 6 shows the total water-year flows in the Yakima River at the point where it joins the

Columbia River for the simulation period (a water year is the period from 1 October of the

previous year to 30 September of the current year) from each simulation. The simulations with

Figure 6 Total yearly flow simulated for the Yakima River using various precipitation data
and observed temperature
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locally and dynamically scaled precipitation yield a good representation of the interannual

variability, capturing sequences of wet and dry years. These two simulations, however, show a

bias of excessive flow during the late 1960s and a bias of insufficient flow after 1980 relative to

the simulation with observed precipitation. While the analog method does capture the major

interannual features, it is considerably less capable than the other downscaling methods when

compared to the observed simulation. The interpolated NCEP precipitation, in addition to

yielding too little flow, also does not capture much of the observed interannual variability. That

simulation misses, for example, the increased flows during 1966-68. Thus, downscaling is

essential even in order to capture flow variability at interannual time scales.

Model Correlation Slope

Local scaling 0.84 1.00

Dynamical scaling 0.84 0.98

Analog 0.66 0.59

NCEP 0.79 0.58

Climatology 0.44 0.05

Table 2. Correlations with observed precipitation simulation for total annual flow

Table 2 shows the linear correlation and regression coefficient (slope) of total yearly flow for

each simulation relative to the simulation with observed precipitation for the period 1963-1993.

Correlation coefficients are all significant at the 99% level. The local and dynamical scaling

methods perform equally well in capturing interannual variability. The analog method, however,

does not add significantly to the raw NCEP precipitation although it does outperform

climatology. Furthermore, the low value for the slopes indicates that the analog and raw NCEP

precipitation do not produce the range of variability that the simulation with observed

precipitation yields.
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By examining the flow on a monthly scale the details of the interannual variability are

revealed. Figure 7 shows the monthly streamflow simulated with the model driven by observed

precipitation, locally scaled precipitation, climatological precipitation, and NCEP precipitation.

The date is the beginning of the water year, which falls on 1 October of the previous calendar

year. The simulation for the dynamical scaling is not shown, but is indistinguishable from the

local scaling on the graph. Variability in the simulation with climatological precipitation is due to

interannual variations only in temperature, thus changes relative to the dotted line are due to

differences in the precipitation datasets. While the local scaling simulation occasionally

Figure 7. As for Fig. 6, but for monthly flow.



19

overestimates streamflow relative to the observed simulation (e.g. water years 1968 and 1973),

the main interannual features are well represented. For example, the local scaling can

differentiate between years of a double-peaked flow (e.g. 1976, 1978, 1991) and years with a

single, melt-driven peak (e.g. 1974, 1975, 1985). Also, low-flow (e.g. 1966, 1977) and high-flow

(e.g. 1972, 1974) years are captured. These features do not appear in the simulation with

climatological precipitation, indicating that the precipitation field, not temperature, generates

them. The NCEP precipitation, in addition to a consistent dry bias, does not capture some of the

significant seasonal features. For example, the double-peak in flow for the water years 1976 and

1978 is entirely missing in the raw NCEP simulation.

Model Correlation Slope

Local scaling 0.94 0.96

Dynamical scaling 0.94 0.97

Analog 0.89 0.79

NCEP 0.64 0.29

Climatology 0.87 0.72

Table 3. Correlations with observed precipitation simulation for monthly flow

Table 3 shows the correlation and regression coefficient for the various methods to the

observed monthly precipitation for the full period, 1963-1993. It is important to note that

climatological precipitation combined with observed temperature yields a streamflow simulation

87% correlated to the simulation with observed precipitation, indicating the strong control of

temperature on monthly variability and flow timing. As with the yearly total flow, the two

scaling methods perform equally well for the Yakima basin and yield near ideal correlation. The

analog method does no better than climatological precipitation, both in terms of correlation and

slope. The raw NCEP precipitation does significantly worse, with marginal correlation and

reduced variability.
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Compositing all years in the simulation illustrates the differences in the simulated annual

cycle. In Figure 8, the curves indicate the monthly flow averaged over all water years (1964-

1994) for the simulations using observed precipitation, locally scaled precipitation, and NCEP

precipitation. The raw NCEP precipitation entirely misses the secondary flow peak in December.

Furthermore, the peak flows occur in mid spring rather than in June. When the local scaling

method is applied to the NCEP precipitation, however, these details of the annual cycle are

faithfully simulated. Since the timing of precipitation events is the same in the NCEP and

locally-scaled precipitation and since the temperature is the same, the only way the local scaling

can produce these features is by amplifying the precipitation at high elevations where it is colder.

More high-elevation precipitation creates a larger high-elevation snowpack that yields the

summer flow peak. The total flow volume is also increased in the local scaling as the low

precipitation bias in the NCEP precipitation is removed.

Model Correlation Slope

Local scaling 0.78 0.86

Dynamical scaling 0.79 0.89

Analog 0.57 0.56

NCEP 0.25 0.38

Table 4 Correlations with observed precipitation simulation for monthly flow, after subtracting
the climatology simulation

Since temperature exerts a strong control on streamflow timing by forcing the melt of

snowpack, even a relatively poor precipitation representation may yield reasonable results. If the

results for climatological precipitation are subtracted from the other results, to produce an

anomaly relative to the climatological precipitation simulation, the skill contributed by the

precipitation dataset can be isolated somewhat from the temperature forcing. Table 4 shows

results for correlation and regression of each anomaly against the anomaly for the observed
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precipitation simulation. The local and dynamical scaling both retain a significant correlation to

the observed simulation, showing that considerable information about the mesoscale

precipitation is captured. The analog method is marginally correlated while the raw NCEP

analyses are essentially uncorrelated. Thus, most of the skill in the analog and NCEP simulations

methods comes from the temperature field.

4. Climate variability and downscaling

The usefulness of a downscaling method depends on its ability to capture the effects of

climate variability and change. This ability requires that 1) the predictor field captures the

climate signal and 2) the connection between large-scale  and mesoscale remains the same in a

new climate state. The second requirement is more open to doubt for empirical methods, which

are explicitly tuned to present climate conditions, than for physical models, although even

physical models rely somewhat on tuning to present-day simulations.

In the Pacific Northwest, the marked climate variability produced by the Pacific Decadal

Oscillation (PDO) (Mantua et al., 1997) creates an opportunity to test the downscaling method’s

ability to capture climate shifts. The PDO exhibits two phases; the positive or “cool” phase is

associated with cool-wet conditions over the Pacific Northwest while the negative or “warm”

phase is associated with warm-dry conditions. In the past century, the PDO underwent two full

cycles. The PDO was in its cool phase from 1890-1924 and again from 1947-1976, and in its

warm phase from 1925-1946 and from 1977 through the mid-1990's (Mantua et al. 1997, Minobe

1997). The PDO has a significant impact on snow pack and stream flows in the Pacific

Northwest (Cayan 1996, Mantua et al. 1997, Bitz and Battisti 1999, Hamlet and Lettenmeier

1999b).
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As discussed above, in fitting the local and dynamical scaling methods, data from 1958 to

1976 were used to fit the period 1977 to 1994 and vice versa. Thus, the downscaling methods are

tuned to data from the opposite phase from the phase where they are applied. The results in the

above section illustrate that the tuning of the methods does transfer across the PDO phases,

suggesting that the methods can be applied to future climates. Table 5 shows the same statistics

as for Table 2 above, but with the data divided between the cool and warm PDO phases. The

correlations for the downscaling methods remains as high or higher indicating that the methods

are robust to the PDO climate regime change.

Cool (1963-1976) Warm (1977-1994)
Model

Correlation Slope Correlation Slope

Local scaling 0.82 0.99 0.94 0.81

Dynamical scaling 0.79 0.94 0.96 0.85

Analog 0.56 0.46 0.74 0.57

NCEP 0.83 0.61 0.78 0.42

Climatology 0.58 0.05 0.31 0.04

Table 5 Correlations with observed precipitation simulation for total annual flow for the periods
of the cool and warm phases of the PDO.

In Figure 8, the annual cycle for the observed simulation during the cool PDO phase is

shown by the solid upward triangles, and the warm phase by solid downward triangles. Upward

and downward open triangles indicate cool and warm phases respectively for the local scaling

simulation, while + and ¥ are cool and warm phases for the NCEP simulation. The observed

simulation shows the PDO signal of increased summer flow during the cool phase and reduced

summer flow during the warm phase. The simulation with locally-scaled precipitation shows a

similar signal to the observed simulation, although the response is slightly exaggerated. While

the NCEP simulation cannot produce the annual flow cycle, it does produce a PDO signal in the
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precipitation simulation. Thus, simulated large-scale captures the climate signal associated with

the PDO and transfers that signal to the downscaling method.

5. Conclusions

These simulations illustrate how local scaling, a very simple and efficient statistical

downscaling method, is able to capture the essential precipitation features required for accurate

simulation of flow in the Yakima River. The Yakima is in the dry rainshadow of the Cascades,

and is subject to precipitation variability that is connected to the large-scale winds, as discussed

in section 2A. Nevertheless, the quality of information needed to perform hydrologic simulations

for present-day climate does not evidently require the additional detail provided by the

dynamical scaling, which performs no better for driving the streamflow in this basin. Although

the dynamical scaling considerably improves precipitation in the lower Yakima Basin, the upper

part of the basin dominates the streamflow so that the deficiencies in the local scaling do not

compromise the hydrologic simulation. However, the dynamical scaling may be significant in

downscaling future climate scenarios even if it has little effect on downscaling historic data.

Figure 8 Annual cycle of flow in the Yakima formed by averaging all years in the simulation.



24

Circulations statistics are relatively invariant between the fitting and downscaling periods in the

study, so the local scaling may capture most of the signal. However, if there is significant

alteration of the circulation in a future climate, the local scaling would not capture the effects.

Furthermore, in a free-running GCM, the relationship between circulation and mesoscale

precipitation may be worse than in the reanalysis, which does receive some indirect information

about the lower boundary. In that case, the dynamical rescaling may also be more significant

than indicated here.

The two scaling methods are as efficient and simple to implement as the analog method yet

the analog method adds very little value to the raw large-scale precipitation for this region. One

might expect an analog method, based on low-level winds, such as the one used here, would do

well in this region where precipitation is controlled by large-scale storms and orography.

Nevertheless, circulation alone evidently does not exert sufficient control to determine the

precipitation variability, even within the present climate. A similar conclusion is suggested by

precipitation-wind relationship in South West England (Phillips and McGregor, 2001). Using

simulated precipitation and simulated circulation as predictors in the downscaling method

includes both thermodynamic and fluid dynamic controls on precipitation.

It is clear that statistical downscaling can accomplish more than remove a uniform bias in a

large-scale model simulation. The redistribution of water, implied by the scaling, can profoundly

affect the hydrograph. Without downscaling, such significant a feature as the double-peaked

hydrograph cannot be simulated with the unprocessed NCEP precipitation. The large-scale

precipitation, however, does provide the interannual and interseasonal information needed to

capture these features once it is scaled at high spatial resolution.
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In terms of the application of downscaling to climate change simulations, the scaling

methods are not limited by past climate extremes. It is merely assumed that the bias remains the

same in simulations of different climate states. The success of the methods across the PDO phase

shift and the ability of the methods to capture the PDO impacts on streamflow support this

assumption. Furthermore, these methods are easily calibrated to short runs of present-day

climate. While the dynamical scaling method does not produce significantly different results

from the local scaling for the present-day conditions considered here, it is possible that

simulations of climate change may yield a shift in circulation that is not fully captured by the

large-scale precipitation. The dynamical scaling allows more flexibility in the method to account

for such climate shifts.

Acknowledgements

Alan Hamlet provided assistance in obtaining and running the VIC hydrology model. He and

Andy Wood were responsible for much useful discussion and instruction on hydrologic

modeling. This publication is funded by the Joint Institute for the Study of the Atmosphere and

Ocean (JISAO) under NOAA Cooperative Agreement No. NA17RJ1232.

6. REFERENCES

Bergstroem, S., Carlsson, B., Gardelin, M., Lindstroem, G., Pettersson, A., Rummakainen, M.,

2001. Climate change impacts on runoff in Sweden – Assessments by global climate

models, dynamical downscaling and hydrological modeling. Climate Research, 16: 101-112

Bitz, C.C., and D.S. Battisti, 1999. Interannual to decadal variability in climate and the glacier

mass balance in Washington, Western Canada, and Alaska. Journal of Climate, 12: 3181-

3196.



26

Busuioc, A., D. Chen, and C. Hellström, 2001. Performance of statistical downscaling models in

GCM validation and regional climate change estimates: application for Swedish

precipitation. International Journal of Climatology, 21: 557-578.

Cannon, A. J. and P. H. Whitfield, 2002. Downscaling recent streamflow conditions in British

Columbia, Canada, using ensemble neural network models. Journal of Hydrology, 259: 136-

151.

Cayan, D. R., 1996. Interannual climate variability and snowpack in the western United States.

Journal of Climate, 9: 928-948.

Daly, C., R. P. Neilson, and D. L. Phillips, 1994. A statistical-topographic model for mapping

climatological precipitation over mountainous terrain. J. Appl. Met., 33: 140-158.

Gershunov, A., T. P. Barnett, D. R. Cayan, T. Tubbs, and L. Goddard, 2000. Predicting and

downscaling ENSO impacts on intraseasonal precipitation statistics in California: The

1997/98 event. J. Hydrometeorology, 1: 201-210.

Giorgi, F., B. Hewitson, J. Christensen, C. Fu, M. Hulme, L. Mearns, H. von Storch, P. Whetton,

and contributing authors, 2001. Regional Climate Simulation – Evaluation and projections.

In IPCC WG1 Third Assesment Report, Cambridge University Press.

Hamlet, A. and D. Lettenmaier, 1999a. Effects of climate change on hydrology and water

resources in the Columbia River Basin. J. Amer. Water Res. Assoc., 35: 1597-1623.

Hamlet, A.F., and D.P. Lettenmeier, 1999b. Columbia River Streamflow forecasting based on

ENSO and PDO climate signals. American society of Civil Engineering, 25: 333-341.

Hay, L. E., R. L. Wilby, and G. H. Leavesley, 2000. A comparison of delta change and

downscaled GCM scenarios for three mountainous basins in the United States. J. Amer.

Water Res. Assoc., 36: 387-397.



27

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G.

White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins J. Janowiak, K. C. Mo, C.

Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D .Joseph, 1996. The

NCEP/NCAR reanalysis project. Bull. Amer. Meteor. Soc., 77: 437-471.

Kidson, J. W. and C. S. Thompson, 1998. A comparison of statistical and model-based

downscaling techniques for estimating local climate variations. J. Climate, 11: 735-753.

Landman, W. A., Mason, S.J., Tyson, P.D., and Tennant, W.J., 2001. Statistical downscaling of

GCM simulations to streamflow. Journal of Hydrology, 252: 221-236.

Leung, L. R., A.F. Hamlet, D.P. Lettenmaier, and A. Kumar, 1999. Simulations of the ENSO

Hydroclimate Signals in the Pacific Northwest Columbia River Basin. Bulletin of the

American Meteorological Society, 80: 2313-2329.

Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994. A simple hydrologically based

model of land surface water and energy fluxes for general circulation models. J. Geophy.

Res., 99: 14415-14428

Lohmann, D., R. Nolte-Holube, and E. Raschke, 1996. A large-scale horizontal routing model to

be coupled to land surface parameterization schemes. Tellus, 48: 708-721

Lohmann, D., E. Raschke, B. Nijssen, and D. P. Lettenmaier, 1998. Regional Scale Hydrology: I.

Formulation of the VIC-2L Model Coupled to a Routing Model. Hydrological Sciences

Journal, 43, 131-141.

Mantua, N.J., S.R. Hare, Y. Zhang, J.M. Wallace, and R.C. Francis, 1997. A Pacific decadal

climate oscillation with impacts on salmon. Bulletin of the American Meteorological Society,

78: 1069-1079.



28

Matheussen, B., R.L. Kirschbaum, I.A. Goodman, G.M. O’Donnell, and D.P. Lettenmaier,  2000.

Effects of Land Cover Change on Streamflow in the Interior Columbia Basin. Hydrological

Processes, 14: 867-885.

Minobe, S. 1997. A 50-70 year climatic oscillation over the North Pacific and North America.

Geophysical Research Letters, 24: 683-686.

Murphy, J., 1999. An evaluation of statistical and dynamical techniques for downscaling local

climate. J. Climate, 12: 2256-284.

Nobre, P., A.D. Moura, and L. Sun, 2001. Dynamical downscaling of seasonal climate prediction

over Nordeste Brazil with ECHAM3 and NCEP’s Regional Spectral Models and IRI. Bull.

Amer. Meteor. Soc., 82: 2787-2797.

Phillips, I. D. and G. R. McGregor, 2001. The relationship between synoptic scale airflow

direction and daily rainfall: a methodology applied to Devon and Cornwall, South West

England. Theoretical and Applied Climatology, 69: 179-198.

Rummukainen, M., J. R!äisänen, B. Bringfelt, A. Ullerstig, A. Omstedt, U. Willénen, U. Hansson,

C. Jones, 2001. A regional climate model for northern Europe: Model description and results

from the downscaling of two GCM control simulations. Climate Dynamics, 17: 339-359.

Widmann, M and C. S. Bretherton, 2000. Validation of mesoscale precipitation in the NCEP

reanalysis using a new grid-cell precipitation dataset for the Northwestern United States. J.

Climate, 13: 1936-1950.

Widmann, M, C. S. Bretherton, and E. P. Salathé, 2002. Precipitation downscaling over the

Northwestern United States using numerically simulated precipitation as a predictor. J.

Climate. 16: 799-816.



29

Wilby, R.L. and T.M.L. Wigley, 1997. Downscaling general circulation model output: a review

of methods and limitations. Progress in Physical Geography, 21: 530-548.

Wilby, R.L. and T.M.L. Wigley, 2000. Precipitation predictors for downscaling: observed and

general circulation model relationships. International Journal of Climatology, 20: 641-661

Wilby, R. L., L. E. Hay, W. J. Gutowski, R. W. Arritt, E. S. Takle, Z. Pan, G. H. Leavsley, and M.

P. Clark, 2000. Hydrological responses to dynamically and statistically downscaled climate

model output. Geophys. Res. Lett., 27: 1199-1202.

Wood, A.W., Maurer, E.P., Kumar, A. and D.P. Lettenmaier, 2001. Long Range Experimental

Hydrologic Forecasting for the Eastern U.S. J. Geophys. Res. 107: 4429-4444


