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ABSTRACT

The Nemours database is a collection of 814 short nonsense
sentences; 74 sentences spoken by each of 11 male speakers with
varying degrees of dysarthria. Additionally, the database contains
two connected-speech paragraphs produced by each of the 11
speakers. The database was designed to test the intelligibility of
dysarthric speech before and after enhancement by various signal
processing methods, and is available on CD-ROM. It can also be
used to investigate general characteristics of dysarthric speech such
as production error patterns. The entire database has been marked at
the word level and sentences for 10 of the 11 talkers have been
marked at the phoneme level as well. This paper describes the
database structure and techniques adopted to improve the
performance of a Discrete Hidden Markov Model (DHMM) labeler
used to assign initial phoneme labels to the elements of the
database. These techniques may be useful in the design of automatic
recognition systems for persons with speech disorders, especially
when limited amounts of training data are available.

1. INTRODUCTION

Dysarthrias are a family of neurologically based speech disorders.
Speech produced by dysarthric talkers can be difficult to nearly
impossible for persons unfamiliar with the speaker to understand.
Although speech therapy may help dysarthric talkers improve their
speech intelligibility, therapy cannot be expected to restore
“normal” speech quality. For such talkers, a speech prosthetic
device which accepted the dysarthric talkers’ speech as input and
produced more intelligible speech output would be very desirable.

Several investigators have attempted to develop speech prostheses
of this sort by coupling off-the-shelf or laboratory speech
recognizers with speech synthesizers. The speech recognizer would
be trained to the characteristics of a single talker and its output
synthesized to create speech that is easier to understand than the
dysarthric talker’s natural speech. However, such systems have not
been particularly successful. In large part this is due to the fact that
dysarthric speech is quite variable making it difficult to recognize
more than a small number of distinct words from a given talker.

There are other drawbacks to the recognition driven synthesis
approach as well. First, template-based word recognizers force the
use of a (possibly small) finite vocabulary thus constraining the
talker to stay within the bounds of the vocabulary in conversation.
Secondly, the synthetic “voice” is perceived as less desirable than
natural speech by many talkers.

As an alternative to recognition driven synthesis, we have been
examining the possibility of using recognition technology to screen
dysarthric speech for patterns associated with articulation errors
common to a particular talker and, where possible, use signal
processing to “repair” the talker’s acoustic speech signal. This
approach has the advantage of not being bounded by a finite
recognition vocabulary (in the lexical domain) and of retaining the
talker’s natural voice.

Of course, the approach we propose will only be practical if the
articulation errors of a talker form a finite and recognizable set of
acoustic patterns. Partly to determine if this appeared to be the case
for a set of dysarthric talkers, and partly to test some preliminary
methods of speech enhancement for dysarthric speech, the speech
data for the Nemours database was collected.

2. DATABASE STRUCTURE

Each nonsense sentence in the database is of the form “The X is
Ying the Z.” Specific sentences were generated by randomly
selecting X and Z (X≠ Z) without replacement from a set of 74
monosyllabic nouns and selecting Y without replacement from a set
of 37 disyllabic verbs. This process produced 37 sentences from
which another 37 sentences were generated by swapping the X and
Z tokens in the original set. Thus, over the complete set of 74
sentences, each noun and verb was produced twice by each talker.

The target words (X, Y and Z) were chosen based on constraints
similar to those used by, for example, Kent,et al. (1990) to provide
closed-set phonetic contrasts (e.g., place, manner, and voicing
contrasts) within an associated set of four to six words. Thus, all of
the target words within a set differ in a single phoneme so that they
may be used as alternatives in a closed-response perceptual test for
intelligibility. Each talker also recorded two paragraphs of
connected speech: the “Grandfather” passage and the “Rainbow”
passage. Both are commonly used speech passages. One non-
dysarthric talker recorded the entire speech corpus as a control.

3. RECORDING PROCEDURE

A recording session consisted of three segments: an initial
assessment session conducted by a speech pathologist, recording of
the 74 nonsense sentences, and recording of the two speech
passages. All parts of the session took place in a small sound
dampened room with the talker seated (typically in his wheel chair)
next to the speech pathologist or experimenter and in front of a table
mounted microphone (Electro-Voice RE55) connected to a digital
audio tape recorder (Sony PCM-2500). The session began with
administration of the Frenchay Dysarthria Assessment (Enderby,



1983) by a speech pathologist. Following this assessment and a
short break, the experimenter entered the room to assist in the
speech recordings. First the nonsense sentences and then the speech
passages were recorded with additional breaks as needed by the
talker. Nonsense sentences were written in large print on a sheet
placed in front of the talker and each sentence was read first by the
experimenter and then repeated by the subject. This assisted all
talkers in pronunciation of words and was essential for some
subjects with limited eyesight or literacy. On average the entire
recording session was completed in two and one half to three hours,
including time for breaks.

Subsequent to the recording sessions, all speech materials were
digitized from the audio playback of the DAT recording using a 16
kHz sampling rate at 16-bit sample resolution with appropriate low
pass filtering. Each nonsense sentence was saved in a separate file
in standard RIFF format. For convenience, the longer speech
passages were also broken down into sentences and each sentence
saved as a separate waveform file. However, for these materials
care was taken to ensure that inter-sentence timing was preserved to
allow sentences to be concatenated to restore the original paragraph
length recording exactly.

As part of a series of experiments, perception data was collected on
each sentence. In these experiments a minimum of five listeners
identified the target words in the nonsense sentence in a closed
response set task. Over a series of data collection sessions,
individual listeners heard each sentence a total of 12 times and the
distribution of the listeners’ responses over the response
alternatives associated with each word forms the basic perceptual
data in the database. Average percentage correct identifications for
each talker are given in Table 1 along with other speaker
characteristics derived from the Frenchay speech assessment. Note
that a speech assessment was not conducted for talker FB whose
dysarthria was extremely mild, and perceptual data were not
collected on talker KS whose dysarthria was severe.

4. LABELING PROCEDURE

To aid in the comparison of acoustic and perceptual data within the
database, and to provide tags necessary for training various
recognizers, the database has been labeled at both the word and

phoneme levels (with the exception of talker KS whose speech did
not allow phonemic labeling). Word-level labels were assigned
manually, however, the phoneme-level labels were assigned using
a DHMM labeler followed by manual inspection and correction.

4.1. Transcription

The automatic labeling procedure aligned a broad phonemic
transcription of the talkers production which included syllabic
false-starts and dysfluencies, but did not attempt to encode any non-
speech events (e.g., grunts, breath sounds, etc.) in the sound stream.

The transcription of the database used a set of 39 segment labels
derived from the ARPAbet symbol set. Additionally, during the
manual examination and correction stage, disfluent segments were
identified and flagged by the addition of a character to the phoneme
symbol.

4.2. Automatic Labeler

Labeling of the entire database progressed in two stages. In the
initial stage, the nonsense sentences (for which individual words
had been manually labeled) were assigned phonemic labels using
the DHMM labeler. For these sentences, initial phoneme labels
were assigned by assuming that all segments within a word were of
equal duration. This initial labeling was used to train the DHMM
labeler which, at the same time, adjusted the label boundaries to
improve the fit of the phoneme models to the data. In the second
stage, labels were assigned to the paragraph materials, and at the
same time, optimized over both the nonsense sentence and
paragraph speech data.

Discrete Hidden Markov Model (DHMM) technology was chosen
because it is well suited to recognition of a limited training size
database. The system was adapted from a DHMM labeler
developed by the Speech Group (GTH) of the Madrilenian
Telecommunication School (ETSIT-UPM) (Ferreiros,et al. 1993).
The main system is composed of a spectral analysis front-end, a
vector quantizer system, and a DHMM Viterbi algorithm used to
align the phonetic labels and to train the 39 phoneme models.
Several variations in these components were explored to find
combinations which provided the most accurate labeling
performance. These variations are described in the following
sections and summarized along with performance results in Table 2.

Spectral Analysis. In the pre-processing stage, 13 mel-cepstral
coefficients and the log energy of the acoustic frame were estimated
every 10 ms. Additionally, the contribution of dynamic information
was assessed by using the first and second time-derivatives
(designated∆Cep and∆2Cep respectively in Table 2) of the 14
static coefficients in some analyses.

Vector Quantizer. For each speaker, 3 codebooks were developed
using a hard Vector Quantization (VQ) process for the cepstral,
∆Cep and ∆2Cep coefficients respectively. A standard
Mahalanobis distance measure was used for computing distortion
and 128 centroids per quantizer appeared to provide enough
accuracy and generality in the DHMM system.
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Final Cons. 43.2 46.0 60.4 95.3 76.3 86.3 - 68.2 89.2 74.8 81.1
Inter V Cons. 50.5 49.9 53.7 86.6 50.7 86.9 - 58.2 90.4 77.7 71.6
Overall 58.2 51.5 57.5 92.9 68.6 89.7 - 73.3 92.1 84.4 78.5

Table 1: Average Percentage Correct Identifications With Fren-
chay Dysarthria Assessment Scores



An alternative training procedure derived from the classical LBG
algorithm (Linde, et al. 1980) was developed to improve the
generalization capabilities of the quantizer. One of the weaknesses
of the LBG procedure is that it tends to produce centroids with very
irregular numbers of observations per centroid. This is due to the
unorganized splitting criteria adopted in the training procedure. In
the LBG method, after optimizing each centroid using the K-means
algorithm the size of the codebook is doubled by splitting each
centroid, adding a new centroid in the vicinity of the previous one.
In the present adaptation of the LBG algorithm, a guided splitting
mechanism has been introduced which is sensitive to the
distribution of observations among the centroids. In this procedure,
the centroids are split proportionally to the number of observations
assigned to each centroid. If a centroid has fewer observations than
the mean number of observations per centroid it is not split. Further,
if the number of observations in a centroid is four times higher than
the average, the centroid is split by adding four new centroids in its
vicinity.

Figure 1 illustrates the evolution of the global distortion of the VQ,
using the LBG and the proportional splitting procedure. The global
distortion is the sum of the distances of each observation to its
nearest centroid divided by the number of observations (see Eq.1).

Both algorithms appear to provide very similar global resolution
and the global distortion of the VQ has very similar behavior (see
Figure 1). In Figure 1, the evolution of the average of the mean
distortion of all the centroids is also illustrated. This distortion
measure (see Eq. 2) evaluates the average local resolution of all
centroids.

Using the proportional splitting procedure, the local average
resolution of the centroids was improved by approximately 10 to
20% as is shown in Figure 1. Also, a much more regular VQ
structure was obtained, reducing the standard deviation of the
number of observation per centroids by about 60%.

Figure 1: Distortion measures using different splitting criteria

DHMM topology . Several HMM topologies varying in the number
of states per phoneme model were tested (see Figure 2 for an
illustration of a 6-state model), resulting in the choice of a topology
with a relatively large number of states. This may be related to the
structure of the dysarthric speech which tends to have long, poorly
differentiated phonetic units. The use of a long HMM topology
imposes some time constraints and forces the system to locate long
phonetic zones reducing the probability of producing a wrong
alignment. Experiments reported by Deller,et al. (1991) lead to
similar conclusions for isolated word recognition for dysarthric
talkers. As Table 2 shows, an 8-state model marginally
outperformed a comparable 6-state model while the 6 state model
substantially outperformed a comparable 3-state model.

Figure 2: HMM having 6 states per phoneme

As the Nemours database contains continuous speech, the labeler
must accommodate the possible--but not necessary--presence of
pauses or silence between words. To minimize problems related to
word boundaries, strategies similar to those used for continuous
speech labeling of normal speech have been adopted. A generic
silence model with only 1 state and a double forward connection
was used in the last state of each word. This allowed the labeler to
jump the silence model if no silence was detected or insert as many
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silence frames as needed if silence was found between two words
(see Figure 3).

Figure 3: Silence and Word-HMM concatenation topology

When the probability of jumping the silence model (A2) was
directly estimated from a context independent phoneme model, the
value obtained was very low causing incorrect insertion of silence.
This problem was apparently caused by the relatively infrequent
occurrence of any particular phoneme in word-final position. To
compensate, a new parameter (Pjump, probability of jumping a
silence) was estimated. Pjump was simply estimated as the number
of word junctures without silence divided by the total number of
word junctures ( ) (see Eq 3.)

Using Pjump the forward probability at the end of a word could be
decomposed to estimate more accurate A1’ and A2’ (see Eq.4)
reducing the insertion of spurious silence.

The false silence insertion in the labeler was reduced using the
double forward connection at the end of each word from 11%
insertion errors to 2% insertion errors when including the Pjump
probability in the system.

Smoothing technique. The HMM training was performed in two
phases. First, the models were initialized as isochronous segments
within the hand-labeled word boundaries of the nonsense sentences.
The phoneme HMMs were then trained on these data by
successively improving the fit of the initial models over five Viterbi
itterations of the system. The labeling procedure was then
completed using the HMMs trained on the nonsense sentences with
five additional Viterbi iterations over the entire database to adjust
the initial HMM models and assign labels to the paragraph data.
Since there were only about 1200 phonemes, a progressive
smoothing technique was adopted to help the Viterbi algorithm
better locate the phoneme boundaries. For each VQ, the minimum
probability of emission of the HMMs was used as a threshold
probability to effectively smooth the HMM models instead of using
a fixed threshold. To complete the lack of data existing in the initial
training set the threshold was raised by a factor of two in the initial

Viterbi iteration. The threshold was then lowered by a factor of 0.75
in each successive Viterbi iteration. As Table 2 illustrates, this
progressive smoothing approach performed better than fixed
smoothing for comparable 6-state models.
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Codesets Smoothing
%Correct
phoneme
Labeling

6 Cep Progressive 88.5%

6 Cep+∆Cep Progressive 92.2%

6 Cep+∆Cep+∆2Cep Progressive 93.3%

3 Cep+∆Cep+∆2Cep Progressive 86.0%

6 Cep+∆Cep+∆2Cep Progressive 93.3%

8 Cep+∆Cep+∆2Cep Progressive 93.8%

6 Cep+∆Cep+∆2Cep Fixed 91.8%

Table 2: Percentage correct label assignments for two speakers in
the paragraph data (~1500 phonemes) for tested model topology,
different VQ codesets and different smoothing techniques.


