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ABSTRACT

The object of this paper is to present some results obtained with an extended Kalman filter (EKF). First, a
discussion is given of the way that the EKF has been implemented and tested for a global nondivergent barotropic
model spectrally truncated at T21. In the present paper, the assimilation experiments focused solely on the time
evolution of the forecast error covariances that are influenced by two factors: 1) their time integration performed
here with the tangent linear model obtained from a linearization around the true trajectory and 2) the accuracy
and distribution of the observations. Data from a simulated radiosonde network have been assimilated over a
24-h period. The results show that even though no model error has been considered, there can be a substantial
forecast error growth, especially in regions where the flow is unstable and no data are available. The error growth

“is attributed to instability processes that are embedded within the complex flow configuration around which

the nonlinear model is linearized to obtain the tangent linear model. The impact of different initial conditions
for the forecast error covariance is also looked at. In an experiment where the time integration of the forecast
error covariance is suppressed, the results show that error growth is suppressed, causing the analysis error
variance to differ substantially from the variance field obtained with the EKF. Especially in regions where
instability is present and no data are available, this “improved” optimal interpolation considers the forecast to
be more accurate than it actually is.

In a second set of experiments, a mini-observing system simulation experiment has been conducted for
which wind data from a proposed satellite-based lidar instrument have been simulated and added to the radiosonde
data of the previous experiments. Two configurations of the instrument have been considered where the satellite
is set on a polar orbit, at an altitude of 400 km in the first scenario and 800 km in the second. Compared to
the results obtained with the radiosonde data alone, the global data coverage leads to an improvement in the
analysis, especially in the Southern Hemisphere. Data being available in the regions of instability, the assimilation
is now capable of putting a stop to the unlimited error growth observed in the previous experiments. Due to a
degradation of the measurement when the instrument is at an altitude of 800 km, the analysis is more accurate
for the 400-km case, but the iow-altitude orbit (400 km) leaves holes in the tropical belt that the data assimilation
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scheme is not quite able to compensate for.

1. Introduction

Data assimilation can be stated as the determination
of the “best estimate” of the state of the atmosphere,
given all the available information about the data
itself together with a model forecast that encompasses
all of our prior knowledge about the atmospheric state.
This best estimate can be either one of maximum like-
lihood (Lorenc 1986, 1988) or one that minimizes the
analysis error variance. Most of the time, information
about the forecast and observational error is restricted
to the knowledge of the first and second statistical mo-
ments that correspond to the mean and the error co-
variances, respectively. Used for several years in most
meteorological centers, optimal interpolation seeks to
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apply this principle, but it does so only approximately.
For instance, the forecast error covariances are not
available, and they must be approximated as realisti-
cally as possible to render the problem tractable { Phil-
lips 1986; Hollingsworth and Lonnberg 1986; Bartello
and Mitchell 1992). Another difficulty with the oper-
ational practice of objective analysis is that data arriving
at asynoptic times are not handled very well.
Sequential estimation refers to the continuous
blending of data and model forecast as data come in.
Within the context of a linear model, this can be done
with the Kalman filter (Kalman 1960; Kalman and
Bucy 1961), which is able to provide an optimal esti-
mate minimizing the analysis error variance. Moreover,
even though the Kalman filter is sequential, it provides
the optimal solution at any time step, given the previous
observations. Finally, the Kalman filter produces a
forecast of both the model state and its error covariance.
Therefore, information is given about the actual ac-
curacy of the analysis, and this is what makes the Kal-
man filter unique. Some theoretical work has been done
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to extend this method to the nonlinear case, but one
then faces the issue of the closure scheme for the dif-
ferent statistical moments that are needed to describe
the error structure. One such method that relies on a
low-order closure assumption is the so-called extended
Kalman filter (EKF), which is used in this paper.

In the EKF framework, the time evolution of the
forecast error is assumed to be accurately described by
the tangent linear model (Lacarra and Talagrand
1988), obtained by linearizing the equations of the
nonlinear model around a time-dependent solution or
trajectory; this trajectory is obtained from an integra-
tion of the nonlinear model, using the current best es-
timate as initial conditions. The complex flow config-
uration that defines this linear model embeds instability
processes that may lead to local error growth without
any external forcing through model error. In the present
paper, the focus is put on this particular kind of error
growth, and no model error was therefore included.
Identical-twin experiments have been carried out to
stress the difference that exists between different data
assimilation schemes (i.e., the EKF and an “improved”
optimal interpolation ) or between different datasets.

Since the analysis error variance is available, the
Kalman filter and the EKF produce an analyzed state
and give information about the state’s accuracy. This
makes it particularly well suited to study the impact
of different datasets in the context of an observing sys-
temn simulation experiment (OSSE). The first set of
experiments presented in this paper is concerned with
data simulated according to what is usually provided
by the operational radiosonde network. In a second
set of experiments, wind data from a proposed satellite-
based Lidar instrument have been simulated and added
to the radiosonde data. These experiments aimed at
simulating data that will be produced by the Atmo-
spheric Laser Doppler Instrument (ALADIN) of the
European Space Agency and the Laser Atmospheric
Wind Sounder (LAWS) of the National Aeronautics
and Space Administration (NASA). Assimilation was
carried out with the EKF for different satellite config-
urations to determine the one that would be the most
beneficial for NWP.

In the next section, a short derivation of the equa-
tions of the EKF is presented, and the way it was im-
plemented is discussed in section 3. Experiments with
the radiosonde data are reported in section 4, while
those including the lidar data are discussed in section
5. The paper ends with the conclusions in section 6.
Two appendixes are also included to give some details
about the “adjoint interpolation” (appendix A) and
about the method used to initialize the forecast error
covariances in spectral space (appendix B).

2. The extended Kalman filter

The derivation of the filter equations presented here
follows that given in Ghil (1989) for the linear case. If
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X € R" stands for the model state of the dynamical
system !

dX

dt

its integration from time #;_, up to #, using Xx_ as
initial conditions, can be represented symbolically by
the relation

f(X), (2.1)

Xk = Fr-1(Xi—1).- (2.2)

The analysis cycle then proceeds by using a forecast as
a first guess, which is corrected in order to better fit
the data available at time ;. The analysis X§ at time
t is then given by

Xf = 57k-1(XZ-1),
X% = X% + K[ Z = H (X1, (2.3)

where the nonlinear operator Hy stands for the gener-
alized interpolation (or forward interpolation) of the
model state to the observations, Z, are the observed
quantities, and K, is the gain matrix. As in optimal
interpolation, the gain matrix K, appearing in (2.3) is
determined by minimizing a quadratic measure of the
analysis error

J = (Xt — XL)TAXE — Xb),

where A is any arbitrary positive semidefinite matrix,
& stands for the statistical expectancy, and the optimal
weights depend on the forecast error covariance, which
must be known. By taking A to be identically zero with
the exception of one element of its diagonal, it is seen
that this minimizes the error variance for each com-
ponent of the model state vector. It should also be
pointed out that the minimum variance criterion is
just one of the different ways of deriving the Kalman
filter (see Ghil et al. 1981; Jazwinski 1970).

As discussed in Jazwinski (1970), the extension to
the nonlinear case can be achieved in many ways, one
of which is the extended Kalman filter. It is based on
the assumption that the forecast error 6X resulting from
a change 6X, to the initial conditions can be well ap-
proximated by a linear model referred to as the tangent
linear model (Le Dimet and Talagrand 1986). If X(¢)
is the trajectory obtained by integrating the nonlinear
model with the initial conditions Xy, the tangent linear
model stems from the linearization of (2.1) around
this trajectory and can be symbolically expressed as

d of
— X =—[X; ,
7 80X o [X,(2)]6X

df / 3x being the Jacobian of f(X). The validity of this
approximation has been tested by Lacarra and Tala-
grand (1988) and Vukicewic ( 1991) by comparing re-
sults obtained for 6X by using either (2.4) or the non-
linear model. In both of these studies, the tangent linear
model was shown to give an accurate estimate of the

(2.4)
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error for time periods of 24 h that correspond to those
considered in this paper. The validity of the tangent
linear assumption in the presence of baroclinic insta-
bility has also been studied in detail in Rabier and
Courtier (1992).

The forecast model being imperfect, the true at-
mospheric state (X’) at time #, is given by

Xi = Fr1(Xior) + by, (2.5)

where the model error, bi_,, is deemed to be unbiased
and uncorrelated in time. In other words,

Ebi =0, 6bi(b])" = Qudy,, (2.6)

where the superscript T stands for the matrix transpose
while the matrix Q, contains all the information about
the model error covariance. In a similar way, the ob-
servational error (including instrument and represen-
tativeness error) by is such that

Z, = Hi(X)) + bY, (2.7)
and
b =0, &bALNT = Ryor,. (2.8)

The covariance matrix R; models not only the mea-
surement error but also error associated with the for-
ward interpolation. Finally, observation and forecast
errors are assumed to be uncorrelated at all times,
thereby implying that for all k and /

&Ebi(bY)T = 0. (2.9)

The forecast (P£) and analysis (P$) error covariances
are defined as

P{ = 6 (X% — X)(X% — X7,
Pf = &(Xf — X(XE— X7,
and the forecast error is obtained from
XY = Xi = [Frr(XE1) = Fra (X)) = biy

Using the tangent linear model to approximate the term
between brackets, one obtains

X5 — Xb =~ A1 (X¢-1 — Xkoy) — bi_y,

where the linear operator A, _; stands for the integra-
tion of the tangent linear model from time #,_; up to
time f;; the tangent linear model is obtained by li-
nearizing around the trajectory obtained by using the
current best estimate of the model state X7, as initial
conditions. The forecast error covariance is then shown
to be

P{ = J‘q.k_lpa_ldq,-[g_l + Qk—]. (2.10)

The tangent linear approximation is also applied to
the interpolation operator, in which case

Hi(X%) — Hu(XE) =~ Hi(X% — Xh),
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with Hj, = gH, /X, representing the linearization of H,
around the model state X%. This allows the analysis
error covariance to be written as

¢ = (I — KHOPL( — HIKD) + KR KL, (2.11)
As mentioned earlier, the optimal gain matrix K is

obtained by minimizing the analysis error variance and
is shown to be (cf. Ghil 1989)

K = P{HS (R, + HPLH) !, (2.12)
which, when substituted in (2.11), yields that
P? = (1 — K H)PL (2.13)

at optimality.

The EKF equations correspond to (2.3), (2.10),
(2.12), and (2.13), and their integration requires initial
conditions for the first-guess X} and its error covariance
P{. The assimilation is assumed to start with the anal-
ysis cycle and then to proceed with the integration of
the resulting analyzed model state and analysis error
covariance. The EKF equations are then summarized
as follows:

(a) Kiet = P HE (Recy + Hi PLHE )T,
(b) Xty = Xy + Kt [ Zor — Hieey (X1,
(c) Pier = (1 = Kie-1Hie-1)PEs

(d) X% = Fro1(XE-1)

(e) Ph = A Pioy Al + Qs (2.14)

where the * notation for the optimal weights is now
implicit.

The observational error covariance R, must be spec-
ified; it depends on the type of observation and is re-
lated to the measurement and forward interpolation
errors but also to the natural variability of the atmo-
spheric flow on scales that are not resolved by the as-
similating model. The knowledge of the model error
Qy is also required, and its determination could be done
adaptively (Bélanger 1974; Dee et al. 1985) by making
the innovation vector sequence [ Z; — Hi(X%)] uncor-
related in time. This is a very costly proposition and
in most studies (e.g., Cohn and Parrish 1991; Dee 1991)
the model error covariance is specified and the form
used has to be justified. The model error can be asso-
ciated with the discretization error or the absence of
some dynamical processes in the numerical model (e.g.,
imperfect parameterization of the subgrid-scale pro-
cesses). The work of Phillips (1986) investigates the
validity of such approximations, and a discussion of
this question in relation to the Kalman filter is pre-
sented in Cohn and Parrish (1991). It is important to
keep in mind that the results may depend crucially on
what is used for the model and observational error
(Daley 1992).

In the limit where the nonlinearities become negli-
gible, the EKF is optimal and corresponds to the usual
Kalman filter. In the nonlinear case, its optimality
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could be verified through a Monte Carlo simulation
out of which the forecast covariances can be estimated
and compared to what the EKF produces. This is di-
rectly related to the validity of the tangent linear ap-
proximation that, as discussed above, has been shown
to be a reasonably good one for barotropic models over
a 24-h time interval.

By providing the analysis error variance, the EKF is
able to supply a measure of the accuracy of an analysis,
and therefore it allows the impact of different obser-
vation sets to be compared. By using simulated obser-
vations, this can be used to look at different configu-
rations for a proposed satellite instrument or network
of observing stations to find the one that can be ex-
pected to be the most beneficial from the point of view
of numerical prediction. A study of this type has been
carried out recently by Cohn and Parrish (1991), who
looked at the impact of wind profiler data on the anal-
ysis and forecast error by employing a linear Kalman
filter.

In the present study, an EKF based on the barotropic
vorticity equation will be used. Although linear, the
model used by the EKF to integrate the forecast error
has variable coefficients (in space and time), and its
dynamic is substantially more complex than a linear
model with constant coefficients such as the one used
by Cohn and Parrish (1991). In the next section, the
implementation of the EKF is described.

3. Implementation of the extended Kalman filter

The EKF has been implemented within the frame-
work of the Action de Recherche Petite Echelle Grande
Echelle (ARPEGE) Integrated Forecasting System
(IFS) model currently being developed by the Euro-
pean Centre for Medium-Range Forecasts (ECMWF)
and Météo-France; this project’s characteristics are de-
scribed in Thépaut and Courtier (1991). Since the term
“model” usually refers to the temporal integration and
the way it is done (i.e., numerical and parameterization
schemes employed, nature of the boundary conditions,
etc.), it is more appropriate to think of ARPEGE IFS
as a programming environment because it provides the
means to do many different types of applications such
as 3D and 4D variational assimilation, predictability
studies, assimilation with an EKF, search for most un-
stable modes, etc. At heart, ARPEGE IFS is a spectral
global model with variable resolution (Courtier and
Geleyn 1988), and it can be run in different configu-
rations ( barotropic vorticity equation, barotropic shal-
low-water equations, or primitive equations). The
present paper will be concerned only with the specifics
of the implementation of the EKF in the particular
context of the barotropic vorticity equation

Iy _
5 FIW s+ =

where ¢, {, and fare the streamfunction, the relative
vorticity, and the planetary vorticity, respectively, while
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J(a, b) stands for the Jacobian operator. Within the
ARPEGE IFS environment, there are actually three
models available for any configuration: the direct model
(2.1), the tangent linear model (2.4), and the adjoint
model. For a detailed discussion of the derivation of
the adjoint model, the reader is referred to Talagrand
and Courtier ( 1987) for the case of the barotropic vor-
ticity equation, Courtier and Talagrand (1991) for the
shallow-water case, and Thépaut and Courtier (1992)
for the adiabatic primitive equations; all of these cases
have already been discussed in Courtier (1987).

When implementing the EKF in this environment,
it is important to notice that the linear operators Ay _,
and Hj_, appearing in (2.14) are not explicitly known
as matrices; they are known only through their action
on some vector X. The tangent linear model being
available, the calculation of

M, = APl

is done by performing N integrations of the tangent
linear model from #_; up to # using successively the
N columns of P{_, as initial conditions and replacing
the corresponding column with the result; proceeding
in this way, only one N X N matrix is required. Finally,
one gets that

P{ = A Pi AL, = (A MT),

and this requires N more integrations of the tangent
linear model now using the rows of M, as initial con-
ditions. The cost of integrating the forecast error co-
variances therefore corresponds to that of 2N integra-
tions of the tangent linear model. For a barotropic vor-
ticity equation model truncated at T21, a 24-h
integration of the EKF with a 1-h time step was done
in 1100 s of CPU time on a CRAY 2 computer, and

_ this is certainly not out of reach.

The linearized forward interpolation operator Hj_;
is also not known explicitly as a matrix, but if it was,
(2.14a)~(2.14c¢) could be solved with matrix operations

" involving only one (M X M) matrix inversion, M being

the number of observations. In the operational practice,
M can be large and this operation can be time con-
suming. A simplification to the implementation can
be achieved by a serial processing of observations where
observations having correlated €ITors are collected to-
gether, thereby forming “p” groups of “m,” obser-
vations; the observation errors are uncorrelatcd be-
tween each group, and Ry is then block diagonal. In
that case, if Hy is linear, the sequentiality of the Kalman
filter can be used to show that the analysis cycle can
be solved 1terat1vely (seelJ azw1nsk1 1970 Brown 1983)
Setting Pk_ = P{_, and Xk_, = X%, forl=1,

P, the equations

(a) K(l) (l—l)H(l)T[R(l) + H(l) (l—l)HU)T] 1
(b) Xiy = Xi5 + K [Z) - HAXGE),
(c) P2y = [1— K HL RIS (3.1)
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are solved( iteratively to obtain that P{_, = P;((‘i)l and
X=X k”_) 1. In particular, if the observational errors

are assumed to be uncorrelated, the result should be
independent of the way the observations are regrouped;
(3.1) could be solved by treating all observations one
by one or as a whole without changing the result. This
property provides a very powerful test of the computer
code used for the forward interpolation. This treatment
also requires a lot less memory to store H, and K.

The forward interpolation H; summarizes all oper-
ations needed to go from the model state X to the
observations. For a model based on the barotropic vor-
ticity equation, X is defined by the spectral components
¢ of the vorticity. For an observation of a single wind
component along a given direction, the associated for-
ward interpolation is linear and corresponds to the fol-
lowing sequence of operations:

(i) solve spectrally the Poisson equation V2 = { to
obtain the spectral components of the streamfunction
¥ (defined as operator P);

(i1) calculate the spectral wind components # and
¥ (defined as operator U);

(ii1) perform an inverse spectral transform to get
the two wind components on the Gaussian grid (de-
fined as operator §71);

(iv) interpolate bilinearly both wind components
to the observation point (defined as operator B);

(v) project the model wind in the direction along
which the measurement is taken (defined as opera-
tor IT).

This is what would be needed for the direct assimilation
of Doppler wind data such as those obtained either
from a radar or a lidar instrument. The operator H
can be written as

k=B 'UP. (3.2)

The first three operators (i.e., 2, U, and & ') involve
only one spectral transform and can be done once to
obtain a model state on the Gaussian grid. However,
the EKF equations involve products such as H,P£, and
this calls for N spectral transforms. A close look at
(2.13) shows that 4N spectral transforms are needed,
while, on the other hand, H) can be explicitly built with
N spectral transforms by forward interpolating the N
columns of the (N X N) identity matrix. The matrix
H). must be stored, but this does not require too much
memory if (3.1) is used.!

The assimilation of geopotential observations re-
quires this variable to be related to the model state
through the nonlinear balance equation

A¢ = V-[(§+/IVATIE] =2 VA L VAT, (3.3)

! It is shown in appendix A that the adjoint interpolation can be
used to obtain H; with only m, spectral transforms; this is useful
when the number of observations is less than the number of model
variables.
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where A stands for the Laplacian operator. At midlat-
itudes, the planetary vorticity f being usually more
important than the relative vorticity {, (3.3) can be
approximated by linearizing around a state of rest to
give the linear balance equation

¢ =ATNV-(fVATIO = Lo (34)

However, situations may occur where strong wind
shears exist, leading to an important local vorticity, in
which case { may not be negligible with respect to f-
this is also the case in the equatorial region. It could
then be more appropriate to linearize (3.3) around a
reference state ¢:

¢ = ATV [(&+HNHVATIEI+ V- (FVAT)

- VAT -VATIG = LY. (3.5)

For sake of simplicity, the linear balance equation (3.4)
will be used in this paper, and therefore, H is linear
and

H; = H, = B8 '.L,.

The validation of the computer code was made by
performing an identical-twin experiment based on the
barotropic vorticity equation spectrally truncated at
T21. The observations were simulated by integrating
the model with initial conditions X§ and then forward
interpolating the model state to a given set of points
for an observation of «, v, or ¢. If the assimilation uses
X as the first guess, (2.14) shows that the innovation
vector should always identically vanish, and therefore,
X¢ = X/ for all k. This test verifies that Hy is correct,
but the analysis cycle can be tested even more by no-
ticing that for uncorrelated observational errors Ry is
diagonal and, H, being linear, (3.1) applies, and the
result of the analysis should be independent of the sizes
of the p observation packets. By making the analysis
with different packet sizes, the same results should be
obtained for X% and P§{. These tests were performed
for every type of observation used to ensure that there
were no errors in the analysis part of the EKF. Finally,
the validity of (2.14) is related to that of the tangent
linear model that had been previously tested for the
implementation of the adjoint model (Thépaut and
Courtier 1991).

In the experiments to be described in the following
sections, P{ was initialized by assuming the first-guess
error correlation on the streamfunction to be homo-
geneous and isotropic. This point is discussed at length
in appendix B, where it is also shown that under these
conditions P{ is diagonal. This representation is the
basis of the implementation of the 3D variational as-
similation system of Derber et al. (1991) [described in
detail in Parrish and Derber (1992)] and also of the
formulation used in ARPEGE IFS (Pailleux 1990).
The aim here was to choose something reasonable, al-
though the correct form can be obtained by integrating
the EKF over a sufficiently long time so that the forecast
error covariance converges to the asymptotic form that
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F1G. 2. Initial conditions on 14 July 1990: (a) geopotential field and (b) vorticity field.

it would reach for a stationary observation network
(Daley 1991). In that respect, a study of the impact of
the initial choice for P§ on the results is certainly of
interest.

The error covariance of the model state corresponds
to the spectral components of the vorticity, but the
wind or geopotential error covariances at grid points
can easily be obtained from it. For instance, the zonal-
wind error u’ on the Gaussian grid is linked to the
spectral vorticity error through the relation

u = &—lnu(l[?fl = Gufla

with II,, representing the projection of the model wind
in the zonal direction and the vector u’ referring to the
gridpoint values of the zonal-wind error. It then follows
that the zonal-wind error covariance P,, (analysis or
forecast) is

Pl = G.,PLG..

The same can be done for the meridional wind com-
ponent to obtain that

Pfe = GPLGY.
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FIG. 3. Analysis error variance resulting from an assimilation with the extended Kalman filter: (a) ¢ = O h, (b) 12
h, and (c) 24 h. Units used are 1 X 107'? 572, with contour levels of 1 unit, and the characteristic length of the first-

guess error is 1200 km.

Finally, the error on the geopotential being
¢ = BS Lol = G,
the geopotential error covariance is
Pl# = G,P{“G].

These relations also allow the wind and geopotential
error correlations to be computed. In the next section,
results obtained with the EKF are presented.

4. Experiments with a simulated radiosonde network

All experiments in this paper use synthetic data and
are of the identical-twin type (Daley 1991). Conse-
quently, no model error is taken into account, and as
pointed out in Cohn and Parrish (1991), this can imply
that there is no global error growth, but as will be seen
shortly, this is not the case. Another consequence of
having no model error is that it usually produces results
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that are too optimistic. The observations have been
simulated according to the radiosonde network for
measurements of wind and geopotential at 500 mb as-
sociated with the 633 TEMP stations, and wind only
for the 135 PILOT stations;. all reporting stations at
0000 UTC 14 July 1990 have been considered. As can
be seen from Fig. 1, this observation network covers
the continents of the Northern Hemisphere rather well
but gives only a weak coverage of the oceanic regions,
with important data voids especially in the Southern
Hemisphere. Synthetic observations were generated
from a 24-h integration of the barotropic vorticity
equation spectrally truncated at T21, the initial con-
ditions X§ used were those of 0000 UTC 14 July 1990,
and the associated geopotential height and vorticity
fields are shown in Fig. 2. At the location of each sta-
tion, values of u, v, and ¢ have been generated every
6 h for 24 h according to what would be provided by
the station; the network has been assumed to be the
same for each synoptic time. In reality, the radiosonde
network has a periodicity of 12 h, not 6 h, but the
choice made here can be justified by the fact that var-
ious other sources of information such as the new
automated aircraft data, have not been considered here.
The forward interpolation for ¢ was taken to be linear
and to correspond to L, as described in the previous
section. No noise was added to the interpolated model
state, but observational error is introduced at the as-
similation stage; it has been assumed to be uncorrelated
with standard deviations of 2.24 m s ! and 11.2 m on
wind and geopotential height observations; these are
operational estimates of the error made by radiosondes.

Assimilation with the EKF was then accomplished
in the following way. The first-guess error covariance
P({ has been initialized as explained in appendix B; the

correlation length of the correlation function was set
to 1200 km, while the uniform variance corresponds
to that of a geopotential error level of 21 m (standard
deviation) at midlatitudes. The focus will not be on
the analysis itself but on the time evolution of the co-
variances that can be influenced by the nature and dis-
tribution of observations (through the interpolation
HY), their error structure (through Ry), and the initial
assumptions made on Pg . Moreover, the first guess is
taken to correspond to X§, thereby implying that X§
= X/, at all times because the observations correspond
to an exact model state. By proceeding in this manner,
only (2.14a), {2.14c), and (2.14¢) are active in the
EKF equations, (2.14d) being needed only to define
the tangent linear model that is therefore a linearization
around the true trajectory.

By choosing the initial estimate of P§ to correspond
to what is found for the operational analysis error level,
the time evolution of the forecast error covariance
should not be very different from what would be ob-
tained by linearizing around the current best estimate
instead of the true solution because the tangent linear
model has been verified to give an accurate represen-
tation of the forecast error over a 24-h time interval
(Courtier and Talagrand 1987; Lacarra and Talagrand
1988); this holds for the large scales resolved by the
T21 barotropic model used here. This would cease to
be true, however, if the assimilation was made over
periods of time that exceed the limit of validity of the
tangent linear model. As a result, the assimilation de-
viates from a strict implementation of the extended
Kalman filter, but the time evolution of the forecast
error covariance should not be significantly different.

Figure 3 shows the analysis error variance at £ = 0,
12, and 24 h. At ¢ = 0, it is as it would be if optimal
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interpolation was used, but when the time dimension
comes into play, the variance is now governed by the
tangent linear model that captures the dynamics of er-
ror growth and propagation of information. This is
clearly illustrated by Figs. 3b,c, showing that the region
west of South America experiences a significant in-
crease in the error level that can be attributed to three
factors. First of all, a more important error growth rate
is hinted at by the local vorticity gradient that points
toward local barotropic instability in the area: this can
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be seen in Fig. 4a, where the vorticity and the error
variance over that region have been plotted at the end
of the assimilation time interval. The maximum vari-
ance in that area is about four times the initial constant
level, and the error has therefore doubled in 24 h. Sec-
ond, this area being totally devoid of any observations,
nothing acts to bring the error level down. Finally, the
geopotential (shown in Fig. 4b) indicates that the cir-
culation tends to skirt the area and propagation of in-
formation from the outside is therefore impaired.
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FiG. 4. Analysis error variance field at 1 = 24 h superposed over (a) the vorticity field and (b) the geopotential field.
The domain is a close-up of the region west of South America.
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Without the time integration of the forecast error
covariances, one has only to solve (2.14a) and (2.14¢)
to update the analysis error covariances according to
information brought in by new observations. Proceed-
ing in this way is an improvement over optimal inter-
polation in that the analysis error covariance is updated
and that no data selection algorithm is involved. The
resulting analysis is represented at the final time in Fig.
5. A comparison with the variance field of Fig. 3¢ ob-
tained with the EKF shows that this “improved” op-
timal interpolation is not giving a good estimate of the
accuracy of the analysis. The conclusion is then that
the EKF brings important and new information about
the actual accuracy of the analysis, which is seen to be
quite different from the picture obtained from optimal
interpolation that uses an incorrect estimate of the
forecast error covariance. The reason for this is that
the EKF takes into account the dynamics of error
growth and propagation of information by integrating
in time the forecast error with the tangent linear model.
The latter being obtained from a linearization of the
model’s equations around a complex time-dependent
flow configuation, its dynamics embeds instability
processes; this leads to error growth (even in the ab-
sence of model error) that depends on the local flow
configuration. Propagation of information is also more
accurate, and the presence of areas of closed circula-
tions would tend to block information from entering
in those regions. These mechanisms are seen to be quite
different from those in an operational data assimilation
cycle, where error growth is taken into account usually
by increasing the uniform error variance linearly in
time, which increases it globally regardless of the par-
ticularities due to local instabilities, lack of observa-
tions, etc.
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The results may also depend on what is used to in-
itialize the forecast error covariance. For instance, the
correlation length used in the experiments reported
above was 1200 km, which means that observations
had an impact over a very large region. To assess the
impact of this particular choice, the experiment was
repeated using 400 km as the characteristic scale of the
initial first-guess forecast errors; the resulting error
variance fields are presented on Fig. 6. As can be seen
from Fig. 6, the results show that the error level is con-
siderably higher even at the initial time. This is a direct
consequence of the reduced characteristic scale; by
keeping the geopotential error field (and, hence, the
streamfunction ) to be the same as in the previous ex-
periments (21 m), the corresponding vorticity error is
increased since it is obtained by differentiating the
streamfunction twice, and this makes the characteristic
scale appear at the denominator. However, the general
features of the variance field are very similar to those
reported earlier (Fig. 3); in particular, the regions of
intense error growth are still present. Finally, for the
two cases discussed earlier, Fig. 7 shows the time evo-
lution of the analysis error variance averaged over the
globe for these two cases; to emphasize the impact of
having a denser observation network, the contributions
to the global mean coming from the Northern and
Southern hemispheres have also been plotted. This
clearly shows the analysis to be poorer in the Southern
Hemisphere in both cases and the global reduction in
analysis error to be done mostly in the Northern
Hemisphere.

This last result suggests that if the data coverage were
more uniform, we would expect few differences to exist
between the Southern and Northern hemispheres. This
is investigated in the next section, where wind obser-
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FIG. 5. Analysis error variance at the final time for an assimilation without the time integration
of the forecast error covariances. A contour interval of 0.5 X 107!2 572 has been used.
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FIG. 6. As in Fig. 3 but for a characteristic length of the first-guess error of 400 km:
(a) at the initial time and (b) at the final time.

vations coming from a simulated satellite-based lidar
system are added to the radiosonde network.

5. Experiments with Doppler wind data from a
satellite-based lidar instrument

In recent years, both NASA and the European Space
Agency have proposed to launch a satellite-based
Doppler lidar instrument that would provide a fairly
global coverage of radial wind measurements along the

line of sight (Curran 1987, 1989; Baker 1991; Betout
et al. 1989). Figure 8 shows the data coverage asso-
ciated with polar orbits at altitudes of 400 km (Fig.
8a) and 800 km (Fig. 8b). This particular choice is
dictated by the fact that below 400 km the orbit is
unstable, while at 800 km the lidar instrument is be-
coming less accurate. In both cases, the conical scan
has a 45° aperture. The main feature emerging from
Fig. 8 is that when orbiting at 400 km, there are sig-
nificantly larger data gaps than those created when on
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F1G. 7. Time evolution of the global mean analysis error variance
(solid line) for a characteristic length of the first-guess error of (a)
400 km and (b) 1200 km. In both figures, the contributions from

the Northern and Southern hemispheres have been plotted separately
to emphasize the differences existing between the two hemispheres.

an 800-km orbit. Since the lidar instrument provides
a measurement over a volume of air that is very small
when compared with the resolution of the model, the
observation error must therefore include, on top of the
measurement error, wind fluctuations on the unre-
solved scales. Here, these fluctuations have been esti-
mated to correspond to the radiosonde wind error. Fi-
nally, the measurement error made by the instrument
has been estimated to be of 1 m s™! for a 400-km orbit
and 4.3 m s~! when orbiting at 800 km due to a de-
terioration in the signal-to-noise ratio.

The Doppler wind lidar data used here consist of a
single wind component measured along the direction
of the line of sight; the orbitography simulator provided
the location of the measurement and the direction of
the line of sight that were used in the simulation and
assimilation of the data. In all the following experi-
ments, the methodology is the same as in the previous
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section, but now, Doppler wind lidar data have been
simulated and added on top of the same radiosonde
data used in the preceding section. (The same initial
condition situations were used to simulate the data.)
The lidar data are inserted at every hour, while the
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FIG. 8. Typical data coverage for a satellite on a polar orbit at an
altitude of (a) 400 km and (b) 800 km. Distribution of the points
corresponds to those of a conical scan with a scanning period of
10 s. The shot frequency was set to 2 Hz.
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FIG. 9. As in Fig. 7 but for an assimilation using the Lidar data
coming from a satellite on a polar orbit at an altitude of 400 km.
Results are shown for two experiments using a characteristic length
of the first-guess error of (a) 400 km and (b) 1200 km.

radiosonde network comes in at every 6 h, as before.
In the first experiment, the satellite is on a polar orbit
at an altitude of 400 km, and the lidar shots have a 1-
Hz firing frequency (3600 wind measurements per
hour): an observation error of 2.45 m s~ on the radial
wind component has been considered. Over a 24-h pe-
riod, the volume of data corresponds to 86 400 single
wind component observations that must be added to
the 10 845 scalar observations of the radiosonde net-
work. Figure 9 summarizes the results from two ex-
periments that were run by initializing P§ with a fore-
cast error scale of 400 km (Fig. 9a) and 1200 km (Fig.
9b). A comparison with Fig. 7 shows that the lidar
data have a very beneficial impact on the quality of
the analysis. After 24 h, the data coverage being then
nearly uniform, the quality of the analysis in the
Southern Hemisphere is now comparable with that of
the Northern Hemisphere. These experiments were re-
peated for an 800-km orbit, and Fig. 10 shows the mean
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error variance. Although a qualitatively similar error
reduction is observed, the increase in the measurement
error has a detrimental effect that overcomes the ben-
eficial effect of having a more global data coverage. For
instance, for an initial forecast error correlation scale
of 1200 km, the mean error variance ¢ 2 at the end of
the assimilation period is found to be 2 = 0.45
X 10712 572 for the 400-km orbit, while it goes up to
0.81 X 107! s72 for a satellite orbiting at an altitude
of 800 km. Both cases converge to an error level that
is lower than the variance of 1.915 X 1072 s72 obtained
with the radiosonde data alone. For a forecast error
correlation scale of 400 km, the variance level rises but
the 400-km orbit still yields a more accurate analysis.
Figure 11 shows the corresponding analysis error vari-
ance field at 1 = 24 h for the 400-km orbit (Fig. 11a)
and the 800-km one (Fig. 11b). By providing mea-
surements in regions where none are available from
the radiosonde network, the lidar data can put a stop
to the unlimited error growth observed in the previous
experiments. The impact of the nonglobal data cov-
erage of the 400-km altitude orbit is now clearly visible
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F1G. 10. Same as Fig. 9 but for a satellite at an altitude of 800 km.
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F1G. 11. Analysis error variance field at ¢ = 24 h for an assimilation using Lidar data obtained from a satellite at an
altitude of (a) 400 km and (b) 800 km. In both cases, a characteristic length of the first-guess error of 400 km has
been used. A contour interval of 0.5 X 107'2 572 has been used.

in the tropical belt as an alternation of high and low
values in the vorticity error variance field. Finally, it
is also worth noticing that in both cases the error vari-
ance is higher in the equatorial region; this is a con-
sequence of having a higher number of lidar measure-
ments in the polar regions. This would suggest that
shot management schemes should be designed so as to
provide a more uniform coverage by reducing the
number on shots in the polar regions and increasing it
in the equatorial region.

6. Conclusions

The most striking feature of the results obtained with
the tangent linear model is the impact of instability
processes on the dynamics of error growth, which is
most pronounced in regions of data voids. In these
regions, forecast errors may exceed by far those pre-
dicted by optimal interpolation. The results that were
presented here point to the fact that local error growth
is related to the presence of strong vorticity gradients
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that are characteristic of shear flow instabilities. This
suggests that if the EKF was based on a more complex
model, other types of instabilities (e.g., baroclinic in-
stability) are likely to lead also to error growth. In ex-
periments with a linear Kalman filter where the linear
flow does not support any instability mechanism, error
growth stems from an external model error forcing
(Dee 1991). In the present study, no model error was
considered to emphasize that error growth could occur
even in its absence. But it must be kept in mind that
a consequence of having no model error is that it usu-
ally produces overly optimistic results.

Although the methodology adopted here is correct
for a study of the large-scale part of a flow over a 24-h
period, the impact of having chosen the true state for
the initial estimate of the atmospheric state could be
questioned if the assimilation was to be carried out
over a period that exceeds that over which the tangent
linear model is valid. This limit of validity is deter-
mined by comparing the error obtained with the full
nonlinear model against the one predicted by the tan-
gent linear model when the initial error is of an am-
plitude corresponding to the estimate used for the initial
error covariance. For longer time periods, the evolution
of the forecast error covariance should be determined
by integrating the EKF with an initial estimate of the
model state that contains an error level consistent with
the initial assumption made on its error covariance;
this would be the next step.

Finally, the EKF is a very useful tool to perform
OSSE:s since it provides not only an analysis but also
information on its accuracy. In this paper, a mini-OSSE
was conducted to make a preliminary assessment of
the impact of data coming from a proposed satellite-
based Doppler wind lidar instrument. Our results have
shown that the availability of a global coverage of wind
observations is able to put a stop to the unlimited error
growth that was observed when only radiosonde data
were used. The impact is even more important in the
Southern Hemisphere, which is poorly covered by the
radiosonde network. Two scenarios have been inves-
tigated for 400- and 800-km orbits. It was concluded
that, due to a loss in the measurement accuracy, the
800-km orbit gives a less accurate analysis even though
the data coverage was more global.
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APPENDIX A
The Adjoint of the Forward Interpolation

The availability of the adjoint of H can be used to
reduce the number of interpolations that must be per-
formed to obtain an explicit form for it. The adjoint
being defined in relation to a given inner product, con-
sider F to be the spectral space of dimension N (the
model state) and O, the observation space of dimension
M ; their respective inner products are taken to be

<fa g>E = ngs <x’ y>0 = XTY' (Al)

In this appendix, H will stand for what was previously
designed by H} and is therefore assumed to be linear.
By definition, (A.1) implies that the adjoint of H is
such that H* = H”. Applying the adjoint of the inter-
polation to the (M X M) identity matrix will provide
an explicit expression for H, and only M adjoint inter-
polations have to be performed. This can reduce con-
siderably the work required to obtain H when the num-
ber of model variables far exceeds that of the obser-
vations to be assimilated.

The adjoint interpolation must, however, be defined
in such a way that it can be practically used. For the
sake of simplicity, this will be illustrated for observa-
tions of vorticity for which H = B8 !, that is, an in-
verse spectral transform of the model state followed by
a bilinear interpolation to the observation points. Con-
sider G, to be the physical space and §:G, - E. The
inner product on G| is so chosen that & ~! is “unitary,”
which means that

(ST 87 g6, =/, g>5=31,£ffgds

< $TN(S g
~ 2 Ni H

and the sum is carried over all grid points: w; and N;
are the Gaussian weight and the number of grid points
on the latitude circle of the grid point, respectively.
With this definition, the adjoint of & ! corresponds to
the spectral transform itself [see the discussion in ap-
pendix A of Talagrand and Courtier (1987)].

On the other hand, it would be most convenient to
consider the inner product for the gridpoint space G,
to be

<fa g>Gz = ngs
in which case
(Z, BY Yo =(B*L,Y )q,,

implying immediately that B* = BT. The elements
of G, and G, are thus the same, the values of ¢ at the
grid points, but G, and G, nevertheless differ by having
distinct inner products.

To get the best of both worlds, it suffices to introduce
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a supplementary transformation, the identity I: G; =
G,. At first, this may look trivial but the adjoint of the
identity is not and is such that

(£, 18, = Zﬁgz (*f, 8)6, = (I f),g, ,

and consequently,
Ni
(Ir*fi=—"1.
w;

The application of 1* is then achieved by multiplying
every grid point by its corresponding weight N;/w; .

The bilinear interpolation of the model variable ¢
to an observation point implies that

$m = iy $iy + iy $iy + iy §iy + iy Gy

where the coeflicients a,,; correspond to the weights
assigned by a bilinear interpolation to the values of {
at the four grid points defining the mesh that contains
the observation point. A column of B7 represents a
gridpoint field that contains only zeros except for those
four points that take the values of the corresponding
weight. Therefore, when B T is applied to the mth col-
umn of the identity matrix, it produces a gridpoint
field that is zero everywhere but at these four points.

The next operation consists of applying the adjoint
of the identity I* by multiplying each gridpoint value
by the proper weight N, /w;. The result from these two
operations yields a gridpoint field to which is applied
the spectral transform that produces a model state vec-
tor that corresponds to the result of applying H* to
one column of the identity matrix.

APPENDIX B

Spectral Representation of Homogeneous and
Isotropic Error Covariances

It is often assumed in the operational practice that
the forecast error on the streamfunction ¢ has a con-
stant variance and its correlation is homogeneous and
isotropic and even Gaussian. This means that the fore-
cast error covariance is expressed as

PL(Q, Q) = [ Q)]
2
= f(r) = o2 exp(— Er-a—z) (B.1)

with a the correlation length of the correlation and r
the distance between two points @ and Q' on the sphere.
An estimate of the error variance ¢ can be obtained
by taking ¢ to be geostrophically related to the geo-
potential ¢, in which case

ay = Gg. (B'z)

~[og
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Equation (B.1) expresses the error covariance in phys-
ical space, but an expression is needed for it in spectral
form. Such an expression has been known for quite
some time and can be found, for instance, in Boer
(1983). For the sake of completeness, the derivation
is recalled here as it has been presented in Courtier
(1987).

For the sake of brevity, ¥ will stand for the error on
the streamfunction and is spectrally expressed as

Y= ynym

Therefore,

b= [ v oyiras.
S

Introducing the short-hand notation / and m for (m,
n) and (m', n"), respectlvely, an element of the error
covariance matrix is then

Pl = 6QPMT)
(4 n Uf UQ)Y , "’def wQHY 7 dS']

(4,,)2 f f f f Y 2"Y 77 6 [WQ)W(Q")]dSdS’

(47r)2ff ff Y ™Y 27 PLdSdS'. (B.3)

Spherical coordinates defined with respect to a pole
located at point Q are most convenient to expand (B.1)
in spherical harmonics because only zonal components
are necessary. Hence,

2
r
Pl = o2 exp(— 55) =3 T hYY, (B4)
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the prime stressing the fact that these harmonics are
different. Of course, this argument holds also for any
isotropic function f(r). Introducing (B.4) into (B.3)
yields

Pl = (an )foY""dSZb(ff Y’OY""a’S')

(B.5)
It can be shown that if m’' = 0, then
, 4 ,
YOV ;77dS' = Cpp——5 Y 7 =n’s
J;f 5 das' = G Gn+ )7 Y (0)o,

where C,,y = 1 if m' = 0 and C,,» = 1/ when m’ # 0.
The proof of this is somewhat technical and can be
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found elsewhere (see, e.g., Hobson 1931). With this,
one finally gets

b,

Plm= ol 5y

CodnonOmmry  (B.6)

which is seen to be a diagonal matrix.
Once the spectral covariances for the streamfunction
are known, it is straightforward to show that since

~ _n(n + 1) -
fp- -2t Dy
then
b n?(n + 1)?
P m =g} mOn=n'Om=m’>
fm($) Vot )2 RgE o Cmdnenrd
R being the radius of the earth.
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