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ABSTRACT

In order to meet current operational limitations, the incremental approach is being used to
reduce the computational cost of 4D variational data assimilation (4D-Var). In the incremental
4D-Var, the tangent linear (TLM) and adjoint of a simplified lower-resolution model are used
to describe the time evolution of increments around a trajectory defined by a complete full-
resolution model. For nonlinear problems, the trajectory needs to be updated regularly by
integrating the full-resolution model during the minimization. These are referred to as outer
iterations (or updates) by opposition to inner iterations done with the simpler TLM and adjoint
models to minimize a local quadratic approximation to the actual cost function. In this study,
the role of the inner and outer iterations is investigated in relation to the convergence properties
as well as to the interactions between the large (resolved by both models) and small scale
components of the flow. A 2D barotropic non-divergent model on a b-plane is used at two
different resolutions to define the complete and simpler models. Our results show that it is
necessary to have a minimal number of updates of the trajectory for the incremental 4D-Var
to converge reasonably well. To assess the impact of restricting the gradient to its large scale
components, experiments are carried out with a so-called truncated 4D-Var in which the com-
plete model is used to compute the gradient which is truncated afterwards to retain only those
components used in the incremental 4D-Var. A comparison between the truncated and incre-
mental 4D-Var shows that the large-scale components of the gradient are well approximated
by the lower resolution model. With frequent updates to the trajectory, the incremental 4D-Var
converges to an analysis which is close to that obtained with the truncated 4D-Var. This
conclusion is verified when perfect observations with a complete spatial and temporal coverage
are used or when they are restricted to be available at a coarser resolution (in space and time)
than that of the model. Finally, unbiased observational error was introduced and the results
showed that at some point, the minimization is overfitting the observations and degrades the
analysis. In this context, a criterion related to the level of observational noise is found to
determine when to stop the minimization when the complete 4D-Var is used. This criterion
does not hold however for the incremental and truncated 4D-Var, thereby indicating that it
may be very difficult to establish in a more realistic context when the error is biased and the
model itself is introducing a biased error. The analysis and forecasts from the incremental
4D-Var compare well to those from a full-resolution 4D-Var and are more accurate than those
obtained from a low-resolution 4D-Var that uses only the simplified model.

1. Introduction possible to assimilate new data sources that are
only indirectly related to the model variables. This
is the case for instance for TOVS radiances (EyreOne of the reasons why the variational
et al., 1993; Andersson et al., 1994), Doppler radarapproach is appealing is first, that it makes it
data (Sun et al., 1991) or radio refractivity (Eyre,
1994; Zou et al., 1995). This is of course possible* Corresponding author.
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within a 3D-Var analysis (Parrish and Derber, systematic positive impact on the quality of
1992 Courtier et al., 1998; Gauthier et al., 1996) forecasts, at least with an assimilation period
but a 4-dimensional variational assimilation of 6 hrs.
(4D-Var) adds also the benefit of having an ana- In the present paper, the model introduced in
lysis that is dynamically consistent with the predic- TBG95, the barotropic vorticity equation on the
tion model while being also as close as possible b plane, is used to study the incremental approach
to the observations. Moreover, Thépaut and of CTH94 in which the tangent linear (TLM) and
Courtier (1991), Rabier and Courtier (1992) and adjoint of a simplified model (i.e., a low-resolution
Tanguay et al. (1995) (TBG95 hereafter) showed model in the present case) are used to approximate
that 4D-Var is able to infer information in the the time evolution of increments dX(t) around a
small-scales from a time sequence of large-scale trajectory X(t) obtained from an integration of
observations. In TBG95, it is shown that there the complete model. For nonlinear problems, the
exists an optimal assimilation period for which a trajectory needs to be updated regularly by integ-
nonlinear transfer of large-scale information can rating the full model with the initial conditions
fill in fine scale details below the resolution of the X0+dX0 and redefining the TLM so that it still
observational network. The optimality of the provides a reasonable approximation of the time
period comes from the fact that the dynamical evolution of the increments. This is referred to as
constraint requires some time to act but, on the an outer iteration of the minimization by opposi-
other hand, the assimilation interval Ta cannot be tion to an inner iteration that uses the TLM and
too long since at some point, it becomes impossible adjoint of the simpler model to minimize the cost
to control the fit to an observation by modifying function for the increments expressed in terms of
the initial conditions: this is related to the predict- departures from the trajectory. For more complex
ability time limit of the model. This ability of

models, CTH94 argued that this procedure allows
inferring information about unobserved features

a progressive inclusion of physical processes.
of the flow will become increasingly useful because

Experiments will be presented to show that it is
the observational network is likely to always be

necessary to have a minimal number of outer
of a lower resolution than that of forecast models.

iterations for the incremental method to converge
It is indeed this ability of 4D-Var to fill in for the

reasonably well. In order to assess the impact on
deficiencies of the observational network that

the analysis of restricting the gradient to its large
makes it worth doing despite its high numerical

scale components, the results from a full-resolution
cost.

4D-Var experiment are compared against those
The cost of 4D-Var is directly proportional to

obtained from a truncated 4D-Var in which the
the number of iterations required to reach conver-

exact gradient is computed at each iteration andgence and on the cost of one iteration. To reduce
truncated to a lower resolution. These results arethe number of iterations, preconditioning methods
then compared against an incremental 4D-Var tomust be employed to speed up the convergence
assess if the large scale components of the gradient(Zupanski, 1993; Courtier et al., 1994; Fisher and
can be well approximated by a simpler lowerCourtier, 1995; Yang et al., 1996). On the other
resolution model as in the incremental approach.hand, the cost of one iteration can also be reduced

The paper is organized as follows. Section 2by using a simpler model. Results obtained by
introduces the model used altogether with differentThépaut and Courtier (1991) and TBG95 suggest
formulations of the 4D-Var problem including thethat the corrections to the initial conditions
incremental approach of CTH94. Section 3 pre-brought in by 4D-Var are of a lower resolution
sents results of experiments when perfect observa-than the full resolution model. This lead Courtier
tions are provided at every time step. In Section 4,et al. (1994) (CTH94 hereafter) to propose a
experiments are conducted in which observationsstrategy, the so-called incremental approach to
are only provided at a coarser resolution (spatial4D-Var, that significantly reduces its cost so as to
and temporal ) and unbiased observational errormake it possible to envision its operational imple-
is added. The results of a full-resolution 4D-Varmentation. Rabier et al. (1997) have used it to
experiment are compared against those obtaineddevelop a 4D-Var system that recently became

operational at ECMWF. Their results showed a with a truncated 4D-Var and an incremental one

Tellus 50A (1998), 5



   559

with different number of outer iterations. space (f̂) and the observations could be wind
components (u, v) defined in physical space at gridConclusions are drawn in Section 5.
point locations or as in TBG95, spectral compon-

ents of the vorticity defined in Fourier space. In
2. Description of the model and the the latter case, the forward model boils down to

incremental 4D-Var a projection of the model state onto the observed

components while in the former case, H
i
for each

As in TBG95, the nonlinear model used in this wind component is obtained from
study is the barotropic vorticity equation on the

b-plane
u=F−1 G− ∂

∂y
D−1f̂H , v=F−1 G ∂

∂x
D−1f̂H ,

∂f

∂t
+J(Y, f)+bv= f −D(f). (2.1)

where F−1 is the inverse Fourier transform and
D−1 is the inverse Laplacian. A projection inThe notations used are as in TBG95. Namely, the
physical space is also part of the forward model.streamfunction is Y=−U0y+y, the vorticity

The 4D-Var method attempts to find initialf=V2y and the wind components are u=
conditions x0¬x(t0 ) that minimize the distance−∂y/∂y, v=∂y/∂x. Moreover, J(a, b) is the
to a background field xb and to observations y

iJacobian operator, f is a forcing term and D, a
distributed over a finite time interval ( t0 , tN ) bothlinear dissipation operator. The model is integ-
contributions being relatively weighted by theirrated on a doubly periodic domain of length 2p
respective error covariances. This is achieved byusing pseudo-spectral methods (Orszag, 1971). In
minimizing the functionalFourier space, (2.1) becomes

C ∂∂t+ iv
k
+n

kD f̂
k
= f̂

k
+ ∑

p+q=k

A
kp

f̂
p
f̂

q
, (2.2) J(x0 )=

1

2
(x0−xb)TB−1(x0−xb )

where the caret ˆ is used to denote a Fourier-
+

1

2
∑
N

i=0
[H

i
x(t

i
)−y

i
]TR−1

i
[H

i
x(t

i
)−y

i
],space quantity, k=(k

x
, k
y
) is the wavevector, k=

|k |, v
k
=k

x
(U0−b/k2) is the linear Rossby-wave (2.3)

frequency, the interaction coefficient A
kp
=

where x0=x(t0 ), xb is the background state andẑΩk×p/p2, f̂ is the forcing and n
k
=n0+nk16

B, its error covariance matrix. The vector y
i
standsrepresents the dissipation operator D. As in

for the observations at time t
i
with R

i
, the observa-TBG95, the forcing term is set to:

tional error covariance matrix. The observation
operator H

i
maps the model variables to thef̂

k
=a G1, if k= (0, ±k

f
) or (±k

f
, 0),

0, otherwise, observation space and (t0 , t1 , . . . , tN ) are the obser-

vation times. In our case, the observation operatorwhere a=0.04 and k
f
=3. A mean zonal wind

H
i
is linear. The model state at time t

i
being x(t

i
),U0=0.3 is also imposed. We used N=64 colloca-

it is symbolically related to the initial conditionstion points per dimension and applied circular
by x(t

i
)=M(t

i
, t0 , x0 ).Fourier-space truncation at kT= (N−3/2)/3 to

Consider now the formulation of the incre-avoid aliasing errors. All model integrations pre-
mental approach of CTH94. Let x

n
(t
i
) be a refer-sented in this work use a timestep of Dt=0.95/kT ence trajectory obtained from the initialwhile n0=0.02 and n=8.8/k16T . More details on

conditions x(n)
0

while dx(t
i
) is the perturbation tothis model as well as for the development of its

this trajectory caused by changes dx(n)
0
=dx(n)(t0 )TLM and adjoint models can be found in TBG95

in the initial conditions. Using the tangent linearwho discuss also the ‘‘climatology’’ of the model
approximation, we have thatto relate their results to dimensional atmospheric

variables. For example, one model time unit (#22 dx(t
i
)#M(t

i
, t0 )dx(n)

0
¬M(n)

i
dx(n)

0
,

timesteps) corresponds approximately to 0.3 days
and the nonlinear turnover timescale is approxi- where M(t

i
, t0 )¬M(0)

i
is the propagator of the

tangent linear model.mately 9 model time units (#3 days).
Here, the model state x is the vorticity in Fourier Introducing this form in (2.3) yields the follow-
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ing quadratic functional in dx(n)
0

: The incremental approach also introduces an
approximation which is to use the TLM of a
simpler model. In this study, the simpler model isJ

n
(dx(n)

0
)=

1

2
[dx(n)

0
− (xb−x

n
(t0 ))]T

a lower resolution version of our model, truncated
at wavenumbers such that k∏kL<kH with kH×B−1[dx(n)

0
− (xb−x

n
(t0 ))] being the truncation used for the complete model.

Let xL=pLx be the projection of the complete+
1

2
∑
N

i=0
[H

i
M(n)

i
dx(n)

0
−y(n)

i
]T

model state onto the lower dimensional subspace
of the simplified model. The outer iterations are×R−1

i
[H

i
M(n)
i

dx(n)
0
−y(n)

i
], (2.4)

performed by integrating the complete model with
where y(n)

i
=y

i
−H

i
x
n
(t
i
). the initial conditions x

n
(t0 )+pTLdx(n)

0
to update the

This procedure can then be seen as a pair of model trajectory to x
n+1 (ti ). Here pTL is the general-

nested loops. First, inner iterations are done to ized inverse of the projection operator.
minimize J

n
using a descent algorithm such as a Referring to Fig. 1, the thick gray curve repres-

conjugate gradient or a quasi-Newton algorithm. ents a cross section of the cost function (2.3) along
Since this leads to a finite amplitude change to a subspace direction defined by the simplified
the initial conditions, (2.4) may not be an accurate model state XL . The dashed curves are the cost
approximation to the original problem (2.3). functions defined by (2.4) after each update. These
Outer iterations are then introduced to update the curves are quadratic since both H

i
and M(n)

i
are

trajectory by integrating the nonlinear model with linear operators but are not exactly tangent to the
the initial conditions x(n)

0
+dx(n)

0
to produce a new thick line because the tangent linear model in (2.4)

reference trajectory x
n+1(ti ). The functional J

n+1 is obtained from the simplified model while the
is a better local approximation to J. This is thick curve is defined with respect to the full-
schematically depicted in Fig. 1. resolution model. After each update of the traject-

ory, the solution converges to the minimum of the
dashed curves. However, we can see that a global

convergence is reached when the updated full-
resolution trajectory converges after a given
number of outer loops. It is easy to see that

dxn(t0 )�0 in this case since dx(n)
0

is reset to zero
after an outer iteration. The minimum reached
after global convergence does not necessarily

correspond to the minimum of the thick line
indicated by the star since the gradient of the cost
functions (2.3) and (2.4) along the subspace XL
are different. The solution corresponding to this
star can be obtained by minimizing (2.3) in the
subspace XL by using the full-resolution model as

a constraint. This is done by retaining only the
components of gradient of the cost function in the
subspace XL . This procedure is referred to as the

truncated 4D-Var in Section 3 and is used for
comparison with the incremental approach.

The above description suggests that the solution
Fig. 1. Schematic representation of the cost function of obtained with the incremental formulation differs
the full-resolution 4D-Var (thick curve) and the incre- from the full-resolution 4D-Var solution for two
mental formulation after n updates to the background reasons. Firstly, the minimum of the full-resolution
trajectory (dashed curves) in the subspace defined by the

4D-Var is in general different from the minimum
simplified model components XL . The thick star shows

along XL subspace (the thick star in Fig.1).the minimum of the 4D-Var formulation in the XL direc-
Secondly, because the large-scale components intion while the thick cross is the minimum of the incre-

mental formulation after N updates. the full-resolution and simplified models are not
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exactly represented and predicted in the same way, to be the same for all observations. Under these
assumptions, the cost function (2.3) of the 4D-Varthe minimum after global convergence (the thick

cross in Fig. 1) does not correspond to the one boils down to

along the XL subspace.
A finite-difference variant of (2.4) can be J(x0 )=

1

2
∑
N

i=0
[H

i
x(t

i
)−y

i
]T[H

i
x(t

i
)−y

i
], (3.1)

obtained by replacing M(n)
i

dx(n)
0

by

while for the incremental formulation, we getM(n)
i

dx(n)
0
=L(t

i
, t0 , pLx

n
(t0 )+dx(n)

0
)

−L(t
i
, t0 , pLx

n
(t0 )) J

n
(dx(n)

0
)=

1

2
∑
N

i=0
[H

i
M(n)
i

dx(n)
0
−y(n)

i
]T

=xdL (ti )−xL (ti ), (2.5)

×[H
i
M(n)
i

dx(n)
0
−y(n)

i
]. (3.2)where L (t

i
, t0 , pLx0 ) stands for the integration of

the simplified model including the nonlinear terms. The components of dx(n)
0

are defined in terms of
It will be implicit from now on that changes to the spectral components of vorticity.
dx(n)

0
¬pLdx(n)

0
and that M(n)

i
is the resolvent of the In the incremental experiments, the Fourier com-

tangent linear model of the simplified model. ponents with a total wavenumber k>kL are never
Eq. (2.4) can then be rewritten as updated and the high resolution trajectory is

obtained by integrating the initial conditions
J
n
(dx(n)

0
)=

1

2
[dx(n)

0
− (xb−x

n
(t0 ))]T f̂(n)

k
(t0 )= f̂(n−1)

k
(t0 )+df̂(n)

k
(t0 ) when k<kL and

f̂(n)
k

(t0 )= f̂G
k
(t0 ) when kL<k<kH , fG

k
being the

×B−1[dx(n)
0
− (xb−x

n
(t0 ))] first-guess.

As in TBG95, the model was spun up from
+

1

2
∑
N

i=0
[H

i
xdL(ti )− (y(n)

i
+H

i
xL (ti))]T random initial conditions and integrated for 500

time units to make sure that the flow is statistically
stationary and ergodic. Synthetic observations of×R−1

i
[H

i
xdL (ti)− (y(n)

i
+H

i
xL (ti ))].

the wind components (u, v) were generated for an(2.6)
assimilation period Ta=t

N
−t0 of 10 time units.

As pointed out by CTH94, the practical advantage
Fig. 2 shows the vorticity fields at t0 and t

N
which

of this formulation over (2.4) is that less technical
represent the control fields. Unless otherwise speci-

development is required once the 4D-Var problem
fied, the first guess was obtained from a Cressman

has been implemented. The incremental formula-
analysis (Cressman, 1959; Daley, 1991) of observa-

tion (2.6) is used for all the experiments presented
tions of u and v available at t0 at every 8 grid

in this work. Finally, our experiments leave aside
points in both Cartesian directions. A radius of

the background term and focus on obtaining
influence of 9 grid points was employed to perform

initial conditions that best fit observations spread
the analysis. From this analysis, the vorticity was

over a finite time interval. In the next section, we
computed using a finite difference approximation

investigate if it is possible to achieve convergence
and then mapped into the Fourier space via

by only retaining the large scale components of
discrete Fourier transforms. The Cressman ana-

the gradient and study the impact of the outer
lysis provides a vorticity field noticeably different

iterations.
from the corresponding control run as shown in
Fig. 3, but not completely decorrelated as the first

guess used by TBG95. Consequently, a fewer3. Relative rôle of the inner and outer
iterations number of iterations is required to reach

convergence.

In all experiments presented in this paper, theOne of our objectives is to study the role played
by the nonlinear interactions between scales in the minimization was performed with the variable

storage quasi-Newton algorithm (M1QN3) ofincremental approach. Since these interactions
intervene only in the second term on the right- Gilbert and Lemaréchal (1989) that requires on

average only one simulation (the evaluation of thehand-side of (2.4) and (2.6), we set B−1=0 and

R=I, the identity matrix so no background term cost function and its gradient) per iteration. All
results presented here are in terms of number ofis considered and the observational error is taken
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Fig. 3. Cressman analysis of the vorticity field used as a
first guess.

resolution model) were much closer. However,

this is in line with the ECMWF operational
implementation of 4D-Var (Rabier et al., 1997).

3.1. Results obtained without updating the
trajectory

First, the convergence properties of the incre-
mental approach are studied when the reference
trajectory is not updated, in other words, when

only one ‘‘outer’’ iteration is performed. In the
Fig. 2. Vorticity fields of the control run at the begin- following experiments, observations are supplied
ning (a) and the end (b) of the assimilation period. at all grid points at all time steps (i.e. perfect

observations). Fig. 4 shows the energy spectra of
the error field (defined as the difference betweensimulations which is proportional to the computa-

tional effort. To retain the information on the the vorticity obtained after a given number of

simulations and the control run) at the beginningHessian matrix from one outer iteration to
another, the warm restart procedure of M1QN3 t0 and at the end t

N
of the assimilation period.

The spectrum at t
N

is obtained by integrating theis used after each update of the model trajectory

as described by CTH94. full-resolution model from initial conditions in
which Fourier coefficients less and equal to kL areThe high resolution model is truncated at kT=

20 and (kH=kT). The simplified model is the same given by the assimilation while coefficients greater

than kL are from the background. The spectramodel but truncated at a lower resolution kL=5
which is 4 times smaller than the full-resolution obtained after 80 and 160 simulations are very

close which means that the minimization algo-model. We found that kL=5 is the best choice to
enhance the interactions between the resolved and rithm converges. However, the best solution at t

N
for all wavenumbers is not obtained after conver-unresolved scales. This may be seen as an acid

test since the resolutions used by CTH94 (i.e. T42 gence (i.e., after 160 simulations) but rather after
20 simulations. This result is somewhat disturbingfor the simplified model and T63 for the full-
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Fig. 5. Error spectra at the beginning (a) and the end (b)Fig. 4. Error spectra at the beginning (a)and the end (b)
of the assimilation period for the low-resolution 4D-Varof the assimilation period for the incremental approach
formulation.without update.

because, in an operational context, the truth is
not known and thus it may be difficult to find the tion period. By comparison, the energy spectra of

the error field obtained with the low-resolutionoptimal number of simulations between each
update if convergence is not a suitable criterion. 4D-Var are shown on Fig. 5 as a function of the

number of simulations. Both at the beginning andCTH94 used 10 simulations between each update

which is probably not the optimum number of the end of the assimilation, the best result is also
obtained after 20 simulations, but it is not as goodsimulations. Nevertheless, we will see that it is

preferable to choose a lower number of inner as the one obtained with the incremental approach

even with a single outer iteration. By comparingiterations and refresh more frequently the
trajectory. the results of these two experiments, we come to

the conclusion that using the large scale compon-The computational efficiency of the incremental

approach is comparable to that of a 4D-Var totally ents of the trajectory of the model at its full
resolution has a positive impact on the analysis.formulated in terms of the simpler model and its

adjoint (referred to as a low-resolution 4D-Var).

A supplementary computational effort is however
3.2. Impact of the outer iterations

required at each outer iteration when the complete
model has to be integrated to update the reference Without any outer iteration, the previous

experiments have shown that the best solution istrajectory. The final full-resolution analysis at t0
from the low-resolution 4D-Var formulation can obtained after 20 simulations, a number of simula-

tions that is likely to vary with the local structurebe obtained by adding the small-scale components
of the background field to the large-scale compon- of the cost function. There is no point in accurately

minimizing a quadratic functional that does notents determined during the minimization. The full-

resolution model is then integrated from this ana- fit well the actual cost function. As discussed
earlier, the role of the outer iterations is to obtainlysis to obtain the solution at the end of assimila-
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a better quadratic approximation of the cost the large scale components of the gradient. Second,
the large scale components of the gradient are infunction.

Next, experiments were performed with respect- turn approximated by using a simpler model. To

make a distinction between these two approxi-ively 1,4, 8 and 12 outer iterations with 20 simula-
tions used between each update for the inner mations, we have added an experiment in which

the full model is used to compute the gradient butiterations. Fig. 6 shows the energy spectra of the

error field that indicate that the solution has only its large scale components are kept in the
minimization: this experiment is based on theconverged after 12 outer loops which has also the

largest number of simulations. The outer loops truncated 4D-Var. Fig. 7 shows the normalized

true cost function obtained from the truncatedhave improved the analysis (at t=t0 and t=t
N
)

at all wavenumbers, the gain being more important 4D-Var, the incremental 4D-Var when the back-
ground trajectory is not updated (referred as tofor the larger scales at t=t

N
. A comparison with

the results of Fig. 4 shows that, for an equal incremental 1 loop) and when the trajectory is
updated every 5, 10 and 20 simulations. The lowestnumber of simulations, the outer iterations bring

a significant improvement to the analysis. value of the cost function and the fastest rate of

convergence is obtained with the truncatedKeeping now the total number of simulations
fixed, the number of outer iterations has been 4D-Var, as expected from Fig. 1. The reduction of

the cost function becomes negligible after 30 simu-varied. It is important to emphasize that the

incremental 4D-Var introduces two approxi- lations for the truncated 4D-Var and after 60
simulations for the incremental formulation, somations to the problem. First, the minimization

is restricted to perform the minimization within a that the rate of convergence is about two times
slower for the incremental approach. There is alower dimensional subspace by considering only
significant reduction of the cost function when the

trajectory is updated, especially in the first 40
simulations. This indicates that the trajectory
should be updated more frequently at the begin-

ning of the minimization. Fig. 8 represents the
error at the end of the assimilation interval as a
function of the number of inner iterations. It shows

that the best results were obtained when 10 simula-

Fig. 7. Variation of the cost functions with the number
Fig. 6. Error spectra at the beginning (a) and the end (b) of simulations obtained with the truncated 4D-Var, the

incremental without update (1 loop) and with updatesof the assimilation period for the incremental approach
with updates. 20 simulations are used between each when 5, 10 and 20 inner simulations are used between

each outer iteration.update.
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where

VJ
k
= ∑

k−D<|k∞|∏k+D
∂J
∂x

k∞

e
k∞
,

where e
k∞

stands for the unit vector along the axis
indexed as k∞ in phase space. The vector VJ

k
then

regroups all components having the same spatial

scale. The correlation between two components is
then defined as

C=cos h
k
= (
VJ(t)

k
, VJ(T)

k
�)(dVJ(t)

k
d dVJ(T)

k
d)−1,

(3.4)

where the superscripts t and T stands respectively
Fig. 8. Error spectra at the end of the assimilation period

for the true gradient and the one estimated withafter a total of 20 simulations when 5, 10 and 20 inner
the truncated model. Table 1 gives the values ofsimulations are used.

the correlation angle h
k

and of the norms of the
true and approximate gradients. These have been
computed at each outer iteration at the same point

tions are used between each update. Going back
in phase space obtained from the incremental

to Fig. 7, we observe that when too many inner
experiment. At the first iteration, the truncated

iterations are performed, we minimize more accur-
model is giving a good approximation of the

ately a quadratic functional that differs from the
gradient with a slight degradation as the trunca-

true one which is a waste of effort. When an outer
tion limit (kT=5) is approached. As expected, the

iteration is performed, the variational problem is
norm of the approximate gradient is being con-

redefined and this shows up on Fig. 7 as jumps in
stantly reduced but very soon (i.e., after the 3rd

the values of the functional. This result is consist-
iteration), the two gradients start to point in

ent with the schematic view of the minimization
different directions. Referring to Fig. 7, the incre-

process given by Fig. 1. Finally, the fact that 10
mental 4D-Var has converged after 8 outer itera-

inner iterations outperform 5 could be attributed
tions (which corresponds to 80 simulations) but

to the better approximation of the Hessian matrix
Table 1 indicates that the two gradients become

obtained through the quasi-Newton algorithm.
nearly perpendicular. At the twelfth outer itera-

Five iterations may not be enough to obtain a
tion, the norm of the approximate gradient differs

valuable estimate of the Hessian.
from the true one by an order of magnitude. This

The fact that the truncated 4D-Var leads to
indicates that a truncated 4D-Var would have

better results may be attributed to the fact that,
followed a different path and would have not

at all stages, it uses the true gradient to minimize
considered the minimization to have converged at

the true cost function while only allowing changes
this particular point.

to the control variable in its large scale compon-
By construction, at each outer iteration, the

ents. The incremental 4D-Var on the other hand
model is integrated with the small scales of its

has to work with a quadratic approximation to
initial conditions set to those of the first-guess.

the functional and the large scale components are
The results are then dependent on the initial point

approximated by integrating a lower resolution
of the minimization which provides the small

model. To what extent are the large scale compon-
scales of the solution. To illustrate this dependency

ents of the gradient correctly resolved by the
on the choice of the initial point, the initial small-

truncated model? Considering a given point in
scales components were set to those of the control

phase space, the gradient has been computed with
run. In that case, the solution for the large-scale

the full and truncated (kT=5) models. To compare
components converges very close to the truth

these two gradients as a function of spatial scales,
(result not shown). On the other hand, setting the

both were expressed as
initial large-scale components to the true solution

(i.e., perfect low components) and the small scaleVJ(x)= ∑
K
T

k=1
VJ

k
, (3.3)

components to the first guess used in our experi-
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Table 1. Angle (degrees) between gradient directions of the incremental and full-resolution 4D-Var formula-
tion and corresponding normalized norm for various wavenumbers and intervals

h
k

h dVJ(T)d dVJ(t)d
Loop k=1 k=2 k=3 k=4 k=5 k={1, 5} k={1, 5} k={1, 5}

1 10 12 11 25 32 14 0.909 1.000
2 12 14 18 38 43 17 0.349 0.439
3 86 17 26 41 50 46 0.092 0.130
4 47 26 47 41 45 47 0.079 0.112
5 33 31 62 56 53 39 0.060 0.147
6 37 21 43 55 56 38 0.078 0.146
7 26 29 46 53 41 34 0.080 0.148
8 53 45 44 80 69 55 0.051 0.096
9 87 66 67 91 77 84 0.029 0.066

10 76 60 43 85 69 73 0.026 0.079
11 87 66 51 90 67 83 0.023 0.074
12 69 88 90 84 100 69 0.007 0.077

ments, the solution at the end of the assimilation components which is in agreement with the results
presented in TBG95. The incremental and trun-period is not as good as those obtained with the

incremental or the truncated 4D-Var, as depicted cated 4D-Var both seek the best combination of

resolved components (which can be varied) andby the thick curve on Fig. 9. This shows that it is
not enough to determine perfectly the resolved unresolved components (unchanged during the

minimization) such that the model trajectory fits

to the best the observations during the assimilation
period. To assess the quality of the analysis and
the resulting forecasts, we use the correlation

between the control vorticity field (f(t) ) and those
obtained from the various experiments (f). It is
defined as

C= (
f(t), f�) (df(t)ddfd)−1. (3.5)

For the different experiments conducted in this
section, Fig. 10 shows the values of C as a function

of time during 40 time units, the first 10 time units
being the assimilation period and the subsequent
30 time units representing the resulting forecasts.

The incremental approach with 12 outer loops
and the truncated 4D-Var are quite comparable
and correspond to the best result. The solution is

better correlated with the control at the end of
the assimilation period. The error at the beginning
of the assimilation period is mainly due to the

specified small-scale components from the back-
ground field. However, the large-scale components

obtained through the minimization with the incre-
mental formulation lead to a continuous improve-
ment during which nonlinear information isFig. 9. Error spectra at the beginning (a) and the end (b)
transferred in time from the large to smaller scales.of the assimilation period for the various variational

formulations when perfect observations are used. This is also true when we extend the assimilation
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8 grid points in both directions and at every 1.66
time units. According to the scaling arguments
of TBG95, the distance between observations

corresponds to 875 km and the time interval to
12 hours in a real atmosphere. The resolution of
this observational network is somewhat lower

than the global observing system but remains
representative.

With perfect observations (no observational

error), the full 4D-Var yields a solution that is
very close to the truth at t=t

N
while being quite

different at the beginning of the assimilation period

(results not shown). These results are similar to
those presented in TBG95. As discussed in Pires
et al. (1996), this can be explained by the fact that

Fig. 10. Correlation between the control vorticity field initially the difference lies along the stable mani-
and those obtained for the various variational formula- fold, a component which is quickly damped during
tions when perfect observations are used.

the integration. Fig. 11 shows the energy spectra

of the error field at the beginning and end of the
assimilation period for the various formulationsperiod to 20 time units (results not shown). These

results show that in this case, the outer iterations studied in this paper. A comparison of the error
spectra at t=t

N
shows that the incrementalare bringing a significant improvement to the

results.

The RMS errors on the vorticity fields obtained
at t=t

N
with the truncated 4D-Var and incre-

mental formulation are 0.141 and 0.157 (in non

dimensional units) respectively. Thus, the error
due to the minimization along the subspace
defined by the large-scale components account for

90% of the total error while only 10% of the total
error is due to the error introduced by the simpli-
fied model (second source of error).

Given that a full-resolution 4D-Var converges
to zero for this experiment, the next section will
repeat these experiments in a more realistic context

in which only the large scale part of the flow is
observed and when observational error is present.

4. Low-resolution observational network with
observational error

So far, the incremental 4D-Var has been looked
at in a context where perfect observations are

available at every grid point and time step.
However, the impact of the resolution of the

observational network on the approach is import-
ant since the operational observational network

Fig. 11. Error spectra at the beginning (a) and the end (b)
has a much lower resolution in space and time of the assimilation period for the various variational
than operational NWP models. In the following formulations when observations are distributed in a low-

resolution observation network.experiments, observations are supplied at every
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4D-Var with 12 outer iterations (or loops) recovers Talagrand (1987) and Thépaut et al. (1993). On
the other hand, Gauthier (1992) showed thata solution that is fairly close to the result obtained

with the truncated 4D-Var which still gives the observational error creates an error on the gradi-

ent which makes the minimization to converge tobest result. These results confirm those presented
in the previous section. a different point than the true minimum, xt0 . If the

observation is expressed as y
i
=yt

i
+e

i
, with e

i
anNext, the impact of observational error was

investigated by adding a random unbiased error unbiased random error, it can be viewed as one
realization of the observation vector. If this iswith a Gaussian distribution to the observations.

Its error variance was chosen as representative of introduced into the functional and an ensemble

average is performed on the result, one obtainswhat is found operationally (i.e., 10% of the
average amplitude). The matrix R is taken to be that, for any point x0 in phase space,
diagonal so that observational error correlations

are not considered here. The assimilation was first J(x
0
)=Jt(x0 )+

1

2
∑
N

i=0
[eT
i

e
i
]2¬Jt(x0 )+B2,

performed by using the full-resolution 4D-Var and
(4.1)Fig. 12 shows the error spectra as a function of

the number of simulations. The best solution is where the overbar stands for the ensemble average
obtained after 20 simulations and degrades after- and J

t
(x0 ) represents the ‘‘true functional’’ defined

wards, particularly in the small-scales at the begin- with respect to the true observations. When, in
ning of the assimilation period. The explanation the course of the minimization, the functional J
of such a behavior lies with the fact that degrees goes below the noise level B2, the changes brought
of freedom are adjusted to fit the observational afterwards are not significative in that they may
noise, a phenomenon reported by Courtier and or may not bring the analysis closer to the true

minimum. Therefore, the results will vary from
one realization to another. The solid line on

Fig. 13 shows the value of the functional as a
function of simulations, the line with short dashes
indicating the noise level. The crossing point

occurs around 12 simulations and this agrees well

Fig. 13. Variation of the cost function with the number
of simulations obtained for the full-resolution 4D-Var
(solid line), the truncated 4D-Var ( long dashes) and incre-

Fig. 12. Error spectra at the beginning (a) and the end (b) mental 4D-Var (dotted) when random noise are added
to the observations in the low-resolution observationof the assimilation period for the full-resolution 4D-Var

formulation when random noise is added to the observa- network. The short dashed line indicates the total vari-
ance of the random noise.tions in the low-resolution observation network.
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Fig. 15. Error spectra at the beginning (a) and the end (b)
of the assimilation period as a function of the number
of outer iterations used in the incremental approach
when random noise is added to the observations in the
low-resolution observation network.

is obtained after the third loop (the thick full line).
Beyond that, the small-scale components degrade
as in the experiment with the full-resolution

4D-Var while the large-scale components remain
Fig. 14. (a) Vorticity field at the end of the assimilation

virtually unchanged. The dotted and long-dashed
period obtained with the full-resolution 4D-Var formula-

lines on Fig. 13 represent the value of the func-tion after 20 simulations when random noise is added
tional for the incremental and truncated 4D-Varto the observations in the low-resolution observation

network. (b) Difference between (a) and the control run respectively. It is interesting to notice that by not
vorticity field. The large dots indicate the position of the being able to change the small scales, the minim-
observations. ization cannot fit the observational noise. For

both formulations, the functional reaches an
asymptotic level that is close to the noise level butwith the result that 20 simulations are better than

10 or 30 simulations. At least within the present always above it. Therefore, the criterion of conver-
gence that works well for the full-resolutioncontext, the noise level provides a criterion to stop

the minimization based on the value of the func- 4D-Var fails here. It is to be expected that it may

be difficult to derive a similar one for moretional. As shown on Fig. 14, the largest errors are
mostly found in data void regions. These differ- complex models because this criterion neglects

many factors. However, the idea of randomizingences continue to grow as the number of simula-
tions increases (result not shown). the observations and the state variables has been

applied in Rabier and Courtier (1992) to estimateFig. 15 shows the error spectra obtained with

the incremental formulation. The best result at t
N

the error of their 4D-Var analyses based on a
primitive-equation model. In Courtier et al. (1994),(giving the lowest RMS error of the vorticity field)
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it was used to estimate the Hessian of the cost tion is constrained to a lower dimensional sub-
space and the gradient components along thatfunction to precondition the minimization.

Finally, Fig. 16 shows the time evolution (over subspace are computed approximately by using a

truncated model. To make a distinction between40 time units) of the correlations (as defined by
(3.5)) between the truth and the results of the these two aspects, the results obtained with the

incremental 4D-Var were compared against thosedifferent experiments. These results are compared

against those obtained with the full-resolution of a truncated 4D-Var that computes the full
gradient but retains only those components used4D-Var stopped at 20 simulations which gave the

best results. This comparison shows that the trun- in the incremental minimization. In the incre-

mental 4D-Var, the background (or reference)cated 4D-Var is very close to the full-resolution
4D-Var during the assimilation period and, for trajectory is obtained by integrating the full-reso-

lution model while the analysis increments arethis particular realization, is better for a large

portion of the forecast period. This shows the propagated in time with a simplified ( lower reso-
lution) model. The procedure can then be seen asnegative impact of fitting the observational error.

Moreover, the incremental formulation after minimizing successive quadratic approximations

of the full-resolution 4D-Var problem in a sub-3 loops is close to both the truncated and the full-
resolution 4D-Var. This indicates that, at a much space defined by the simplified model components.

Outer iterations are used to update the quadraticlower computational cost, the incremental

approach provides an analysis as good as the full- approximation and keep it to be a good local
approximation of the cost function. Our resultsresolution 4D-Var and is much better than the

low-resolution 4D-Var as shown on Fig. 16. have shown that it is necessary to have a minimal
number of outer iterations for the incremental
minimization to converge to a good solution. This

conclusion holds if the observations are perfect or5. Summary and conclusion
not and if the spatial and temporal coverage of
the observations is full or partial.Several aspects of the incremental formulation

of the 4D-Var proposed by CTH94 were examined The solution was shown to converge globally
when the gradient of the full-resolution 4D-Varin the context of the simple model of quasi-

geostrophic turbulence used in TBG95. By using and that of the incremental 4D-Var become nearly

orthogonal. A balance must be reached betweena lower resolution model, two simplifications are
made in the incremental approach: the minimiza- inner and outer iterations. On the one hand, too

many inner iterations only succeed to minimize a

quadratic functional that may not be representat-
ive of the actual cost function. On the other hand,
a minimum number of inner iterations is needed

for the quasi-Newton minimization algorithm to
construct a useful approximation of the Hessian
matrix. In this study, 10 inner simulations was

found to be optimal, a number of simulations that
agrees with that used in CTH94. The convergence
rate of the incremental approach is about twice

slower than the truncated 4D-Var formulation but
its computational cost is approximately 64 times
cheaper which makes it very efficient. Moreover,

the error due to the incremental formulation
account for only 10% of the total error, the

remaining 90% of the total error being attributed
to the fact that the cost function is minimized

Fig. 16. Correlation between the control vorticity field
along a lower dimension subspace.and those obtained for the various variational formula-

The impact of unbiased observational error wastions when random noise is added to the observations
in the low-resolution observation network. examined. For the full-resolution 4D-Var, our
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results have shown that if the minimization is trajectory derived from the full model. In more
complex models, forcing associated with oro-pursued for values of the cost function below some

threshold value, no improvement is brought to graphy and parameterized sub-grid scale processes

would also be approximately modelled in thethe analysis. This threshold value was related to
the characteristics of the unbiased random obser- TLM. Studies by Mahfouf et al. (1996) and Rabier

et al. (1997), have shown that it is not sufficientvational error and agrees with the result given in

Gauthier (1992). This criterion does not hold to pass the information about these forcings
through the reference trajectory: they need to behowever for the incremental and truncated 4D-Var

for which the small scales cannot be used to fit taken into account explicitly in the TLM.

Currently, this is a very active field of researchthe random noise. The functional then asymptotes
to a level that is close but above the noise level. that reflects the importance of properly addressing

such forcings in 4D-Var.No clear criterion is then available to tell when

the minimization should be stopped. This shows
that such a criterion may be very difficult to
establish in practice because the error on the Acknowledgements
observations is usually biased and the assimilating
model is also introducing an error that is biased The authors would like to thank their col-
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