NHM, 18(3): 1118-1177.

AR Networks and DOI: 10.3934/nhm.2023049
%ﬁﬁ He terogeneous Media Received: 20 January 2023
~ - Revised: 07 March 2023

Accepted: 12 March 2023
http://www.aimspress.com/journal/nhm Published: 04 April 2023

Research article

Homogenization of nonlinear nonlocal diffusion equation with periodic and
stationary structure

Junlong Chen' and Yanbin Tang'?*

! School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan,
Hubei, 430074, China

2 Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of
Science and Technology, Wuhan, Hubei, 430074, China

* Correspondence: Email: tangyb@hust.edu.cn.

Abstract: This paper is devoted to the homogenization of a class of nonlinear nonlocal parabolic
equations with time dependent coefficients in a periodic and stationary structure. In the first part, we
consider the homogenization problem with a periodic structure. Inspired by the idea of Akagi and
Oka for local nonlinear homogenization, by a change of unknown function, we transform the nonlinear
nonlocal term in space into a linear nonlocal scaled diffusive term, while the corresponding linear time
derivative term becomes a nonlinear one. By constructing some corrector functions, for different time
scales r and the nonlinear parameter p, we obtain that the limit equation is a local nonlinear diffusion
equation with coeflicients depending on r and p. In addition, we also consider the homogenization of
the nonlocal porous medium equation with non negative initial values and get similar homogenization
results. In the second part, we consider the previous problem in a stationary environment and get some
similar homogenization results. The novelty of this paper is two folds. First, for the determination
equation with a periodic structure, our study complements the results in literature for r = 2 and p = 1.
Second, we consider the corresponding equation with a stationary structure.

Keywords: nonlocal diffusion; time dependent coefficient; scale parameter; convolutional kernel;
stochastic homogenization

1. Introduction

The homogenization theory is to establish the macroscopic behavior of a system which is
microscopically heterogeneous in order to describe some characteristics of the heterogeneous
medium [1]. In recent years many papers have been faced with the problem of how to get an effective
behavior as a scale parameter € — 0*. Nguetseng [2] and Allaire [3] first proposed two-scale
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convergence, and in 1997, Holmbom [4] proved the homogenization result of the parabolic equation
that the main operator depends on time ¢ by using two-scale convergence.
Recently, Akagi and Oka [5] considered a space-time homogenization problem for nonlinear
diffusion equations with periodically oscillating space and time coeflicients:
ouf(x, 1) — diV(A(g, E—C)V(Iualm‘zua))(x, 1= f(x1, (x1)eQxl,
u®(x,0) = ug(x), x e, (L.1)
lu|"2uf(x, 1) = 0, xeoQxI,

their main results are based on the two-scale convergence theory for space-time homogenization.

Akagi and Oka [6] also considered space-time homogenization problems for porous medium
equations with nonnegative initial data. These are important developments of the homogenization of
local second-order parabolic equations where the operator depends on the time . Geng and Shen [7]
and Niu and Xu [8] discussed the convergence rates in periodic homogenization of a second-order
parabolic system depending on time #. There are many qualitative and quantitative studies on the
homogenization theory of parabolic equations with periodic and stationary coefficients [9-12].

The nonlocal operator homogenization theory is based on the regular convolutional kernel and the
singularity kernel corresponding to the fractional Laplace equation. Piatnitski and Zhizhina [13] gave
a scaling operator:

Lou(x) = f L IEDE R () - ueo)dy, (1.2)
Rd € P> g’ ¢

where there are two natural length scales, one being the macroscopic scale of order 1 and the other
being the microscopic pore scale of order € > 0; the scale parameter € measures the oscillation.
The bounded 1—periodic functions A(¢), u(n) describe the periodic structure. As € — 0%, the limit of
operators {-£*}..¢ is a second order elliptic differential operator L corresponding to the macroscopic
scale. Piatnitski and Zhizhina [14] dealt with the homogenization of parabolic problems for integral
convolutional type operators with a non-symmetric jump kernel in a periodic elliptic medium

Lou(x) = f T2, D) () - u(x)dy. (13)
Rd £ g ¢

where u(&,n) is a positive periodic function in ¢ and 5. Kassmann, Piatnitski and Zhizhina [15]
considered the homogenization of a Lévy-type operator.
Karch, Kassmann and Krupski [16] discussed the existence of the Cauchy problem

ou(x,t) = Ld p(u(x, 1), u(y,1); x, y)(u(y, 1) — u(x, t))dy, (1.4)
u(x,0) = up(x),

for (x, 1) € R? x [0, o0) with a given homogeneous jump kernel p. Their models contain both integrable
and non-integrable kernels.

Next, we introduce some examples about the nonlocal evolution of porous medium equations and
fast diffusion equations. Cortazar et al. [17] considered the rescaled problem

6,u8(x,t):é(fJ( adnb )d—y—uE(x,t)),(x,z)eRx[o,oo) (1.5)
R

euwr(y,0)] e
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with a fixed initial condition uy(x) and they proved that the limit lin(l) ut(x,t) = u(x, 1) is a solution to
£

the porous medium equation u, = D(u?),, for a suitable constant D, where J is a smooth non-negative
even function supported in [—1, 1].

Andreu et al. [18, Chapter 5] discussed a class of nonlinear nonlocal evolution equations with the
Neumann boundary condition

0.z(t, x) = f J(x —y)(u(t,y) — u(t,x))dy, xe€Q,t>0,
Q

Z(t’ x) € G(M(I’ X)), X € Q,t > O,
Z(07 x) = ZO(-X)’ X € Q,

(1.6)

where Q is a bounded domain. If the maximal monotone function 6(r) = |r|’~'r, under the suitable
rescale model problem (1.6) corresponds to the nonlocal version of the porous medium equation if
0 < p < 1, or to the fast diffusion equation if p > 1.

Nonlocal porous medium equations with a non-integrable kernel is an important example of
nonlinear and nonlocal diffusion equations; the different properties of solutions to the fractional
porous medium equation

Au(x, 1) + (=A) > (lul’'u) = 0 (1.7)

have been studied from various viewpoints [19-24].
The two types of equations studied in this paper have recently been widely researched in the
following form:

Au(x,t) = L(ul’'u), (1.8)

where p > 0, £ is a linear, symmetric, and nonnegative operator (p > 1) and sub-Markovian operator
(0 < p < 1). More details can be seen in [25,26].

Inspired by the thought of local nonlinear homogenization described by Akagi and Oka [5, 6], the
goal of this paper is to investigate the homogenization theory of nonlocal nonlinear parabolic equations
in a periodic environment with the following nonlocal scaling operator:

J (x_;y’ ﬁ Xy 1 1
Zu(x, 1) = f —2 (=, =), Dy, £) = lux, 0P uCx, 0)dy, (1.9)
pa &2 e &
which means that we take the jump kernel in Eq (1.4) as follows

P u(y) = )P u(x) J(SE %) x

p(u(x), u(y); x,y) = ) 45 rrEaed —) (1.10)
The difference between the kernels in Eq (1.10) and in the equation
Dy, 1) = f e (P ) = P ), (111)

where C, 4 is a constant and o € (0, 1), can be seen in the work of Karch, Kassmann and Krupski
[16]. For more literatures about time-dependent regular kernels (integrable) and Lévy kernels (non-
integrable), see, for instance, [27, 28] for more details.
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This paper is mainly divided into two parts.

The first part is the homogenization problem under the periodic framework. Our goal is to
characterize the limit operator by homogenizing the nonlocal operators {.£*}..( as the scale parameter
g — 0. The paper is organized as follows. The first step, in the case of 0 < p < 2, we transfer the
spatial nonlinearity to the time derivative term through a kirchhoff transform, which can simplify the
difficulty of nonlinearity in the nonlocal operator. In the second step, we construct axillary functions
that work on the operator and then divide the operator in Eq (1.9) into three parts we then deal with it
part by part separately according to the parameters r and p. We prove that the first part is zero. For the
second part, we get that the limit is a nonlinear diffusion operator. Finally, from the third part we get
an error function ¢, and we can prove that it tends to zero in L*((0, T), L*(R%)) as ¢ — 0*. We also
consider the homogenization of the nonlocal porous medium equation (1 < p < +oco0) with non
negative initial values and get similar homogenization results.

The second part is the homogenization problem under the stationary framework. The idea of the
proof is divided into the following steps. The first step is to construct an approximation sequence
equation when p = 1; by approximation we obtain a random corrector function. The second step is to
prove the existence and uniqueness of the corrector functions, as well as the properties of sub-linear
growth and stationarity. The third step is to prove the convergent limit equation. There will be some
additional stationary matrix-field F(£, 5, w) with zero average and the non-stationary term T during
the process of solving the coefficients of the limit equation. It is necessary to prove that there are some
functions v, and v; to cancel the additional part, and also to prove the positive definiteness of the matrix
O and the existence of the limit equation. The fourth step focuses on the effects of nonlinearity and
give some key proofs of our results.

The novelty of this paper is two folds. First, for the determination equation with a periodic
structure, our study complements the results in literature for r = 2 and p = 1. Second, we consider the
corresponding equation with a stationary structure.

It is worth noting that we need to require that 0 < p < 2 become |u|"~'u® € L*((0,T) x L} (R?)).
So far it is not actually clear how to solve the case of p > 2. The local equation in the case that
p €(0,2) u® € L*((0,T) x L>*P(Q)) N L*((0, T) x Hy(£2)) does not hold when p = 2; the specific proof
isin [5, Lemma 4.1].

2. Preliminaries

In order to deal with the homogenization of nonlinear nonlocal operators, we first introduce some
results on nonlinear functional analysis, semigroups and the nonlocal diffusion of knowledge; the main
references are [29, 30].

Notation. X = L’R%p), I = (0,T),E = (0,1) and Y = T¢ = [0,1]?. We have that

X0 € R,Qr(x0) = xo + (-%,%)" and B, (xo) is the open ball in R? centered at xo and radius r.
Moreover, Oz = Ox(0), B, = B,(0), and Og = Og X I = —&, Byt ¢ R, while O and Q are used

for any cube in R**!. Additionally, a <, b means that there exists a constant C = C(a) > 0 such that
a<Ch Wewritea=bifa <, band b g, a.
Assume that the kernel J is a nonnegative symmetric function that satisfies the time periodicity that

Jz,s+ 1) =J@zs), Vsel, 2.1)
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and that J(-, -) is compactly supported in the set {(x, ) € R¥*! : ¢ > 0}. In addition,

Iz, 5) € L((0, T), Cy(RY) N L'(RY))
J(x,0) = J(y, 1) if |x| < [yl, ¥ £ > 0. 3j; > 0 and Jy(z) > j, such that 2.2)

fd J1@lzdz = jo, W (z, Nir=o,r) < J1(2), ¥z € U,
R

where U is any tube in R?.
We also assume that the bounded periodic function v(x, y) satisfies

0<a; <v(x,y) <a; < 400, (2.3)

where @ and a, are positive constants. Here v contains the case that v(x,y) = A(x)u(y).

Definition 2.1. (Monotone operator) Let X and X* be a Banach space and its dual space. A set-valued
operator A : X — 2% is said to be monotone, if it holds that

<u-v,&—n>>0forall [u &l [v,7] € G(A), (2.4)

where G(A) denotes the graph of A, i.e., G(A) = {[u,f] eXXX": €€ Au}.
Finally, let us recall the notion of subdifferentials for convex functionals.

Definition 2.2. (Subdifferential operator) Let X and X* be a Banach space and its dual space,
respectively. Let ¢ : X — (—o0, +00] be a proper (i.e., D(¢) # ) lower semicontinuous and convex
functional with the effective domain D(¢) := {u € X : ¢(u) < +oo}. The subdifferential operator
0¢ : X — 2% of ¢ is defined by

dg(u) = (€ € X" : ¢(v) — p(w) 2 (£,v — u)y for all v € D(¢))}

with domain D(0¢) := {u € D(¢) : 0p(u) # (Z)}. Subdifferential operators form a subclass of maximal
monotone operators.

Theorem 2.3. (Minty) Every subdifferential operator is maximal monotone.

Lemma 2.1. /29, Prop. 6.19, Poincaré-type inequality] For g > 1, assume that J(x) > J(y) if |x] < |y|
and Q is a bounded domain in R?; the quantity

o, Jo, 7Gx = lu(y) = u(x)ledyd.x

_1 =B, Q,q) = inf 2.5
By-1 =By 1( q) uelqul(Q)’ Zf (0l7dx (2.5)
fgudx:O Q
is strictly positive. Consequently, for every u € L1(Q),
1 q 1 q
By-1 f ‘u(x) - — u(x)dx‘ dx < = f f J(x - y)|u(y) - u(x)‘ dydx. (2.6)
o 1€ Jo 2 JaJa
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Theorem 2.4. [30, Prop. 32D] Let V C H C V* be an evolution triple; and X = LP(0,T; V), where
Il <p<ooand( < T < oo. Suppose that the operator A : X — X* is pseudomonotone, coercive and
bounded. Then, for each b € X* and the operators

Liu=u, D) ={ueW»©,T;V,H): u®)= o}, 07
L=, D(L)={ueW"O,T;V,H): u0) = u(T)}, '
the equations
Liu+Au=b, ue D(Ly), 2.8)
Lu+Au=b, ueD(L,y) )

have respective solutions. In addition, if A is strictly monotone, then the corresponding solutions are
unique.

3. Statement of the problem and the main results

We consider the following nonlocal scaling operator

Xy ot

& J IERYS Xy -1 —1
g M(.X', t) = f TV(_’ —)(W(y, t)lp u(y’ t) - |u(-x’ t)lp u(-x’ t))dy7 (31)
R4 E E &

and the corresponding Cauchy problem

0ul(x,t) — L%uf(x,1) =0, (x,1) €eRY%x(0,7), (32)
u®(x,0) = p(x), x € RY, )
with
o(x) € LP=IRY) .= L'(RY) N L¥RY). (3.3)
As the scale parameter € — 0", we will prove that the effective Cauchy problem for Eq (3.2) is
0ul(x,t) — L% (x, 1) =0, (x,t) eRI%x(0,7T),
A . d (3.4)
u (xvo)_so(x)’ XER ’
where
d 02
0,0 _ 0p-1,0) _ ij 0p-1,.0
L1 =0 - VY u) = Y @fmqu P10, (3.5)

ij=1

and the positive definite constant matrix @ = (®") will be given below. For writing convenience, we
omit X in Eq (3.5).

Remark 1. According to [31,32], for 1 < p < oo, the Cauchy problem of porous medium equations
admits a solution when ¢(x) € L}OC(R" ), but the corresponding result for the Cauchy problem to fast
diffusion equations was only established for d > 3,42 < p < 1 and ford = {1,2},0 < p < 1 when
o(x) € L}(}C(Rd). Therefore, the index conditions in the critical situation are also satisfied here. For
p = 1, the operator .Z* in Eq (3.1) is linear, the Cauchy problems of parabolic Egs (3.2) and (3.4) have
solutions #® and u® € L*((0, T), L>(R%)) respectively. But the existence of solutions is not obvious for

0 < p<Tlandp > 1, so we need to prove it before going to investigate the limit behavior.

Networks and Heterogeneous Media Volume 18, Issue 3, 1118-1177.
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3.1. Existence and uniqueness of nonlocal porous medium equation and fast diffusion equation

We apply the space of functions of bounded variation, following [16,33]. Suppose that for u €
L'(RY), there exist finite signed Radon measures 4;,(i = 1,2, - - , d) such that

f udo pdx = — | ¢dd;, Vo € CZ(RY),
R4 R4
d
|Du|(R) = Z sup { f D;dA; : D € Co(RY,RY), [|D|lcy ez < 1}.
R4

i=1

Then we say that u € BV(R?) if the norm ||ul|gy = 2||ull; + |Du|(RY) < oo.
For every ¢ € (0, 1], we consider a function h; € C*([0, 0)),0 < hs(x) < 1 which is nondecreasing
and satisfies that /;(x) = 0 for x < ¢ and hs(x) = 1 for x > 6. Denote

-1 _ p-1
Fo(u(x), u(y), x,, t) _ lu(y)| Zg; - Ith((XX))I u(x)

(), u(y), x,y,1) = J(x = y, O )o((x), u(y), X, 1),
[’(a, b; x,y) = hs(la = b)) L, y=6(x, )T (a, b; X, y),

L) = [ (0090, 300)(u05) = o).

b

Lemma 3.1. For 1 < p < +oo, the operator B(u) = L:u is locally Lipschitz as a mapping B°
LR — LI°I(RY) for a.e. t.

Proof. See Appendix A for a detailed proof.

Lemma 3.2. For every initial data point ul(x) € L'"I(R?),1 < p < +co and ¥ T > 0, the problem
(3.2) admits a unique global classical solution

u’(x, 1) € C'([0, T1, L"I(RY)).

Proof. For v € C'([0, T], L'"*!(R¢)), consider an integral operator
{ B’ : X = C([0,T], L"I(RY) — C'([0, T, L"*I(R?)),
(3.6)

(BV)(1) = f Be(v(s))ds, v e X.
0

From Lemma 3.1, the operator 8°(u) = £°u is locally Lipschitz. Fix T € (0, 00); for vi, v, € X, we
have

s s
181 = Bwalllx

IA

T
f 1B°(v1(5)) — B Wa()llp1 cords

0
T (1)1327; ||Q36V1 - QS6\/2”[1,00] < M(p, az, T |llvi = valllx, (3.7)

IA

and

6 5 6 §
10:B°v1 = 8;B°valllx < max [|B°v; — Bva|l1.00) < M(p, @z, Mlllvi = valllx,
0<t<T

Networks and Heterogeneous Media Volume 18, Issue 3, 1118-1177.
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where M(p, a,, A) is introduced in Appendix A. For a small enough 7T such that CT < 1, the Banach
contraction mapping principle implies that the problem (3.2) admits a unique local classical solution
u® € C1([0, T], LIV>(RY)).

This local classical solution u° is actually global. According to [16, Lemma 3.5], we have

@Il < Cllllineop, £ € [0, T1. (3.8)

Taking a ball B(p,Cllgllie) C X, then M(p,a,, A) only depends on [|¢||;; .. Therefore, the
problem (3.2) admits a global solution.

Theorem 3.1. (Existence of strong solutions) For 1 < p < +oo and the initial condition ¢ € BV(R?) N
L*(RY), the problem (3.2) has a strong solution (and still denotes u)

u € L™ ([0, 00), BV(R') N L R*)) N C ([0, 00), L}, (R)). (3.9)

Proof. For an arbitrarily fixed T > 0, by applying the Aubin-Lions-Simon lemma [34, Theorem 1] in
the space L™ ([0, T], LI(Q)), we can get the convergent subsequence in the usual way. So there exist a

1
loc

subsequence {u‘ji } and a function u such that #% — u in C([0,T],L! (R9)). The specific proof process
can be found in [16, 25].

The case 0 < p < 1 can be obtained in [35], and the existence of a doubly nonlinear equation
is consistent with our equation. Noticed that more studies focus on fractional nonlocal fast diffusion
equations, e.g. [36,37]. The general framework was recently studied in [16]. We now describe our

main results on u®(x, t), u’(x, f) corresponding to the Cauchy problems (3.2) and (3.4), respectively.

3.2. Main results on homogenization

Theorem 3.2. Assume that the functions J(z, s) and v(x, y) satisfy the conditions (2.1)—(2.3). Let u®(x, t)
be the solution of the Cauchy problem (3.2) and u’(x, t) be the solution of the effective Cauchy problem
(3.4). Then there exist a vector @ € R (w = 0 for p # 1) and a positive definite matrix ® such that for
any T > 0, we have

w
w(x+ —t,1) — u(x, I)H —0ase— 0. (3.10)
& LY((0.1).L} (R%))

Theorem 3.2 implies that the homogenization of the nonlocal operator in Eq (3.1) is a local porous
medium operator. The Cauchy problem of porous medium equations has been extensively studied
in [31,32,38,39].

The homogenized flux @(x, f) can be characterized as follows.

Casel. For0 <r<2and 0 < p <2, 0 is aconstant d X d matrix given by

1
1
© = f f f SE = E = DIE =~ g, HVE PmiE)dgdéds
0 Td Rd2
1
B fo fT fR J(E = . V(& q)(E — qx1(q, )dgdéds
1
+ wf f l|l/l0|1—[7)(1(‘§-"s)’u(é-‘,s)dé—'ds, 3.11)
0o Jr¢ P
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where the periodic function y (&, s) (£, s) € T¢ x T) solves the cell-problem

1 oo-

{ fRd JE = g, & 9)q— € +x1(g,9) — x1(&, 9))dq = —;Iu | P, (3.12)
/\/l(y90) :Xl(y’ 1)’ y€ Td’

u°(x, 1) is the solution of Eq (3.4) and m will be defined in Eq (4.40).

Remark 2. For p # 1, y; does not depend on x and #, so @ = 0, wo(x, t) = u(x, t) + u;(x, 1) + &2ur(x, 1)
and the pair (u, u;) is uniquely determined. Moreover, the function u,(x, t, y, s) can be written as

d
u(x,t,y,s) = Z 0y, (|u0|P—1 MO) (x, 1) - Xt (3, ). (3.13)
k=1

Case II. For r = 2 and p € (0, 1], the homogenized matrix function ®(x, ¢) is characterized by

1
1
ot = [ [ [ 3€-ae-ase-oneqmendgeds
0 Td Rdz

1
ﬁ de L JE = a.9E QmEE - (% 1,q, )dqdéds
1
+ wf f ]l)|u0|1—P/\/1(X, t, &, (&, qym(€)dédss, (3.14)
0 Td
where £ = xk(x. 1,7, 5) € L™ (R x (0, T); L? (E; L%, (¥)/R)) solves the cell problem

per

l;ﬂf—%ﬂW£@@—§+xdxh%®—xd&h&@ﬂq

= ]%Iuoll‘f’((?s)(l(x, tE s)— @), (£,5) € T'x T, (3.15)
x1(x,1,y,0) = xi(x,1,y,1), y € T9,
such that, for each (x, ) € R? x (0, T),
WOk e L (R (0,7 L2 (E; [ L2, (V)/R])). (3.16)
Wk e L7 (R % (0,7):C (Es LAYV)/R)). (3.17)

Case III. For r = 2 and p € (1,2], the homogenized matrix function O(x, ) is characterized by
Eq (3.14), where

k | plPEE (g y, ) if W0(x ) # 0,
Xi(x,t,y,8) = { 0 it W01 =0, (3.18)

and it = bi(x,0,y,5) € L® ([uo * 0] H' (E : [Lger(Y )/R]*)) solves the cell problem for each (x,7) €
[ug # O]:
ashl(xa Z, é:a S) = Ld J(‘f -4, S)V(‘f’ q)(q - é:

+plu P (x, 1, . 8) = PPl (x,1,€, 9))dg,
hi(x,2,y,0) = i (x, 2,y, 1), y € T,

(3.19)
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such that
WP e Lo ([u # 0] L2 (E: L3 (V)/R)), (3.20)
W7 e L ([ul # 0] C (B L2(Y)/R)), (3.21)

and the measurable set [uo # O] = {(x, 1) eRIX(0,T): ul(x,1) # O}.
CaseIV.For2 <r <+ocoand 0 < p < 1, ®is a constant d X d matrix given by

]

1 1
[ [ 3€-ae-a| [ 5e-a.sdsle.amenae
Td JRE 0
1
- fT d fR 1 fo J(€ - 4, )dsE QmENE — (5,1, g, 5)dgde
1
- f f f L1, &, $)VE mi@)dqdeds, (322)
0 Jrd Jrd P

where y satisfies the following problem with (£, s) € T¢ x T :

1
1
[ | e=a9amcafa-ecxn@-x@)g = il e (3.23)

X1 does not include s because @ = 0; we found that y; does not include x and .
Case V.For2 <r < +oc0,1 < p<2,@w=0and O is a constant d X d matrix given by

1 1
© = f f F¢ -0 -a) f JE = q.)ds|v(é @m(§)dgdé
Td JR4 0
1
B fw fRd[ fo J(€ - g, )ds|V(& Qm(E)E - qix1(q)dqd, (3.24)

where y also satisfies Eq (3.23).
Now for the operator given by Eq (3.1), we consider the following nonlocal scaling operator

1 —
LV D) = — fR I, é)v(g, 2y 1) = v(x,0)dy: (3.25)

thus for v(x, ) = |u(x, H)|” 'u(x, t), we have that
Lov(x, 1) = L*(lul’'u) = L u(x, ).

Therefore we transform the problems (3.2) and (3.4) into the following Cauchy problems

Ove(x, 1)r — LAve(x,1) = 0, (x,1) € R? x (0,T), (3.26)
v (x,0) = ¢(x), xeRe '
and
Ov(x, 1) —@-VVn(x,1) =0, (x,1)€RIx(0,T), 3.27)
v(x,0) = p(x), x € RY, ’
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respectively. We first study the existence and uniqueness of solutions to the Cauchy problems (3.26)
and (3.27) with the nonlocal operator (3.25), where —L? is a non-positive and self-adjoint operator in
the space L>(R¢, m) for v(x,y). In fact, for any u,v € L>(RY, m),

(Lfu(x), M(x))U(R,m)

= ‘2;2 ff IEZ2 DvE D E)luty) - uoPdydx < 0. (3.28)
R2 E € g &€ &

We directly give the following theorem.

Theorem 3.3. The hypotheses given above are satisfied. If there is a homogenized solution denoted as
v of the problem (3.26). Then we have
v € L*((0,T); BV(RY) n L(RY)) n H'((0, T); L, (RY)). (3.29)

loc

Proof. The proof of existence is similar to Theorem 3.1 so we do not show it here. What needs to be
emphasized here is that, in the three cases of 0 < p < 1, p = 1 and p > 1, the method of proof of
existence could be different. These will not affect our subsequent homogenization proof.

4. Auxiliary cell problems and existence of first corrector y, and drift @

Due to the classical method of asymptotic expansion, we first construct some auxiliary functions to
prove Theorem 3.2, i.e., our main results on homogenization of nonlinear nonlocal equations with a
wt

periodic structure. Denote x* = x — 2 and y = x — &z, we first give a chain-rule formula.

Lemma 4.1. (Chain-rule formula) If v°(x, t)% is bounded in H'(I; L*(R%)) (0 < p < 2), then for a.e.
(x,1) € R x I, we have

8v€x,t% I . 1-p Ve (x, t
% = —V(x, 0|7 ( ), p (1), (4.1)
t p
e(x,t . p=1 OVE(x, t ’
ét ) = plv (x’ [)' r %, P € (1,2] (4'2)

For a given v € C((0, T), S(RY)), we introduce some auxiliary functions:
wo(x, 1) = v(x, 1) + ey (x, 1) + €7ux(x, 1). (4.3)

For different cases of r, p, we construct the corresponding auxiliary functions w?,i = 0, 1, 2.
1)r=2,0<p<l1

t t
WECX, 1) = (X, ) + 81 (6, £, —, —)VV(x, 1) + £ (0, 1, =, —)VVu(x, 1). (4.4)
e & e &g
r=2,1<p<?2
p=1 X t
Wi =060+ ephnnl T (s S ) Vv(r )

p- t
+ Ephv(x, )7 a1, g VWM. 1), 4.5)
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Gi)r=2,p=1
1 t t
Wi = v - o+ en (Ve - 20
& e & &
t t
+ (S, V- =), (4.6)
e & &

(iv) r # 2, y; and Bj; do not depend on x and ¢.

Lemma 4.2. For a given v € C*((0,T), S(RY)), w? (i = 0,1,2) is defined by Eqs (4.4)—(4.6). Then
there exist two functions

x1 € (L2((0, 1), LAT! X T, xa € (L¥((0,T), (LA(T! x T, 4.7)

a vector w € R4(p = 1) and a positive definite matrix ® such that

awf(x,t)%
H*wi(x,t) := —a - L*w?
= @m&ﬁ4kugg—® VIV, 1) + 4.5, ) (4.8)
St A ’ S R ‘

where ¢, — 0 in L*>((0,T), L>*(RY)) as € — 0.

Remark 3. For p = 1, the homogenization takes place in the moving coordinates X, = x — 7 with an
appropriate constant vector w. But it does not work in the nonlinear situation (p # 1) when @ € R%.

Proof. Substitute the expressions on the right-hand side of Eqs (4.4)—(4.6) into Eq (4.8) and using the
notation x* = x— 27 and ox(x,t, s, ﬁ) =0x+ éas)(, where the symbol ® stands for the tensor product:

. 0%
2®2= ' ixas 2®72-VVv = 7'/ ———,
(22 axa Sxidn
- Pv
2®7®z7-VVVy = 2iz/zf ———— |
Ox Ox/Oxk
Xk

)(2(— —)®(——) VVVy = x5 (— —)(— 00,0 v,

Case 1. For p € (0, 1),

Owg(x, 1) 1 A 01
— = p|wo| A FrCORI G O RN
+ & r%\/Z S VV(x, £) + ¢ (x, t)]

with
. ) )
B (x, t):8§ Vo(x, 1) + € 2‘2 VVv(x,t)

0
+qﬂxt —)V mn+&mmnﬂ—+vvlu@. (4.9)
e & ot
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Set z = =2; we get
(Lwg)(x, 1)

1 X X X t
== f J(z, s)v(—, — — z){v(x —ez )+ et - -z, —) - V(x — ez, 1)
& Jpa g ¢ e >

t t
+82/\/2(y, ta f — 2, _) : VVV()C — &%, t) - V(X, t) - SXl(y, t’ f’ _) : VV(X, t)
& er e &
t
—a0n L S =) - VI, D)da.
c ¢

Using the Taylor expansions

1
d
vy) = v(x)+ f —v(x+ (y —x)0)do
o dob
1
= v(x)+ f Vv(x + (y — x)0)(y — x)d6,
0
1
v(y) = v(x)+ Vv(x)(y—x) + f VVv(x + (y — x)0)(y — x)*(1 — 6)d6,
0
we have
1 t
LW (x 1) = f Uz =S = vl 1) - e2Vv(x, 1)
Rd E g’ e ¢
1
t
+ & f VVv(x — €26, )z*(1 — 6)d6 + 8/\/1(3 -2z, ;)Vv(x, 1)
0
t
— (-2 D)WW
e &
3.0 X ! : 2
+ exi(——-2z,—) VVVv(x — ez60,0)z°(1 — 6)dO
> g Jo
t t
b (S -2 o)V - £2) — V() — e (=, —)Vu(x, 1)
e & g ¢
N G4 o) 23
g €
Hewg(x, 1)
owg(x, 1) 1 X=y t_xy_ . .
= fR IR S D)0 1) = Wi D)y
1 0 1
= —WEl 7 T 1)+ —Mo(x, 1) + M(x. D)+ do(x.1) as e — 07,
p ot e
where
1 = o oac
Pe(x, 1) = ]—)IWS(x, DI @I (x, 1) — P (x, 1),
and

1 t X X
¢‘(9space) = —2 f dZJ(Z7 _r)v (_a - Z)
& Jpa & £ ¢

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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1 2
-{szf VVv(x —ezq,t) - 2® z(1 — q)dq — %VVV (x,1)-z®z
0

1
t
+ &y (f -2 —) . f VVVv(x —&zq9,) z® z(1 — g)dgq
& ol 0
X t !
- &u (— -7, —) . f VVVv (x — &zq,1) qu},
£ g’
oy b 1m0y r.x x
Mot = & w7 D0V = V0| | IS E-2)
p Os R g e e

( -z+x100,¢, ; - %, ;) —xi(x, 1, E’ é))dZ],

1 1-p
M) = &l 7 LEvuce ) - voue )| f R G
p Os R g’ e ¢

X t X t x t 1
( - ZXI(Y’ t,——12, _r) +X2(y’ t,——2, _r) _XZ(x, t,—, _r) + _Zz)dz]-
E E E E E &

2
Case 2. For p € (1,2],
owi(x,1)
ot

1-p a p-l (9
il [ 5 e + e phlF B v, )
p os

o S ﬂ YV, ) + ¢ 1)

+

with
(time) 141y OV X 1
¢ =e(p—Dp| "7 v—hl(x, Lo —)VV(x, )
-1 0
+&2(p — D"+ )v—hz(x 1= —)VVv(x £) +eph| 7 l Vv(x, £)
+<€2PIVITl -VVu(x, 1) + 8PIVI7h1(x, t, —, —) . V—(x, 1
ot c & ot
+¢& p|v| P qu(x t, — —) VV—(x 1).

Set z = —; we get
1 X X
(LwD(x, 1) = = f J(z, sv(—, — —z){v(x—gz, )
&% Jra g e
p-1 X t
+ ephv(y, Dl 7 b1y, 1, ; -z, ;) - Vv(x — ez,1)
2 p-tL X 1
+ PO Ol Bt — -z ) VY — ez, )
Pl x t
— v(x, 1) —epv(x, 0l 7 hl(x, 1=, =) Vv(x,1)
g &
= PP AT Rt S, 1) - Y D)z,
Using the Taylor expansions again,

» 1
Hewi(x,t) = |w |7@ + Mo(x 1)+ My(x,1)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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1 1- .
+ I—)|w§|7”¢g”’"e> + PUP*O as & — OF, 4.21)

where

=0 t
Mot = 2|7 P00, 1) - Wi, t)[f J@—w(E, = =2
wi os Rd g’ e ¢

p-1 X t p=l X t
(=24 PO D17 B Gn 1, = = 2 =) = P D17 (1, =, =))dz], (4.22)
& & E &

=0 t
Mxt) = 7= %2 G vu(x, 1) — VUM, 0| f I it 2t - g
wi os Rd g’ e ¢
i} X t p=1 X t
(= 2phOu T a1, S = 2 + Pl DT o, = =2, )

E & E &

p-1 x t 1
=V, DI B(x,1, =, =) + 52°)dz], (4.23)

g & 2

and """ is similar to that in the case that 0 < p < 1.
Case 3. For p = 1, similar to the derivations in [13, 14], we only need to notice that the correctors are

the functions y;(%, %) (i = 1,2). Therefore, substituting the expression on the right-hand side of H* for
w$ in Eq (4.6) and using the notation x* = x — Zr we get
. & ov, . 1 .
HewS(x, 1) = E(x )+ EMO(X’ 1)+ M(x, 1) + ¢do(x,1) ase— 07, (4.24)
where
¢€(-x’ t) = gb‘(glime)(x’ t) - ¢‘(:[MC€)(X’ t)a (425)
and
0 t
Moty = & 2000, 1) = Vo, o) f J@ === = 2)
os Rd g’ e ¢
X t X t
(—z+x01C -2 o) -xi(= )z + @, (4.26)
g P> e &
%) t
M(xt) = 722 v, o) f @ =M= S -2
0s R g e ¢
X t X t x t 1
(240G -2+ 0 -5 — xS, =) + 52 )z + o | (4.27)
e & £ & e ¢ 2

Due to the order of &, we put the terms with O(g) and the higher-order terms with o(g) into the
remainder as the fourth part. For the given functions y and y», it is easy to show that the fourth part is
an infinitesimal O(g) as € — 0.

This completes the proof of Lemma 4.2.

We now consider the asymptotic decomposition of (L°w?)(x,?) in &, deal with the last three parts
Mo(x, 1), Ms(x,1) and ¢.(x, 1) and get more precisely asymptotic behavior.

1. Constructing auxiliary functions to guarantee the first part My(x, r) of L? satisfies that 0 < r <
2, Mo=0and r > 2, 8r_2M0 =0.
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2. From the second part M,(x, ) of L we can get a second order differential operator L° such that
L(x,H) =@ -VVvase — 0.
3. The third part ¢, satisfies that

8155{ pellr20.1).2mey) = O. (4.28)

Finishing the above three steps, for w®(x, ) = v(x,1) + gu;(x,t) + £2u,(x, 1), we can prove that the
operator L? has the following asymptotic representation

(L°w)(x) = 0O -VVv + ¢ (x,f) ase— 0", (4.29)

We now construct an auxiliary function in order to prove that My = 0, where My(x, 7) is defined by
Eq (4.17). Because v(x, f) and its derivatives are in C*((0, T) x S(R%)), we need not to deal with this
part and only solve the theorem as follows.

Theorem 4.1. Assume that there exists a function y(x,t,&,s) € L*(R? x I, LIZW(T X Y)) and @ € R?
such that My = 0.

Proof. We need to consider the solvability of the following equations due to the time scale r and given
p €(0,2]. Forr =2 and 0 < p < 1, it is straightforward to see that y(x,t,&, s) = y1(£, s) when p = 1.
In case that p # 1, we sometimes omit x and 7 for simplicity to write y(x,1, %, ﬁ) as x1(%, %). For any
g > 0, we have

1 oy 1,0 t
82—r_|W5|17p£ _ _|Ws|17pw. _ [f J(z, _r)v(f, X 2)
p p Rd g’ g ¢
X t x ft
(—z+xi(x—ez.t,= -2, =) - xa(x. 1, =, —)dz| = 0. (4.30)
& & E &

Denote £ = % and s = ﬁ, which is a variable with the period &, s € T = [0, 119, also v(&), 1 (£, s) and
x2(&, 5) are functions on T¢. We solve Eq (4.30) for the functions y(&, s) and y»(&, s) on the torus. Let

1 _
o, f) = 7w 7.
p

For (x,1) e RY X I, .(x,t) = 0 as € — 0, and from

% _ o2
Ve os & Y@
] B N R AN ) @431)
Rd
we have
=(y, 5) = fR 073, 0,90 = g + & = 00,9 + 432)

We consider that X = L*((0,1) x T9). Let L : X 2 D(L) — X* be defined by Lu = «’, where u’ is
understood in the sense of distributions, i.e.,

1 1
f u' (Y (Hdt = — f u(ty'(tdt,y € C;(0,1)
0

0
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with domain Dom(L) = {u eX:u e X*,u0) = u(l )}. We can see that

1
(Lu,p) = f W' (1), p(t))y dt,u € Dom(L),p € X.
0

It is easy to obtain that L : X 2 D(L) — X" is densely defined maximal monotone. For details about
the operator L, the reader is referred to Zeidler [30, Prop. 32.10]. Let N : X — X* be defined by

NI = fR = &5, O, O = T, ME = (G = KT,

(NTL, 11),,

1
= fO\ j'];d fRd J(T] - (9 S)V(T], g)m(n)(l_[(sf, g) — H(Sn’ 77))1_[(877, n)dévdnds

1 1
=3 fo fr dﬂ(n, s) fR ) I = ¢, s)v(n, Om)A(eL, §) — N(en, n))*dLdnds
<0

then, —N is a monotone operator in X.

N 1T

f J1 - £, $)(n, OTIQ)dL, 433)
Rd

NoI1

[ s ccman e (434)
R
we know that X, is bounded in X — X* and N, is a positive and invertible operator. Denote
k(&) = f 1€~ a.9)vE g)llg)dg, 7 € LX(T). (4.35)
R

We first introduce a proposition.

Proposition 1. [6] For J(n) = 3. J(n + k), n € T¢, the operator
kezd

k() = fR JE - € 9p(a)dg = fT ) JE = nvE nemdn, ¢ € L*(TY) (4.36)

is a compact operator in L*>(T%).

From Proposition 1 and Lemma 2.1, we have

1 1
Ea{% f f f J(.X - S)I/\/(y’ S) _X(X, S)lzddedS
0 Td JTd

1
1 2 )
B fo de ’X - W T‘IX' dyds = cﬁ1||X||L2(Tde), (4.37)

\%

(-Nx.x)

\%

we know the —N is coercive.
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Lemma 4.3. There exists a function x{(x,t,&, s) on R x R x [0, 114 x [0, 1] such that Eq (4.30) holds
true.

Proof. We first rewrite Eq (4.31) as follows

Yo(x, DLYE(x, 1, v, 8) — Nx5(x, 1, y,5) = &, (4.38)

where the operator ¥ (x, ), L and N are defined above, L : X 2 D(L) — X*isa densely defined
maximal monotone operator in X and N is bounded pseudomonotone and coercive in X — X* from
the inequality (4.37); due to Eq (4.30) we fix an arbitrary (x,7) € R? x I. By applying Theorem 2.4,
Eq (4.38) has a solution, that is, there exists a function y{(x,7,&,s) on the torus T x T such that
Eq (4.38) holds true. The proof is completed.

- Pt
For p > 1 and §, = &"|| 7, we have
1

a &
Mo(x.1) = U, ;1 V(1) = Vo, 1) f yCR R
s Rd g’ e ¢
POl B0 1S = 2 2) = plvi(x, 07 B (3.1, T, —))dz] = 0. (439)
E E E &

Then we have the following lemma.

Lemma 4.4. Fix & > 0; there exists a function ff on RY X R x [0, 11? x [0, 1] such that Eq (4.39) holds
true.

The proof is similar to the case of 0 < p < 1, so we omit the details.

For p = 1,0 < r < 2 and ¢, = £*7, so y; does not include x and ¢ because time derivative term
tends to zero when £ — (. We obtain the existence of y;. Next, we also need to determine @. Then,
the solvability condition for Eq (4.31) is that —N is the sum of a positive invertible operator K and a
compact operator —G. In [14] it shows that the dimension of space Ker(K — G)* is one and that

Ker(K - G)" = K~ (&)m(€) = m(€), (4.40)

where m(£) and m(€) are positive and bounded.
According to the Fredholm theory, dim(G — K) = dim(G — K)*, thus there exists m(¢) € Ker(G — K)
that satisfies (G — K)m(¢) = 0 such that

1 1
f f f JE — g, SE g)é — qdqm@)déds — f f m(é)déds = 0.
0 Jrd Jrd o Jm

Taking the normalized m(¢) with f m(€)dé = 1, and choosing @ as
Td

1
v fo fRd de J(& = g, V(& Q)& — @)dgm(§)dEdss.

We also need the following lemma in order to use symmetry of the integral; it is obviously right when
the nonlocal structure is symmetric.
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Lemma 4.5. The compact operator (K-'G)* has a simple eigenvalue at 1 = 1. The corresponding
eigenfunction n satisfies the equation

(K'G)'no = no,

and there exists a unique (up to an additive constant) function m € L* (Td) satisfying

(K™'G)y'm = m, fd J(g = Ev(q,H)m(q)dg = m(&) fd J(& - (&, g,
R R
i.e., Span(m)=Ker(K — G)*. This function obeys the following lower and upper bounds:
0 <k <n(é) <ky <00,0 <k <mé) <Ry <oo,¥&eT,

where k1, k2, K1, Ky are positive constants.

We can obtain from the Krein-Rutman theorem [40] that the operator (K~'G)* has the maximal
eigenvalue equal to 1.

Since we find that x7 is related to &, we also need to discuss strong measurability in (x, 7). This
section is devoted to discussing the existence, uniqueness and regularity of solutions to cell problems
at the critical ratio r = 2. The cases r < 2 and r > 2 are similar to the case of r = 2 and E and T¢
correspond to the cell area of time and space respectively. We simply write w(y, s) for the functions
w = w(x,t,y,s) by omitting the variables x and ¢, unless any confusion may arise. We first explain
V = L2, (Y); the {y{}{_, in this section refers to ;.

4.1. r=2andp # 1
Case I. For r =2 and 0 < p < 1. For each (x, ) € R? x (0, T), the cell problem reads that

PP a00E9) = [ € gumEala €+ (a9 —xi(E o)dade.
T
X,0) = x (&, D,y € T¢,
such that My(,y’l‘(-, s)y) = 0 for s € T. It can be regarded as a constant to discuss the existence,

uniqueness and regularity of solutions to Eq (4.41) in view of v = v(x, f) depending only on (x, ) for
each (x, ) that is fixed. In case that v(x, ) # 0, assuming

(4.41)

1
=4 ; |v|(1—p)/l7 w €< [L2 (J, Lier(Y))]d ,

one can construct a unique weak solution x%(x,7,-,-) € L*E;V) N H' (E;LZ(V*)), where
V=12 (V)/R.k€N.

per

Lemma 4.6. (Strong measurability in (x,t)) Assume that r =2 and p € (0, 1). For k € d, the function:
(x,1) = X\ (x,1,-,) (resp., v, DI (x, 1, -, )
is strongly measurable in R x (0, T) with values in L*(E; V). Moreover,

X e LRI I L*(E; V), W[ PPk e L°(RY x I; H'(E; LA(V))).
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Proof. Since [v|'=?/7 lies in LP+*D/1=P)(R? x I), one can take a sequence () of step functions from
R? x I into R such that y.(x, 1) — (1/p)v(x, )|""P/? for (x,t) € M,, where M, is a measurable set in
R? x [ satisfying [(R? X I)\Mo| = 0, as & — +o0. Fix (x,1) € M, and let *(x,t,-,-) € L*(E; V) be the
unique solution to

Lw 1P g5 €, 5) = f € =g 5EQ)a~ £+ i@ 9) = X (€ 9))da,
R
X;0,0) = x5, 1),y € T
such that My(x%(-, s),) = 0. Moreover, we note that the vector-valued function (x,7) — x°(x,¢t,-,) is
1 y

defined over RY x I. Test Eq (4.42) by using x* and with respect to the ¢ integral in Y. We observe by
using the nonlocal Poincaré inequality that

(4.42)

!//S d £ £
2 ds ”Xl(y’ S)“Z(Y) +Bi ”Xl(y’ S)HEZ(Y)

f IZ] - X7, s)dy
Y

% Wi 92y + CIEIR: -

IA

Integrate both sides over (0, 1) and employ the periodicity y*(-,0) = x*(-, 1) in T¢. It then follows

that |
2
2 Jo

. 1
%j(; ||65X‘T(y, S)”izur)dSSCj; ”E”iZ(Y)dS'

Therefore we can select a subsequence and still note y{ as a limit y(x,1,-,-) € L*(E; V) such that

1
2 —_2 .
Wi )2, ds < € fo IZ1172,y, s

then, one can also get

v, P x(x, 1, ) € HY (3 LX(V))
and
X761, = xi(x, 1,5 ) weakly in L*(E; V).
Ye(x, X (x, 8, 1) = élv(x, NF yi(x,1,-,-) weakly in H' (E; LZ(V)).

Hence, (x,1) = xi(x,t,-,-) is weakly measurable in R? x I, with values in L*(E; V); therefore, due
to Pettis’ theorem, it is also strongly measurable. Moreover, the fact that the convergence .(x, 1) —
(1/p) Iv(x, HIPP ae. inRYx T as & — 0, it can be verified that the unique solution y; solves Eq (4.41)
fora.e. (x,1) e RYx I.

Finally, it is easy to check that

X1 Ve )Py € L2 (R x (0, T): H' (E: LA(V))).

In case that 0 < p < 1, fora.e. (x,f) e R?x I andall/ € Vand [, € Cor(E), we observe that

! 1
f f | = e D172 x1 (€, )UED I (s) - f J(E = g, 5V, 9)
0 J1d P Ré
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(q - &+x1(q. 5) = x1(&, 9))dql€) (s) |déds = 0. (4.43)

Next we will show that

1
— (e, )PP yy € L (RO X I HY (B3 V7)) (4.44)
p

Actually let us define £(x, t,-,-) € L? (E; V*) by

1 1
f(f(x,t,-,S),S‘(-,S)>vdS=ffff(f—q,S)V(f,q)
0 0 Td JR4

(g - &+x1(q. 5) = x1(&. 9))dqs(&, s)déds (4.45)

for ¢ € L*(J;V). Then & : RY x I — L*(E;V*) is weakly measurable, and actually it is strongly
measurable by Pettis’ theorem.

Since y; € L>(RY x I x T¢ x E), one can verify that & € L2 (R" x I; L* (E; V*)). Furthermore, we
deduce by Eq (4.45) that

1 1
1 .
f - |v|(1—P)/PX1(X’ t’ ) s)astl(s)ds = f f('xa t-, S)tl(S)dS in V*’
o P 0

which along with the arbitrariness of #; € C;‘gr(E) in the distributional sense for a.e. (x,¢,5) € RIXIXE
implies that

1
= y|d=prp ox1(x,1,&,5) = =&(x,t,-,5)in V*
14
This yields Eq (4.44). It is easy to check that
1 1
— (e, DI y(x, 1,0, 1) = = (s, D[P (x, 1, -,0) in VF
P p

for a.e. (x,¢) € R? x I. Case I is proved.

Case II. r = 2 and 1 < p < 2. It is enough to consider the case that v(x,7) # 0 only. For each
(x,t) € [v+0] := {(x, 1) eRI%(0,T): vix,1) # O}, the existence and uniqueness of a weak solution
h’l‘ (x,t,+,+) € L®[v # 0] N L*(E; V) to the cell problem can be verified

{ €. s) = fT JE—govéalg=E+phT - p T 0@ 0)da, o

.0) =H(. D, y e T,

such that My(f(-, 5),) = 0 for s € T.
Moreover, we claim that

PV € L (v # 015 L(E; V), B € L™ ([v # 015 L (E; V),

which implies that i € L™ ([v # 0] L2 (E; V")).
The proof is similar to the case for 0 < p < 1.
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42. r+2and0 < p <2

CaseIII.O<r<2and 0 < p < 1. Let Y (x,1) = &7y, — O for (x,1) e R x [ as € — 0, y, satisfies
the following equation

fR JE =g 9V, 0)(q-&+x1(q.5) - x1(&. 5))dg = 0, (4.47)
)(1(%0) :Xl()’, 1)9 y € Td
as @ = 0; we found that y; does not include x and ¢, and that y; € L*>(E x V); then, we have
d
0 (x,1,y,5) = Y O (™ ux,0) - 50, 9). (4.48)
k=1

CaseIV.0 < r <2and 1 < p < 2. It is enough to just consider the case that v(x,?) # 0. For each
(x,t) e [v£0] := {(x, 1) eRI%(0,T): v(x,1) # O}, we can verify the existence and uniqueness of the

solution {(-,-) € L*(E; V) N H' (E : L2(V)) to the cell problem

fT JE - 4. 9vE )

{q= &+ PP IPRE ) = pI~ 7y (g, 9))dg = O, (449
H(3,0) =D, ye T,
where, actually, b = - [v[1=P)'P |, the situation is similar to Case III.
For r > 2 and 0 < p < 2, we consider two cases.
Case V.r >2and 0 < p < 1. For any € > 0, we have
1 1-p a 1 1-p
e L - 2|
Os
_ I, X x X t x t
=g 2[ f J(z, ==, - - z)( —z+xi(- -z =) —xi(=, —r))dz]; (4.50)
R g’ e € g £ e &
let e — 0; we get
1 10
—p 7 2L <, 4.51)
)4 ds
which implies that y is in fact independent of s and satisfies
I 1 : .
7 @ = f f J(@ )dsu(é, € = 2 = 2+ x1(E - 2) = y1(©))dz in T (452)
R Jo
Case VL. For r > 2 and 1 < p < 2. For any € > 0, we have
v 50D, toox x
e _1_8 z[f J(Z,_r)ﬂ(_,__Z)(_Z
wi os Rd g’ e ¢
- X t - X t
T 01 =2, =) = p|T ©4(, ))de] = 0, (4.53)
g g e &€
let e — 0; we get
oD
—L-o, (4.54)
ds

which means that ®@;(y, s) does not depend on s and satisfies Eq (4.53).
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5. Existence of y, and positive definiteness of ®

Actually the existence of y; is similar to y1; the proof steps are the same as before; next, we prove
that the symmetric part of the matrix ® defined in Theorem 3.2 is positive definite.
Casel.r=2and0O<p<1:

From Eq (4.18), we have

0 1 - r.ox x
MG, 1) = el 7 22 i —[f J@ === = 2)
p ds p Rd g’ e €
X t X t x t 1
‘(_Z/\/l(y9ta__z’ _r)+/\/2(y>t’__z’ _r)_XZ(th’ ) _r)+_Z2)dZ]' (51)
£ & e e g ¢ 2
For r = 2,
-+ 0 1 » 0
we| 72 L 2 P2 e o0, (5.2)
ds p 0

Next, using the time periodicity of J, we consider

1
@(X, t) = f f[f J(Z5 s)ﬂ(y7y - Z)(_Z)(l(x7 L,y—z, S) +X2(.X, ,y—z, S)

0
(. $) Z>dz——|v|z "2 - avldyds, (5.3)
1
@ij(x,t) = @(x,[)f fm(f)dfds
) f fT fRd‘(f Q'€ - @I - g, V(€ Qm(€)dqdéds
- j(; jj; ) fR ) J(€ = g, SVE PmE)E — @)')[(x, 1, q, $)dqdéds
(! 1 o
+ w‘f f f —|V|7)({(x,t,§,s)v(g’q)m(g)dngds
0 Td JRd P

(5.4)

! 1, 10 0x>
- —v[™
0 Jrd Jrd P ds

the last formula on the right side of Eq (5.4) is zero by using the periodicity of y.
Our aim is to show that the symmetric part of the right-hand side of Eq (5.4) is equal to B such that

87 = Y+
1
fo fT fR (& = q)'(& — @) J(E = g, W, @ym(€)dqdéds

_ j; de jl;{ J(& = q, s)v(&, @m(é) ((5 — gy + (- q)Jle)dngds
S
o f f =7 x| (x 1, €, VE, m€)dédss
0 Jrd P
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j ! 1 I-p .
+ ij(; ﬁ{lzlvlpXﬁ(x,t,g,s)v(§,q)m(§)d§ds. (5.5)

We also want to prove B is positive definite. For brevity, we write y(x,1,&,5) = x1(£, ). From
Eq (5.5), we have

B = B+ BY + BY, (5.6)
where

B = fo fT ) fR (&= - @) - g, 9ME Qmi§)dqdéds, (5.7)

.. 1 .

¥ = fo f f JE - 4. SVE DM@ (1. 5) — x1(q. 9))

Td Rd
: (Xl(f’ s) —X1 (CI, s))j dngds’ (58)
By = fo fT ) fR JE = g 9vEQmE(E - 9)' (i 9) x1(g. )Y

+( - q) (1(& 5) — x1(q, 9))' )dgdéds. (5.9)

Obviously, we find that %il" is the first integral of Eq (5.5). Let us rearrange the integral in %;j as
follows:

i
5233

1
_ f f f JE = g, SVE mE(E — D (E 5) + (& — gV’ (& )dadeds
Td JRd

f f f JE = g, SVE Pm©(E — 9@, 9) + (€ — qYx' (g, $)dqdeds
Td JRA
W (5.10)

Then, L;j coincides with the second integral in Eq (5.5). Further, we rearrange the integral l;j and recall
the definition of the function 0 in Eq (4.32):
i = f [ v sme.ameds
+ f f , O/, $)x (&, sVE, qmié)déds
o Jr

1 . 1 1 . . 1 -0
=f f)({(&S)V(&q}m@)(l—)IVI”wl+AX'1(§,S)—EIVI" ad

Xl

1 1
f [ e ome am@ i o+ A - o+
- fo [ (@i o + e 9)wie omendeds
« [ [ neam© (e i i e ) deds
Td
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1 1 1-p . a J . 3 i
- f f V(é-’,q)m(f)—IVIP(X{(f, 92X L e, s)ﬁ]dsds.
0 Jra p os Os

The last two formulas on the right side of the above equation are zero by using the periodicity of y;.
Denote

.. . 1 1 1-p .
5 = o [ [ SMEE e ameneds
0 Jr¢ P

A
+ o f f ST XAE E gmi§)deds,
0 J1d P

1
5/ = f f XIESMEQmE) (A (€. ) déds
o Jr
1
+ f f X1(E VE @m(E) (Ax](&. 5)) déds.
o Jr
Then, S;j coincides with the third integral in Eq (5.5). We only need to prove that Eng =-3 ;j . We have

B

N
I

1 .
fo fT d fR (€= 0, EQME) (€. 9) 1@ 9) X (E, 9)dqdéds

1 .
fo fT ) fR €= a9 QmE) (€, 9) — xilg, ) x1(q, s)dgdéds

1 j .
_fo deAXIi(f, SWI(E, SVE, @m(€)déds + 5.

We rearrange ¢5:

1 .
fo f f J(E = 4, SVE Pm(©) (1(@s 5) — x1(E ) ) (q. $)dgdéds
d JRd

ij
)

1 .
fo f f JE = g, VE QmE) Cr(& 5) - x1(q, 9)) (& $)dgdedss
Td JRA

1 .
fo f f JE = 4, VE mEY & (& s)dqdeds
Td Rd

1 . .
- fo f f J(E — g SVE QmEN (g, ) (& 5)dqdids
Td JRA

1 ) )
- fo fT dAX'{(f, 1 (&, HVE, @m&)déds. (5.11)

Thus, %;j = —f‘;j and the proof of Eq (5.4) is done by this relation. The structure of Eq (5.4) means
that (Ir,r) > 0, for any ¢ € R?; moreover, (Ir,r) > 0 since m > 0 and x1(g, s) is the periodic function
while g is a linear function. Consequently, [((£ — g) + (x1(&, 5) — x1(g, $))) - r]?* will not be identical to
Oif r £ 0.

Casell.r>2andO0<p<1:
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For r > 2, y1 does not include s, and

]

—+

[ [ 5e-axe-a f J(€ - g, 9)ds €, Qm(€)dgde

fT,, fRd [ fo (€ - g, s)ds|v(E Qm(€)E — g (q)dqdé

1 1 1-p
- f f f L% @ve. gmedadeds.
0 J1d Jrd P

Caselll.r <2andO<p<1:

lpai—>0asg — 0
0s

82—r_|wsl

there is one less item here than Case I and y does not contain x and .
CaselV.0<r<oandl < p<2:
The proof is similar to that in Case I, so it will not be described here.

6. Estimation of the remainder and a priori estimates

(5.12)

(5.13)

The estimation of error is similar to the linear equation, so we do not provide a detailed description

here; this gives the result of p = 1, and other situations can be obtained by analogous argument.

Proposition 2. Letv € C® ((O, 7),S (Rd)) For the functions ¢"™ and ¢

G (x, 1)

we have

. 0 0
$imOx 1) = e V() + £ 22 VY (6, 1)
ot ot
x t o,
+ 8X1(—,8—)'VE(XJ)
t
+ sxg(x )®(—E)-VVVv(x5,t)
g’ &
t 0
+ P(S5) VS (),
e g ot
1 to(x x & .
= = J(z,—)v(—,——z){——VVv(x,t)~z®z
& Jpa g’ \eg ¢ 2

+ ngVVv(xs—ezq,t)-zébz(l—q)dq
0

1
X t
+ SXI(__Z’g)f VVVy (X — ezq,0) z® z(1 — q)dq
0

X

1
l‘
0

(ttme)

| | ¢( s pace)

2—>0ase—>0,

where || - ||, is the norm in L? ((0, T), L2 (R")) and x° = x — Zt.

Networks and Heterogeneous Media
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(time)

Proof. The convergence for ¢, immediately follows from the representation (6.1) for this function.
For the function ¢S7““, the proof is completely analogous to the proof of [13, Proposition 5]. The
proof of Proposition 2 is done.

Together with Proposition 2, we get Eq (4.28), that is, lir(l)l+ pell 2 r2mayy = 0.

Let u°(x, f) be a solution of Eq (3.4) with u°(x,0) = ¢ € S (Rd). For any T > 0, then v(x,t) €

c> ((O, 7),S (Rd)) and we bring it into the equation satisfied by u® by constructing the approximate
auxiliary functions (4.4)—(4.6). It follows from Lemma 4.2 that w* satisfies the following equation

1
& v 1 1-p Ou°
WD pee = Lo ol F 25 (620 - © - VW0 (6, 1) + 6 (1.1
ot p ot
= O°(x,1),

wi(x,0) = @)+ (x),

where x* = x — 2t and
e X 2 (X 2 (d
0@ = ex1 (,0) Vo) + 202 (2,0) - VW) € L2 (7).
Consequently, the difference V*(x, r) = w(x, ) — v®(x, t), where V* is the solution of Eq (3.26), which
satisfies the following problem:

1 1
A((w*)r = (v)7)
ot
Notice that, with Proposition 2, we have that ||| L2(Rd) = O(¢) and ||®?||, = o(1) when u(x, t) # 0.
We will show that (v*)!/? — (w®)/? tends to zero in L*((0, T); L? (R%))) as € — 0. Denote

loc

— LV°(x, 1) = ©° (x, 1), V(x,0) = ¥°(x). (6.4)

Z=L;

loc

((0,T), BV(RY))) N C((0, T), L, .(RY), Z =L"(0,T), L, (R).

loc loc

Proposition 3. Let v¢ € Z be the solution of Eq (6.4) with a small Y° and ¢°:
Pelli20.1).2@ay) = 0D, W]l 2(rey = Oe)  ase — 0.
Then, we have
(w*)''P — (VS)]/p”L""((O,T),L/ZOC(R”’)) — 0ase— 0.
Proof. For p = 1, please refer to [14]; we mainly discuss the case that p # 1. Let (w®)!/? = v;, and let

(V)P = uf = v, satisfy the following equations

. (6.5)
— L%v; =0, v(x,0) = p(x).

P
{ ML Ly = 0, (6, 0) = 90+ (),

By subtraction, we have

0, (61 —LYa)— L' (vi —vy) = ®°,r €1, (6.6)
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= (61 -L")" (vl/ P vé/ Pyand X = L*(U). By multiplying both sides of Eq (6.6) with the test function
h and integrate it, we obtain
(@, )y
= <(9t ((5[ — Lt)h) h)X + <(6I Lt) (V] — VQ) N h)X ) ((V] — Vz), h>X
= (0, (6 = L) , By + (v, = vy/7, 01 = o)y = 641 = va) Py

Applying the Cauchy-Schwartz inequality and using (®%, %)y = o(g), the monotonicity of v + v!/?
yields

o(e)

\%

(0, ((6I = L) ,hyy — 6 ((vi = v2), i)y
d
T AT = L By = (@1 = LY, 8l = 64(vy = v2) By (6.7)

We denote f(f, L) = J( s ’)v(’—c, X)m(f) for any U cc R?; the second term on the right-hand

& g’ &

side of the inequality (6.7) is rewritten as
<<61 LR, 1)y
= ——Ilhlle - f f ) JE 2 —)(h(y 1) — (x, D)(Oh(x, 1))dydx

8 8 e’
= éinhnL f f JE 2, Dy, 1) = nx, 0)@my, 1) - 8,8(x, )dydx
2 pd € & &
= 2 + 5 f [ L Dyh0.0) - 0@ = i D)
i E E &
= ——||h||Lz+ f A[IE 2, Dyty, ) - nx, 0 |dydx
Rd e e

- f [ o Db D (5 60 - ey

= ——<(51 LY, hyy

x_
- — (9SJ
48’LL¢1

Combining the inequality (6.7) with Eq (6.8) and using the symmetry of v (E l) m (f), we can derive

Y si)]v(f )—’)m(g)(h(y, £ — h(x, 0)dydx. 6.8)

E &

1d
5— (((6T = L), h)X

2 (=L'h, W)y + 6{(vi = v2), Bi)x + o(€)

((6I = LY, h)y + 0(6) + o(e), (6.9)
where C; = 1/(o&"). Applying Gronwall’s inequality to (6.9), for all ¢ € I, we have

1

B, + 6) |( v ), r)' dx < (61 - L'y, 1y,
UeR4
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T
. X t
S“QLJJanmh+W%ﬂ%MC£ mﬂgg)mmm)
. i r x t
< Cy( Vo1 = Vool dx + 0(6, &) eXP(Cf 10:7(% Dl ads). (6.10)
UeRd ’ 0 £ e

When &,6 — 0, then vy, — vg, — 0; it follows that vi/”(t) - v;/”(t) — 0in L} (RY) forall # € I. The
proof is done.

7. Proof of Theorem 3.2
We now give the proof of Theorem 3.2. We have
f:mWKW:@W@uwwg-ﬁu-%ﬁmZHOMSHQ
Then, the inequality (6.10) immediately yields by Proposition 3:

w w
Nuf(x, 1) — ul(x — =1,0)|lz = O or [[u®(x + —t,1) — u’(x, £)llz = 0 as & — 0.
& &

Thus, we only prove Theorem 3.2 for a dense set in L! (Rd) of initial data, when ¢ € S (Rd). For any

pell (Rd) and ¢ > 0 there exists ¢, € S (Rd) such that [l¢ — @l (pey < 6. We denote by u7 and uy the
solution of Egs (3.2) and (3.4) with initial data ¢,. Because Eq (3.4) is the standard Cauchy problem
for a parabolic operator with constant coeflicients, the classical upper bound of its solution is given
in [31, Theorem E] for any 7 > O :

|1, 1) = o, 1)||, <l = el (ray < €1 € [0, T (7.1)
By the estimate in Proposition 3 we obtain
| x, 1) = u*(x, )|, < Coe. (7.2)

For an arbitrarily small 6 > 0, the upper bounds of the inequalities (7.1) and (7.2) are valid, and these
imply that

w w w
Hfu+;%ﬂ—ﬂm0k <Hfu+;mﬂ—@u+;umz

+

w 0
n@u+;ﬁn—wmnk

+

(x, 1) — u’(x, )|z — 0 as & — 0.
This completes the proof of Theorem 3.2.
8. Nonlocal porous medium equation for nonnegative initial values

We first give a framework for nonlocal nonlinear diffusion problems.
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Lemma 8.1. [16, Corollary 1.6] For a given homogeneous jump kernel p, the operator %, is defined
by

(Lou)(x) = f Tu(x) = u)lp(v(), v0y): . y)dy. 8.1)
R
For every initial condition uy € L'(RY) N L*(RY), the nonlinear nonlocal initial value problem

{ Oulx,t) + Lau(x,t) =0, (x,1)€R?x(0,), 82)

u(x, 0) = uo(x), x € RY,
has a very weak solution u(x, t) such that
u e L([0, 00), L'RY) N L*(R!)) N C([0, o0), L' RY)),

and the solution has the following properties:

(1) Mass is conserved: u(t, x)dx = uo(x)dx for all t > 0;
R? R4
(2) LP—norms are nonincreasing: |[u(?)||, < |luoll, for all p € [1,00] and t > 0;

(3) If ug(x) > 0 for a.e. x € RY, then u(t,x) > 0 for a.e. x e R and t > 0.

Homogenization of the local porous medium equation for negative initial values can be seen in [6].
Here we consider the following nonlocal scaling operator with a time-dependent kernel:

1 —
Zrutnn = o [ IO D D00 - w o)y (8.3)

where p > 1 and the Cauchy problem and its corresponding effective Cauchy problem

Ot (x, 1) — Leuf(x,1) =0, (x,0) € R?x(0,T), (8.4)
u?(x,0) = p(x), x € RY, ’
O (x,1) = LPu’(x,1) =0, (x,1) €R! % (0,7), ®5)
u’(x,0) = @(x), x € RY, :
respectively, where ¢(x) € LI'I(RY) := L'(RY) N L*(RY),
Lou(x, 1) = O(x, 1) - VVu?, (8.6)

and the matrix O(x, ) will be given below.
We now describe the main result and give a simple proof.

Theorem 8.1. Assume that the functions J(z, s) and v(x, y) satisfy the conditions (2.1)—(2.3). Let u®(x, t)
be a solution of the nonlocal evolutional Cauchy problem (8.4) and u°(x,t) be a solution of the local
Cauchy problem (8.5). Then there exists a positive definite matrix-valued function O(x, t) such that for
any T >0,

16, 1) = w6 Ol 0,122 (ray) — 0 as & = 0. (8.7)
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Proof. Set

t 1
W, 1) = u(x, 1) + &1 (6 1, =, —)Vu(x, 1) + 52, 1, =, —)VVu(x, 1),
e & e &g

owe(x, 1)
ot

= pu —(x r)+((19 2"2’2‘) Vu(x, 1)

82—’(6)‘ —=2) - VVu(x, 1) + ¢"(x, 1)

0s
with

. ) g
¢gzme)(x’ l) — 8% . Vu(x, t) + 82§ . VVu(x, t)

x t ou 5 x t ou
+8X1 (-x’ t’ ;, 8_) * VE(X’ t) +& /\/Z(xv ta ;’ ;) * VVE(X, t)

p
Denote

owe(x,t)
ot

- [ (5 D) ooy - oy

Hw®(x,1) =

&

we have

Hew(x, 1)
ou

=—(x n+(L e Rl Vu(x,f) + £ g VVu(x, 1)
e Os os

+8% Vu(x,t) + & (9(/9\/2

+&%x (x t,— al ) VV—(x 1)

VVulx, t)+8)(1( z gi)-V%(x,t)

~— f (x 2 I Dlue 0 + o0 (11,2, 2 ) - Vuer

+& )(z(y, )VVu(y t)—u(x,t)— 8)(1V1/t(x t) — & VVu(x, t)}

. (wg(y, Hr- et wa(y, Hr- 2w‘g()c, D+ -+ wi(x, )P~ 1) dy

(aP—bP)=(a—b)(aP~ +aP~2b---+abP~2+bP~1)

= %(x, 1)+ l/\/(o(x, 1)+ M.(x, 1) + ¢d(x,1).
ot £

Using the Taylor formula and symmetry of the integral, we directly give

o(x, 1) = 82—r%Vu(x, 1) — Vu(x, t)[f T & E (-
Js g e ¢

Ra’
X t X t _
1Os 1 = = 2 =) = (et =, =)z |(pu™ (. 1) + o(e)),
& & E &

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)
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M) = 2299001
s
rox x X t
_f J(Z’_r)v(_a__Z)I:(_Z)(l(y’t,__zv_r)
d g’ e € £ £

R

X t X t 1
+X2(y’ ta - —Z _r) _XZ(X’ t9 ) _r) + _Zz)pup_l(x9 t))vvu(x’ t)
£ £ g ¢ 2

P
H =20t = =2, =) + =2)p(p — D >Vu ® Vuldz. (8.13)
£ g2

Similar to the proofs in the above chapters, we can get the corresponding conclusion. That is, due
to Eq (8.11), there are two functions y; and y, such that M, = 0.
For 0 < r <2, we have that M, — ® - VVu?(x,t) as € — 0, where

1

. 1 . .

Y = f f f S€- q)'(& = @) J(E = q, sHV(E, qm(€)dqdéds
0 Td Rd

1 .
B j(; \L;d Ld J(& — g, (&, @m(E)(& - q)i)({ (x,t,q, s)dqgdéds. (8.14)

For r > 2, we can get a result that is similar to Eq (8.14), so we do not repeat the proof here.

9. Stochastic homogenization

9.1. Introduction and statement

The literature on the stochastic homogenization of parabolic equations of local equations can be
found in [9, 10]. In this section, we introduce how to deal with the nonlocal parabolic equation model
with random statistically homogeneous coefficients, where the ideas and methods mainly come from
[41], for which we need some additional measure ergodic theory.

T is a d—dimensional dynamical system, (€, F, P) has a standard probability space and we assume
that u(x, w) = u(T,w), T, : Q — Q satisfy the following properties.

(1) Ty,T,, =Ty, forall y,y, in R, Ty = Id.
(2) P(T,A) = P(A)forall A€ ¥ and all y € R?.
(3) T, is a measurable map from R? x Q to Q, where R? is equipped with the Borel c—algebra.

We consider the operator

Lov(x, 1) = 8dl+2 fR d I . Y é w,)v(g, g W)V 1) = v(x. D)dy, 9.1)
where for a.e. w,, we have
J(z,1) € L=((0,T), L"RY), J(-,1) cc R,
J(z,0) = J(=z2,0),J1(z) > J(z,1) > 0;

v(Z, 2, w5) = v, w v, wy), 9.2)
E & E E

where w; and w, are random fields to R x R¢ that are stationary with respect to time ¢ and space x,
respectively. We fix an ergodic environment probability, that is, assume that

{ (Q,F,P) is a probability space endowed with an ergodic semigroup, 9.3)

7:7Z¢xRXQ — Qof measure preserving maps,
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and we denote by L? the set of stationary maps u = u(x, t, w), meaning that
u(x +k,t + 5, w) = u(x, t, T yw), V(k, s,w) € R x R x Q (9.4)

Notice that spatial variables can be Z¢—stationary in local equations, but they are not applied here and
we will see them later. Define norm-L?

llullz = E[ | u?] < +oo. 9.5)
o)

Note that, if # € L? and U is a bounded measurable subset of R, the stationarity in time implies that

the limit
1 !
E[ fu u(x, t)dx] = lim E[% j; ft_ h u(x, s)dxds]

exists for any 7 € R and is independent of ¢. Let C be the subset of L? of maps with smooth and square
integrable space and time derivatives of all order belonging to L2. C is dense in L? with respect to the
norm in the inequality (9.5).

We denote by H!, H! the closure of C with respect to the norm

1/2 1/2
2 2 2 2 2
el = (el + 10allg. + 1Dully) . Nellegy = (el + 1Dl

and H! is the dual space of H.. Moreover, L2, is the closure with respect to the L?-norm of {Du : u €

pot
d
C}in (LX(Q) .
Set v(x,1) = |u(x, )P 'u(x, t), denote Lev(x,t) = Lé(ulP~'u) := ZFu(x,t). We now consider the
Cauchy problem and its corresponding effective Cauchy problem

Ot (x, 1) = ZLFu(x, 1) = 0, (x,1) € R % (0,T), 9.6)
u®(x,0) = @(x), x € RY, :
0u(x, 1) = Lou’(x,1) =0, (x,1) € RY % (0,T), 7
u’(x,0) = ¢(x), x € R4, :
where p(x) € LI"I(RY) := L'(RY) N L®(RY),
Lou(x,1) = O(x, H)VV|ul" ' u, 9.8)
and the matrix ®(x, r) will be given below.
We also transform the problems (9.6) and (9.7) into the following Cauchy problems
0V (x, )P — L5ve(x, 1) = 0, (x,1) e R % (0,T), ©9.9)
ve(x,0) = ¢(x), x € R4, :
ov(x, )P =@ - VVu(x,1) =0, (x,1) e R % (0,T), 9.10)
v(x,0) = p(x), x € R4. '
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9.2. Main results

Theorem 9.1. Assume that the functions J(z, s) and v(x,y) satisfy the condition (9.2). Let u®(x,t) be
the solution of the evolution Cauchy problem (9.9) and u’(x, t) be the solution of the effective Cauchy
problem (9.10). Then, there exists a positive definite constant matrix ® such that for any T > 0, we
have

& 0 +
u(x,t)—u x,t” —0ase— 0a.s. 9.11
1) x.1) LY(0.7).L* ®)) ©.11)

The homogenized flux @(x, f) can be characterized as follows.
Case L. For r = 2 and p = 1, the homogenized constant matrix ® is characterized by

0= %fz f f(z@z -z®7..(0, s, w))J(z, (0, w)u(—z, w)dzd sdP(w), 9.12)
-1 Jrd JQ

where y = x(v, 5) and (¢, s) € T¢ x T solves the cell problem

{ L JE=q.9vE, q)(q - &+ x(g,5) — x(&, S))dq = 0x(&, 5), (9.13)

x(0,0) = x(v, ), y € T.

Case II. For r = 2 and p € (0, 1], the homogenized matrix ®(x, ) is characterized by

O(x, 1) = %fzf f(z@z—z@g“_z(x,t,O,s,w))
-1 Jrd Ja

xJ(z, $)u(0, wu(—z, w)dzd sdP(w),
where x* = ¥*(y, s) solves the cell problem
[ - ameafa- €+ xnn g -xixn)dg
R

= Lo PO (x, 1.£,9)). (£,5) € T XT, (9.14)
x(x,1,y,0) = x(x,t,y,1), y € T

Case III. For r = 2 and p € (1, 2], the homogenized matrix ® is characterized by

K _f PP 1y, 8) if u®(x, 1) # 0,
X“*%”‘{o if u’(x, 1) = 0,

where B¢ = B¥(x, 1, y, s) solves the cell-problem for each (x, f) € [ug # 0],

oiun e = [ Je-gomeafo-¢

+plu®P b (x, 1, g, 8) = pluPB(x, 1,€, 9))dg,
h(x,2,y,0) = bi(x,1,y,1), y € T,

(9.15)

and the measurable set [uo * O] = {(x, 1 eRY%(0,T): u’(x,1) # O}.
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We need to construct special axillary functions with the following structures.
(1) Forp =1,

wo(x, 1) = v(x, 1) + sx(f, iz, w)Vv(x, 1) + Vi (x, 1) + Vi(x, ). (9.16)
g €

——————
First corrector

Additional terms for compensation
(i) ForO < p < 1,

L )V, 1) + 500, 1) + D5, 1). 9.17)

wo(x, 1) = v(x, 1) + ex(x, t i
&

(iii) For 1 < p <2,

! w)Vv(x, ) + V5(x, 1) + V5(x, 1). (9.18)

Wi, 1) = v(x, 1) + eplv(x, ] 7 P h(x 1, = Rt
&
The functions v and ¥ are used to eliminate some extra parts that will be mentioned later when we
consider some convergence.
Next, we need to bring in the auxiliary function w?(x, ) to decompose according to the order of &.
Case 1. For p = 1, similar to the derivations in [13, 14], we only need a new corrector y(Z,

Substituting the expression on the right-hand side of H* for w{ in Eq (4.3), we get
ov 1
Howi(x, 1) = —(x, 1) + = Mo(x, 1) + M.(x,1) + ¢o(x, 1) (9.19)
ot E —— ~— ——
=0 Zero—order expansion — Remainder
as € — 0%, where
oy . x x
Mo, D) = Z-Vv(xt) = Wi o] | J@5mE = -2)
s Rd e’ e ¢
X t X t
(=2 +xC 2 ) —xC. )] 9.20)
E
M(x.0) = ~VVu(x 0| f I M,
e €
'(—Z®)(()—C -z, —)+ 1z(@z)alz], 9.21)
£ g’ 2
Blrt) = @I = gL, (1) = (-, —) V (), 9.22)

t X X
(space) _
Espace) = f J(z, _Z)V(_’ - = Z)
R4 & E &

1
(f VVv(x — ez, t) - z® z(1 — n)dn — %VVv(x, 1) -z®z)dz

0
+£ fRdJ(Z’ é)V(z,)—C—Z)X(z Z, 2)(Vv(x ez,1) — Vu(x, l‘))
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g2

t X X X t
+VVv(x, t)f J(z, —z)v(—, - - z)z ®)((— -2z, —)dz.
Rd £ g ¢ £
Case 2. For p € (0, 1),

owi(x, t) 1

_6_ (time)
o (1) + = - Vo(x, 1) + 60 (x, 1)|.

il 7 [

Using the Taylor expansions we have

1 1-p 8 1
HoWe (x, 1) = —|w§|78—:<x, B) + ~Mo(x, 1) + Mo(x, ) + ¢o(x, 1) as & — OF,
p E

where
1, 1edx t.oXxX X
Mo(x,t) = =W 7 - Vu(x, 1) = V(x| J(z,—z)v(—,——a
p os Rd g’ g e
(-z+xnt -2, —2) Xt S ))dz],
M(x, 1) = =VV(x,1)| f JamvE -2
RY £ g ¢
x t 1,
1 Lp o
Ge(x.0) = —Iwil 7 QM) + g0,
p

(pgime)(x’ H = 8(?97 Vv(x, 1) —|—g)((x t ) V_(X D).

Case 3. For p € (1, 2], we have

0W‘§(X, t) 1 1-p 6\} 1 p-1 ahl .
= —wél7» | — _ 7 ).V (time)
=l [5G0+ b7 =) Vo) + 6. ).

$emI(x,1) = e(p—1)|v(x,r)|‘“+%>v(x,t>@h<x,t,f,%Wv(x’f)

+ eplv(x, t)| » % Vv(x, t) + eplv(x, t)| h(x t ) V—(x 1).

and

Lp 312 o
HwS(x,1) = |w2| — + Mo(x N+ M (x, 1)+ ¢(”me) + (]bf;p“””) as & — 0,

where

. 1
Mot 1) = &2 7 Blvae, - W f J@ 52 =)
wil ds Rd g’ e ¢

(9.23)

(9.24)

(9.25)

(9.26)

(9.27)

(9.28)
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(=24 PO DI T HOu 1 S = 2 25) = phv(e 1 7 b1, =, 25))dz), (9.29)
& & E &
My(x.0) = =VVv(x, 1) f v =)
Ré g’ g &

et X t 1
(= 2pvOn 0l 7 B0 1. = 2 5) + 577)de]. (9.30)

Due to the order of &, we put the terms with O(e) and the higher-order terms with o(g) into the
remainder as the fourth part.

Next, we will prove the main conclusion. For the convenience of the proof, we first prove the linear
case, and then point out some results of the nonlinearity that are different from linearity.

The proof of the linear equation is divided into three parts, where the first part is about the first-order
random corrector, the second part is about the zero-order term and remainder, and the last part is the
proof of Theorem 9.1.

For any 6 > 0, let us consider the equation

Sx° — 80,x° + 0x° — SA° — U x° =0, (9.31)

where
Ay = fRd J(z, )v(x, x — 2)(—z + x(x — z,1) — x(x, 1))dz. (9.32)

We set
L& Lw) =x (€ -2t w) - x(E 1,w). (9.33)

Throughout the proof, to justify repeated integration by parts and to deal with the unbounded domain,
we use the exponential weight Iy, which, for 8 > 0, is given by

— 2
Ty(x, ) = exp{—@(l Fl+r)” }

The first lemma is about the existence of and some a priori bounds for the approximate corrector in a
bounded domain.

Theorem 9.2. Assume that Eqs (9.2)—(9.4) are satisfied; there exists a unique map y: R x Q — R
such that

o -y =0,k=1,2,--- ,d, inL? (9.34)

and for all 7 € RY, £.(&,t,w) € L? is a stationary field that satisfies

_Lx t,w)dxdt =0P —a.s.
01

The positive definite constant matrix © is defined by

O(x, 1) = %fzf f(z@Z—Z(X){_Z(O,s,a)))
-1 JRrI JQ
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xJ(z, s, W0, w(-z, w)dzd sdP(w). (9.35)

Moreover, P-a.s. x°(x,t,w) = EX(E, 8—’2, a)) is a function satisfying sub-linear growth, that is

(Rd+1).

X(x, t,w) 20 in L,

The proof is long and technical, so we will follow the diagram step by step.
Step Task

The existence for the approximate corrector in a bounded domain

The existence for the approximate corrector in an unbounded domain

The convergence of an approximate sequence

The existence of a corrector

The stationarity of a corrector

The uniqueness of a corrector

The sublinearity of a corrector

~N O\ kW

9.3. Uniqueness, existence and sublinear growth of corrector

Denote
W,u = f J(z, t)v(x, x — z)(u(x -z, —u(x, t))dz
R4
- f J(z, )v(x, x — 2)zdz = ALu — f. (9.36)
R4
For a large enough L and the bounded support sets of u and J, we get

(A, u)Lz@L) <0.

Step 1. Approximation sequence for constructing the solution.

Lemma 9.1. Assume Egs (9.2)~(9.4) for any w € Q,6 > 0 and sufficiently large L > 0, and let
u; € Hé (QL) be the solution of

618 — 60,18 + 9 — 6A1S — A8 =0in Q;, 18 =0indQ;. (9.37)

Then, we have that 6,, > 0, which depends on 6 but not on L or w, such that for any 0 € (0, 6,,] and
P-a.s.,

f (5(112)2 +5(an0) + (Dui)Z)ﬁ; < Crap. 9.38)
o

Proof. Using ﬁ;uL as a test function in Eq (9.37), i:g satisfies 'Dﬁ;‘ +

H,ﬁ;‘ < Hfg; we find that

j: (5(u§)2(x, fw)+6(0n0) (nt,w) — 6 (D) (w1, w))ﬁ,
oL
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5 5 (9zre ( i)z (9;1:9

DT, _
S_f 60 U] — — +u(zDu6L'A—6+fu‘z Iy
QL rg 2r9 rg
< f. (601,145 | [u&] + 1) Duy, + 0(u3)? + | fllug NT: (9.39)
oL

by the Cauchy-Schwartz inequality, we can finish the proof.
Step 2. Next we prove the existence of y°.

Lemma 9.2. Assume that Eqs (9.2)—(9.4) are satisfied. For any 6 > 0 and 6 € (0,6,,), in the sense of

distributions, there exists a unique stationary solution y° € H} c H! of
6

Sy’ — 00,x° + 0x° — A’ — U x° =0 in R P —a.s. (9.40)

It is independent of 6 € (0, 6,,). We also have the following estimate

E fg | [5(¢') +5(ax’) +(x) | <C. 9.41)

Proof. This equation contains both local and nonlocal terms; our aim is to get an approximate equation
in an unbounded domain, so we first show that u;, — u. Then w is arbitrarily fixed, and u; € HA

for any 6 € (0,6,,],L € (0,00) from Lemma 9.1. According to the rule of diagonals, this produces
subsequences, which we still remember as the original notation, then, for some u € ﬂ HF and
01
601€(0,6,]

any 0 € (0,6,,] we have 1, S winHL . Here,
[g

W, u, — Ayu = f J(z, Hv(x, x — z)((uL —wW(x—z1) — (uy —u)(x, t))dz;
R‘[

2

thus, forany L > O and 6 € (0,6,,), u; — uin LZ(QL), taking norm in LF and dividing the integral area
6

into two parts, we have

||91wuL - Q[wll”l% (RA+1Y

I'y
< Ay — A u||L2 ,(O0) +( sup —)||91w11L wu”L% RHN\Dy)
Rd”\QL O bm

Iy
< |Arp = Aull 2, + ( sup —)(||QI 11L||L2 R + {12y, u||L2 (Rd+1))
R‘I+I\QL m
=Vi+V,. (9.42)
We know that 2, is a bounded operator in LZ(QL) from [13, Proposition 6]; however,

1A 1z, — gku”L% ®ey =0
0

can be obtained directly through a similar argument in the inequality (9.42).
Note that Vi, V, — 0 uniformly as L — +oco by using the definition of I'y. Therefore we can assume
that, Au; (x, 1, w) — Au = £, U, u;, — A,u = £y, where £, 41 € (Ngeoa,] l% as L — oo.
9/
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It can be seen that, in the sense of distribution, we have
ot — 68,11 + At — SAu — Ayu = 0in R, (9.43)

and for all 8 € (0, 8,,],

f 8(u? + (8w)* + [Dul*)Ty < Crse, (9.44)
0

where d,u € H.!, Du € (LZ(Q))d )

Next, we check that u € ) H% is a solution of Eq (9.43) in the sense of distribution. Let
0el06,] Lo

¢ eC” (R‘”l). For a large enough L, we have
f [6((us = ¢ + B = 8:9)° + Vi = Vo) = A (0], = $)(1), — $)ITy = 0;
()

using MLi:g as a test function for the equation of u;, we find that

—

or, DT ~
f ((Slli + 6(6,11L)2 + 5(9;11L11L,t\_9 + 6,uLuL + 611LV11L . A_e + 5|VuL|2)r9

oL rg rg

- j; f Ju(x — z, w)u(x, W)(—z + u(x — z,t, W) — ug(x, t, W)Hu,(x, t, w)dzi:g =0;
L JRY
thus, the above two identities subtract yield that

f ( — 201,60 + 8¢ — 260,10, + 5(8,0)° + 6(Vp)> — 26V, - Vb
o

a,T, DI\~
FA - ¢+ A - (g — ) — Dty — 801, == — 6, Vuy, - = )Ty = 0.
[y [y

2
loc?

As L — co,u;, — u, Vi, - Vu, da;, — duand ({0), — £ in l% and in the sense of L; , we get
6

f ( — 20u¢p + 60> — 260,u0,¢ + 8(8,0)> + 6(Vg)* — 26V - Vo
Rd+1
oT, DI\~
+Au- ¢+ Ay - (U — @) — Juu — 6(9,1111,’\—9 —ouVu - Te)l“g = 0.
Iy Iy
By integrating Eq (9.43) against ¢f9, we obtain

—

a,T, DT —
f (6 + 60,u0,0 + 5a,u¢jf—" + g + VUV + SVup—" — A, - $)Ty = 0.
Rdﬂ

[4 FG

Adding the above two equations gives
f (- 6001 — §) — 50,001 — 0,9) — 5V(u ~ AV + Ay - (1 = )
Rd+1
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—8u(1t — @) — 50,1 — B) oo _ S(u— ¢)Vu@)ﬁ, =0. (9.45)
T, I,

For every ¢ € CX(RY™), set ¢ = u + hyr, as h — 0F we have

T, DIy\—~
f (61 + 60,u0y + SDUDY — A1 - Y + D + 50,11;0@ +oYVu—=")Ty =0,  (9.46)
RA+1 FH FH

where 1 and Du are locally integrable, ¥ has a compact support, DTy, 0T, 8 0 locally uniformly;
thus, we have

f owy + 600 + dDuDY — A - + oy =0 as 6 — 0. (9.47)
Rd+1

For any ¢ € CX(R¥1), Eq (9.47) implies that u is a solution of Eq (9.43) in the sense of distributions.
Finally u is stationary from the uniqueness of Eq (9.43).
Step 3. Approximate the convergence of sequences y° in L2.

We have known that from the inequality (9.41)

6| @Gx'Ydxdt<C, | ()Y dxdt<C, 6 f Vx| dxdr < C,
]R‘l'*' 1 R‘“‘ 1 th— 1

where the constant C is independent of ¢. Letting 6 — 0, for an arbitrarily fixed w, we have

80, x° — Ox weakly in L2(R%1),
Y =x weakly in L*(R%1),
6Vx’ — 0  weakly in L*(R*).

Moreover, we have
1
- f f f JCe, () 0, 1) = X (x, r)|2 dydxdt < C.
2 R Rd Rd

Hence, for any measurable subset E C QX QOx Q; C RYxXR?xR, using the cauchy-Schwartz inequality
we find that
2

f J(x, y)v(x, y)()(6(y, 1 — Xé(x, t))dydxdt
E
2
< f J(x, y)V(x, y)dydxdr f Ty 0.0 =, 0| dydxds
E E

<s»v C. (9.48)
Now, applying the Dunford-Pettis theorem, there exists ¥(x, z, t) such that
J(Z, Hv(x, x —2) (—z +)(6(x —-2z,0) —)(‘S(x, t)) — x,z,1)

weakly in L'(Q x Q x Q). Taking u = y° and ¢ = y in Eq (9.47), as § — 0 we have

ff@t)()(dxdt:f ffﬂ)(dxdzdt.
01 VY0 01 Yo Y0
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Therefore, to finish the proof we have to show that over O+ = Q; X O X Q

f J(z, t)v(x, x — 2)(—z + x(x — 2, 1) — x(x, 1))ydxdzdt = f Pydxdzdt.

%

In fact, taking u = x° and ¢ = ¥° in Eq (9.47), we have

[ [ (oor+s(ow) +anew + o) - [ anex
01 Y0 01 Y0

= f Jz,Hv(x,x—2) (—z +)((s (x=2z,1) —Xd(x, t)))(édxdzdt - f Pydxdzdt;
* Qs

thus,

iml | JG v x = 2) (<24 X6 = 2.0 =X (6, 0) X (5, ) - f 9x1=0.

- O %

Using the monotonicity of the nonlocal operator, for all ¥ € L*(Q X Q)),
f J(z, 1) (—Z +xX°(x =z, = X°(x, t)) (Xé(x, 1) —Y(x, t)) dzdxdt
< f (J(@ (=2 +P(x = 2.1) = P(x, 1) ({°(x. 1) — P(x, 1)) dedxdt.
Passing to the limit as 6 — 0, by using Eq (9.51), we have
f Wy — W)dzdxdt < f J(Z, (=72 +Y(x —z,1) = P(x,0)(x(x, 1) = Y(x,1))dzdxdt.

Choosing ¥ = y = yy,y > 0, and letting y — 0, we get Eq (9.49), and the proof is finished.
From Eq (9.43) and the Cauchy-Schwartz inequality, for any € L*>(Q x Q) we get

f YW + 60,x°0 + 6D’ Dy — 0 as 6 — 0.
0Ox0

Passing to the limit as 6 — 0 in Eq (9.43), for a.e. w the function y (z, ¢, w) satisfies the equation

alX - fRd J(Z’ t)/'l (X_Z, t’w)ﬂ(-x7w) (X(X_Z, t,(/)) _X(x’ t,w))dZ
+ f zJ(Z, Hu (x, w) u (x — z, w)dz = 0;
R4

thus, we prove that y(x, t, w) is a solution of Eq (9.34).
Denote (£, t, w) = x(z + &, 1, w) — (&, t, w); then for z € RY, we have

L€ 1,0) = (0,1, Tew).

Step 4. Stationarity of ..

(9.49)

(9.50)

(9.51)

(9.52)

(9.53)
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For all z € R? and ¢ € (0, T), the field .(x, t, w) is statistically homogeneous in x and ¢, and

gz(()’ f, C()) = X(Z, t, (1))

Thus, the random function y(x, ¢, w) is not stationary, but its increments

gz(é" t, (,()) :X(é: + 2,1, (1)) _X(g’ f, w)

form a stationary field for any given z.
We first prove the uniqueness of x°. Let u; and u, be two solutions and set it = u; — u,. Using iipy
as a test function in Eq (9.43) for i, we find that

(62 + 6(0,i1)* + (Du)? — (A1, i1)Ty

Rd+1

=— | (6ud,ad,Ty + iDii + fliil) - DTy
Rd-ﬂ

<6 (o|al|0, | + ColDﬁllﬁl)ﬁ,. (9.54)
Rd+1

Then a standard argument based on the Cauchy-Schwartz inequality implies that, for 6 small enough,
iu=0.

Next, we will prove that Z,(x, f, w) is stationary in x, t.

Proposition 4. The function x(z,t,w) can be extended to RY x R x Q in such a way that y(z,t, w)
satisfies the relation inequality (9.34), i.e., x(x, t, w) has stationary increments:

{ X+ ELw) = Y€1 w) = x (2.1, Tew) = x (2.1, Tew) — x (0,4, Tew), (9.55)

X t+s,w)—xz s, w) = x (@t Tw)—x(z0,Tw).

Proof. The strong convergence { Y’ } implies that there exists a subsequence of {/\(‘5"k} that converges a.s.
to the same limit y(z, f, w):

/}im X‘S"k (z,t,w) = x(z, t, w) for a.e.(z,t, w).

Since J and v are stationary, according to the uniqueness of the stationary solution y°, we get
On Sn — /O On = 9n
X (z+ & t,w) — XY (€1, w) = x* (z,t,Tgw) — X (O,t,Tfa)) = " (z,t,Tf(u).

Thus {)(5"k} in Eq (9.43) and passing to the limit as k — oo we obtain Eq (9.34) first only for z; and z,
that z;,z, and z; + 2, belong to supp J(-, ). Then, we extend the function y(z, 7, w) to a.e. z € R? due
to Eq (9.55): x(z1 + 22, t, w) = x(22,t, w) + x(21, t, T;,w). The proof of the second formula is similar, so
we omit the details. Therefore we get the stationarity of ..
Step 5. Uniqueness of y.

We first establish an important lemma.

Let ¢ = ¢(x, R(1)) = ¢(35) € C' (R? X [0, +00)) be such that

¢(x,R) = 0in R\Qar, ¢(x,R) = 1in Og, ¢(x,R) =2~ % in Oop\ Q.
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1161

Denote 7, = 6(x + z,t,w) — 0(x, t,w) and

f f f J(z, Du(E + 7, w(é, w)F.5(E + 7, ) (‘p(lé + zl) (Ifl))d dé,
R? J|£>3R 3 !

b= | f| M ol e 20~ )
4 J)EI<3R
(g
[ seouerwomea(oe o - oew)
lI< VR JI€I<3R
5

v [ e nopEoE s o - o)
1> VR JI¢I<3R

X(¢(|§;Z|) (lgl))dfdz = Ay + Ay,

Ay = f f I DUE + 2, (s )T E, W)
R4 JI¢|<3R

e (o)

< fR ) j; ReEIR J(z, D€ + z, W€, W), (€, w)

[¢1<R

R

+ f f I DU(E + 2, O, )T E, W)
R4 JR<|E|<2R

.(¢(|§;z|) (|§|))d§d

Lemma 9.3. We have the following estimates

C ; (7, > (Inl
b s B+ R ”'R(t)'quMQR R "”(F)d"’

A2<

R0, Ay < oR@Y,

VR( ) B
d C d—1 ’ > Il
A; < R+ ——R" +alR' (1) lo-(n, w)) —dﬂ
Q'IR (t) R<|n|<2R

IA

and
lo(n, )|

6(tt) = [ UGG 00ko® =0} [ o(Tw) T E D dy < ek

<R

where ¢;, cq and a are small enough.
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The proof is given in Appendix C.

Lemma 9.4. For a.e. w and all ¢ € RY, we have

1

E f ' f J(z D (2, w) (0, w)Fdzdt = 0. (9.56)

1 d
5 IR

Proof. Because the mapt — E f J(z, Hu (z, w) u(0, a))azdz is well-defined, and for all ¢ € R, in order

to prove Eq (9.56) by using the contradiction, we have

E f J(z, Dt (2, w) (0, w)32dz = 0. (9.57)

Rd
Fix R > 0; in view of the stationarity of &, there exist &y > 0 and 0 < k < « such that, for all
teR,e€(0,g) and R > 0,

f f J(z, Hu(x + z, w)u(x, W) (x + z, 1, W) — T(x, t, W)) go(' l)dzdx > kR, (9.58)
RY JRY

T is large enough; let R(t) = (T — yﬂ)l/4 satisfy R'(f) < 0 for some y, > 0; then

d 1
7 y 20’ 2(x, He(x, R(t))dx
= R(1 f %ﬁ'z(x,t)(?Rso(x,R(t))dX+ f a(x, 0,0 (x, De(x, R(1))dx
R4 R?

= R(1) f 1&2(;@ Ore(x, R(t))dx
Rd 2
+ f f J(z, Hu(x + z, w)u(x, W)(T(x + z, W) — F(x, W))T(x, W)Y (%) dzdx
R4 JRA
= R'(9 f lc‘rz(x, NOrp(x, R(1))dx
Rd 2
_ ! f f J(z, Hu(x + z, w)u(x, a))(d'(x +z,w) —a(x, a)))
2 R‘l Rd

.(&(x+Z,w)(p(|x;Z|)—'( )cp(l |))dzdx

thus,

i f —32(x, Ne(x, R(t))dx = R'(t) f —(x, 1Ore(x, R(1))dx
dt R4 2

1 f f J(z, Oux + z, w)u(x, a))(é'(x + z,w) — 7(x, w))z‘p (M) dzdx
2 R4 JRA R
_% f f J (2, Dp(x + 2, p(x, )T + 2, 0) = F(x, ))F(x + 2, )
R4 JRA

E=RE

Volume 18, Issue 3, 1118-1177.
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According to Lemma 9.3, we have

d (1
= R
= fR 50 2(x, (x, R(1))dx
1
<R(1) E(‘Tz(x, NOre(x, R()dx — kRO + |A1] + |As] + A, (9.60)
Rd

the fact that the inequality dgp(x, R(7)) = Rl(fl)z,go(';') < 'X' when R < |x| < 2R, if « is small enough, we

obtain the following from estimates in Lemma 9.3:

d

1
EE fR d E(-rz(x, Do(x, R())dx + (k — ¢z — ¢5 — cg)R(1)*

C
R + -l 61
< Je O oo

due to the facts that |Q2R(,)\QR(I)| < C(R())? and R'(¢) = v, (R(t))"", for some C > 0, we get

d 1,
—E jl; 50 D, R()dx
C
< -RtY'(k—ca—c;—ca=Cyy' - R(t)). (9.62)

Choosing y; > 1 large enough and ¢,, ¢, and ¢, small enough such that k — ¢; — ¢, — ¢y — Cy;' > %/2

and 7 < t7 = (T — (4C%7")?)y;", in order to have \/1% < %/4 on [0, 7], we have
d

th f 10'(x De(x, R(f))dx < R(t)" . foranyte€|0,tr].
]Rd

Along with integration in time over ¢ € [t;,y;'T] for #; € [0, VT, suppose that y;! and T are
sufficiently large and satisfy y;'T < r7; also, given the fact that ¢ > 0, we have

-1

A

1_, T (M d
Ef Eo’ (x, t1)(x, R(t))dx > é_lf R()“dkt.

R4 131

Integrating in time over #; € [0, VT, since R(t;) < T"* and ¢(x, R(1,)) < lo .. We get

)

Hence, we can apply Lemma B.1 in Appendix B which implies that, for any ¢ > 0, there exists Rs such

that, for all R > R;,
R
E f f a2 (x, t)dxdt, < SR,
0 Or

Here choosing R = 2T'/* and T large enough, we obtain

]ATdX% <Ef
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as ¢ 1s small enough, which yields a contradiction. Hence we get

1/2
E f f J(z, D (z, ) (0, w)G>dzdt < 0. (9.63)
R4

-1/2

By combining the inequality (9.63) with the inequality (9.57), we get Eq (9.56); the proof is done.
Suppose that u and u; are the solutions of the equation and set T' = d,u' and &' = A, u'; then
T -3 - (¢ - &Y = 0; by applying Lemma 9.4 to the pair (¥ — T',u — u'), we find that
12
E [ ¢-&)u-u)d=

-1/2

which implies the uniqueness of y.
Step 6. Sublinear growth.

Lemma 9.5. The family of functions {x°(x,t,w) = gx(ﬁ,é,w)}po is bounded and compact in
(Rd+l)

loc

Proof. Assume that y°(x, 1, w) = a)((g, —, w) satisfies the equation
Ax® —Ay® =0in RY x R, (9.64)
Denote x£(x,1) = z+ x*(x + z, 1, w) — x°(x, 1, w), ¢ = J(z, Hu(x + z, w)u(x, w) and j, = 4a/§ Jo- Without

loss of generality, we assume that 0 < j, < 1; we will show that there exists a universal constant Cy
such that, P-a.s. and for any R, T > 0,

T
lim sup f f X (x, 1)* dxdt
e—0 0 QR
3
< CoT’R™E f f 2l (z, (T, s)Pdzds.
_% R4

Fix &£ € C*(R; [0, 1]) such that

3
£=0in (-0, 20 =2), £=lin[ji-L+e), ]<2. (9.65)
Denote y _
s _
ol s.1) = (5 = 30 = llR )
where ||x||.c = max{|x;| : i =1,---,d}. Since 1 < % -5 < % for s € [0,1], ¢(x, s,t) = 1 in Qg, while

@(x, 5,1) = 0in R\ Q.
From Eq (9.64) and Young’s inequality, fix # > 0 and for any s € (0, ), we have

d
e (/\/S) (,0()6 S, t)dx - (Xs)zasﬁodx - Lw)(€§0
Rd

f (x°) 05 — f ) f XX (X + 2,8, W@(x + 2,5, 1) — @(x, 5,1))dzdx
R R4
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- f f WX (x + 2,5, w) = X°(x, 5, W)p(x, 5, )dzdx
R4 JRA
(X*) 050 — By — B,
R4

where

By f f XX (x + 2,5, w)(@(x + 2, 5.1) — @, 5, ) )dzdx,
R¢ JRY

B, f f <>)(?()(g(x +z,w) = X°(x, a)))cp(x, s,)dzdx = By + B,
RY JRd

By = Rt f f ST xw))(@(x + 2. 5) — @(x, 5))dxdz
R4 JRA
= R f f QT w))(@(x + 2, 5) — @(x, 5))dxdz
R4 J|x|<3R
+ R‘ltff <>(X§(wa))2(go(x+z, 5) — @(x, s))dxdz,
R4 Jx[>3R

By, = Rt f f o(x°(x + z, 5, a)))z(cp(x +2z,5) — ¢(x, s))dxdz.
R JRY
Denote ¢(1, 5, w) = f |21 (z, )Y (T,)—.w, s)[*dz; then we have
R4

~ 1/2
By < R F(Tyw)dn)
mI<2R

~ 1/2
+ R0} P (Tew)de)
I€I<3R

< R%_zta§¥s(s).

Finally, the penultimate inequality uses Appendix C. So we have

¥ = (| PTwsam) +(|  FTwsde)”

[7I<2R [£1<3R

thus,

&
>
IA

&rla? f J1(2)lzldz f dw(x, s, w))*dx
a’zJO f * )2dx

(9.66)

(9.67)

(9.68)

(9.69)

Since dyp = —2a3jor™'¢ while | (x) — ¢ ()| < R7'&|x — yl, we can absorb the last term on the

right-hand side of Eq (9.66) into the first one to obtain

d
- f () p(x, s, )dx (x°)’dspdx — By — B, < -B; — By,.
ds R4 R4

(9.70)
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Integrating in time over s € [0, ] and using the definition of ¢ we get

OE())*dx < — f B, (s)ds + Rt f ¥(s)ds+ | (°(0))dx. (9.71)
0 0

Or O2r

Integrating in time over ¢ € [0, 7],

T T t T !
f OE())dxdt < — f f B, (s)dsdt + R f t f ¥(s)dsdt
0 Or 0 0 0 0

+ T | (F50)*dx. (9.72)
O

Let £ — 0; from Appendix B and the ergodic theorem, we have P-a.s.,

T
lim sup f OE(x, ) dxdt
0

&—0

Or
T t T .
<= f f f E| f Wx - x|, s, 0ydxdsdt + R 2T f f Y(s)dsdt, (9.73)
0 Jo Jrd 0, o Jo

1/2 3 12 1/2 . 12
¥ = f (f $%(0, s, w)dn) ds + f ( $%(0, s, a))d‘f) ds
- Inl<2R -

1/2 1/2 |€1<3R

where

1/2

$(0, 5, w)ds. (9.74)
-1/2

d
2

< CR
Lemma 9.4 gives that the first term on the right-hand side of the inequality (9.73) vanishes. Thus, using
the inequality (9.74),

T
lim sup f f (¢°(x, 1)) dxdt
e—0 0 Or

1/2
S RTTE f 2l (2, )W (T —w, 5)dzds.

1/2 JRE

Due to the symmetric property we have, P-a.s.,

T
lim sup f f (e (x, 1)) dxdt
-0 -T QR

172
< CoT’RE f f |21 (z, (T -.w, )] dzds. (9.75)
~1/2 JRrd

Next we show that y°(x, ) converges to 0 as € — 0*.

Let w € Q be such that the inequality (9.75) holds for any 7, R > 0. The inequality (9.75) implies
that the family (x*(x, 7))o is bounded in L? (R x R).

Note that (,x*(x, 1)) is bounded in L? (R, L?), and (x*(-,1))s»0 is compact in L? (R?) according

to [41, Lemma 4.1]. Hence, with the help of the classical Lions-Aubin lemma, the family (x*(x, 7))o
is relatively compact in L} (R™!).
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Let (x*"(x, t)) be any convergent subsequence with limit y in LfOC(Rd X R). Since £, is stationary in
an ergodic environment, it converges weakly to a constant. Thus, owing to Eq (9.64), y solves d,xy = 0
in R x R. Letting T — 0 in the inequality (9.75) yields that y(-,0) = 0. Therefore, y = 0, so y** — 0
in L; (RYxR). Lemma 9.5 has been proved.
Proof of Theorem 9.2. Following the above Steps 1-6, we can finish the proof of the main Theorem 9.2
in this section.

10. Additional terms of the asymptotic expansion

Remembering Eq (9.19), as ¢ — 0%, we have an asymptotic expansion for w®(x,?) = (x,1) +
sy (x, 1) + ur(x, 1):

0 1
HowS(x, 1) = (00 + = Mo(e, D+ Mo(x,1)  + ¢e(x, 1) .
=0 Zero—order expansion — Remainder

We now give a decomposition of the zero-order &” term in the asymptotic expansion of H*wé(x, 1).

10.1. Some lemmas in asymptotic analysis

Lemma 10.1. For the zero-order expansion term Mg(x, t) we have

M.(x,1) = (D, — Dy) - VW’ +‘I’8+F(— a))~VVv0, (10.1)

9 27

where 1* = (B, v53), F(s =, W) = 1(5 =, W) — Nz(ﬁ, =, w), and the matrices Dy and D, are

1/2
D, = f —z®zE J(z, S0, w)p(— z,w)}dzds
-1/2 JR4

1/2
D, = f f —Z®E J(z, N¢_,(0,t, w)u(0, w)u(-z, a))}dzdt
~1/2 JRrd
F(z, 52 ,w), Ni(3, 2 ,w) and Nz(x, =, W) are stationary fields with a zero mean which are given by
x t 1 X X
Ni(=, zw) = 3 f ZZ[J(z, (=, (= -z, w)
g ¢ 2 Jgrd P> £ £
~E{JG 5, o), o)~z )} |dz, (10.2)
x t 1 t x t X X
N2(_s _2’ (,()) = = f Z[ (Za _2)4—1(_’ _2’ (,())/J(—, (,())/.l(— -3, (,())
g ¢ 2 Jgrd £ g € £ £
t
B[ 5, )0, = (0, w)p(~z. )} Jdz. (10.3)
For the problems
(81 - Ls)vg(x’ ta (,()) = _T€$
{ V2(x,0) = 0 (10.4)
0, — LWi(x, t,w) = —F* - \AVATAR
{ VE(x,0) = 0 (10:5)

we have that ||V?|| = o.r)xrey = 0 (i = 2,3) P~ a.s. as € — 0*.
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We need to prove the boundedness of the sequence V¢ and then prove its compactness by using the
Lions-Aubin lemma; we finally explain that |[v{||;~(or)xre) cOnverges to 0. The proof requires some
technical estimates in [41, Section 5]; we provide the proof in the Appendix C.

Proposition 5. The matrix ® = D| — D, is positive definite:

1
1 2
) fl f f(z ® 2 =280, 5,w)J(z, Hu0, wu(-z, w)dzdsdP(w) > 0.
-1 Jrd Ja
Proof. The procedure of deriving ®’s positive definiteness is basically similar to [41, Proposition 5.1].

10.2. Remainder ¢,
We now consider the estimate of the remainder
e(x, 1) = ¢ (e, 1) + ¢ (x, 1),

in the asymptotic expansion Eq (9.19), where ¢ and ¢$"*“ are defined in Eqs (9.22) and (9.23)
respectively.

Proposition 6. Letv € C® ((O, 7),S (Rd)) then, for the functions ¢"™ and ¢>"*“ we have

||¢(gspace) )

¢fgtime)

5 —-0ase—0, (10.6)

where || - || is the norm in L*((0, T), L>(RY)).
Proof. The convergence for ¢/ immediately follows from the representation Eq (9.22). For the
function ¢.7*“ given in Eq (9.23), the proof is completely analogous to that of [13, Proposition 5].

The proof of Proposition 6 is done.

10.3. Asymptotic representation of zero-order term

We now give an asymptotic representation of the second term My(x, ¢) in Eq (9.19), that is,

t
Mo(x. 1) = £a” +F( L )Vvv°+‘r8, (10.7)

82

where F(%, %, w) is a stationary matrix-field with a zero average and " is a non-stationary term; they
are defined in Lemma 10.1. Additionally, u5 and u} satisty

@, — L) = F( L VWY, @, - LWt = —r*, (10.8)

b 2 b
respectively, and

lii5]lco — 0, lu5]lc — 0 as & — 0.
For the corrector y, from the sublinearity of y*, we have

t
ex (2, 2 ) vi(x, 1) ~0ase— 0. (10.9)
g g

12 (R‘” 1 )
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This yields

<

IIw® =] = 0 as e — 0.

With this choice of y, u5 and u, the expression (d; — L*)w*® can be rearranged as follows:

@, - IOW® = (0, — L) + gX(z, gi W)V0) + (&, — L)t + 1)
= (0, = L)V + ¢.. (10.10)

From Proposition 6, ||¢.||, vanishes as € — 0. This implies that

”W‘9 - VS”LZ((O,T),L2(Rd)) —0ase— O, P-a.s. (1011)

10.4. Proof of Theorem 9.1

Proof of Theorem 9.1. The proof is almost the same as that of Theorem 3.2 on the homogenization of
nonlinear nonlocal parabolic equations with time dependent coefficients under a periodic and stationary
structure that we have discussed in Sections 3—7; the difference is that we replace the periodic structure
with the stationary structure in the nonlocal operator. Combining Eq (10.11) and using the triangle
inequality and the fact that Schwartz space is dense in L2, Theorem 9.1 is proved.

11. Nonlinear results for p # 1

In this section we just give some results of the corresponding equations with a nonlinear nonlocal
operator for p # 1. The proof is rather long and tedious so we omit the proof in details.
Case.LO<p< 1.

We need to show that the nonlinear term will make the corrector y depend on v(x, ¢) and &, and that
x> xase—0.

Theorem 11.1. Assume that the linear condition is satisfied; there exists a unique map y: R*'xQ — R
such that

1
— [Py — Ay = 0in L2, (11.1)
p

andVz € R4 £,(x,1,y, s,w) = x(x, 1,y + 2, 5, w) — x(x,1,y, 5, w) € L2 (R L?), satisfying

loc

_ évz(x’ t,y’ s, (-U)dyds = O, P-—a.s.
a1

We have the convergence

(R xRN, P - a.s.

loc

x t &—0 .
X'(xtw) = s)((x, L=, =, a)) “S0inl?
g €

In addition, the positive definite matrix O is defined by
1
1 (2
0= f f f (z ®z7—-720¢ (x,1,0,s, a)))J(z, S0, w)u(—z, w)dzd sdP(w).
2 -1 JRrRI JQ
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Casell. 1 < p <2.

Theorem 11.2. Assume that the linear condition is satisfied, there exists a unique map y: R"'xQ — R
such that

A — Ak =0in L2 (11.2)

where

Ay = f JE€ = q.0v(E q)(q = € + p"VPR0x, 1,€, 5) = pIvP ™V P(x, 1, g, 5))dg,
Td

k _ plv()l(p—l)/phk(x, Z, Ys S) lf vO(x’ t) # Oa
Xty 5) = { 0 if V(x,1) = 0.

We have the convergence

t £—0

X .
e tw) = ef(nn =~ 5.w) = 0in L,

R xR, P - a.s.

In addition, the positive definite matrix ® is the same as 0 < p < 1.
Results of non-self-similar scales are similar to those obtained above.

Remark 4. There are two parts of the proof here that are different from the equation with the linear
operator. The first is that the random corrector depends on macroscopic and microscopic variables and
the solution u of the equation, which requires more approximations as in the periodic case to obtain
the existence of the corrector. The second part is that the heterogeneous solution #® converges to a
homogeneous solution u(x, 7). Usually we can find a corrector y depending on u(x,t), but this will
create the problem of not having enough information about the regularity of the map u — x(:, -, u, w),
and it requires us to develop some useful tools to overcome the difficulty. In 2022, Cardaliaguet, Dirr
and Souganidis [42] dealt with the homogenization of a class of nonlinear parabolic equations and the
corresponding random corrector

X (x, t,w) = X(f, iz’ Vu(x, 1), w).
g ¢
In order to circumvent this difficulty, they introduced a localization argument for the gradient of the
corrector, which is based on a piecewise constant approximation of Vu. Whether a more general
equation (like doubly nonlinear equations or fractional diffusion equations) can be used is the direction
we will think about in the future.
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Appendix A

Proof of Lemma 3.1. Let u, v € LI"*I(R?) be such that

and

max({{fells, VIl lllleos Vlle} < A

let A > 0 be a given constant. Using the integrability condition and the local Lipschitz continuity

with Lipschitz constant L of I’ (u(x), u(y), x, y, t). If we take —A < a, b, c < A such that |c—b|,|a—b| >
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0, then for a given function f we have

fl@) - fb) _ flo) - fB)| _ (
5

a—> c—>b

max If Ol + AmaX f’ (f)l) a—d,

so that we can easily get the local Lipschitz-continuity of I'° and we have

where C, and M(p, a», A) are constants and L, =

IA

IA

IA

IA

1L = L3l < 1L = )l + L = LW
sup | f () = u(y) = v(x) + v (@(x), u(y), x,y, dy|
R4

xeRd

sup| [ (v(x) = V(V))(F‘S(u(X), u(y), x,y, 1) = L (0(x), v(y), X, y, 1))y

xeR4 R4
—1 _ —1
20t = Vil sUp f Js MO HO) = ol 0,
xeR? T JRE u(y) — u(x)

2a[Vlleo L f TG =y, 0(lu() = v + Ju(x) = v(x)l)dy
R4

Qallu = VlleoCp(llutllco + [Vlleo)”™" + 20|Vl Ll = Vlco) fd J(x,dx
R
M(pa as, A)Hu - v”oo’

2(p+1
(1(”52 )Ap_

Similarly, we have

thus,

IA

+

IA

+

L5 = LVl < DL =Wl + L5 = £l
fR ) ‘ L ) (u(x) —u(y) — v(x) + V()’))F5(u(x), u(y), x, v, t)dyldx

.

202C (Il + V1) f () — v(x)ldax sup

R4 x€Rd

1 (69 =)0, 5.300) = T 00000 3.0

|REE
R4

2a, Ld v(x)| Ld LaJ(x—y, t)(lu(y) —v(y)| + u(x) - V(x)l)dydx;

ILu~ LV < 20l = vili Cplllulles + M) f RUCLE
R
+ 2a(ivl [ I Il ol
Rd
< M(p,as, Al -l

This completes the proof of Lemma 3.1.
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Appendix B

Lemma B.1. Let (Q,F,P) and U : R¥! x Q — R have the time derivative 0,)1 and increments
G t,w) = Uz + & t,w) — WE t,w). Then, P-a.s.,

lim R™“+? U(x,0)dx = 0 and lim R™“ U(x, 1)[*dxdt = 0.
R—+o0 Ok R—+oo Or

That is, given U?(x,t, w) = el(x/e, t/e, w), for any fixed R > 0, we have
111% f 2E(x, 0)*dx = 0 and m% f WE(x, 1)|?dxdt = 0, P — a.s.
&0 J 0 =0 Jor

Proof. The result is not surprising, as this reflects the sublinear growth property of the corrector.
This is the property of the oscillatory function and it can be seen in [41, Lemma 4.1]. We can apply
[42, Lemma A.2] and [43, Theorem 5.3] and use the classical nonlocal Poincaré’s inequality for any
w € Qy C Q; the family (1), is relatively compact in L7 (Rd“), thus A% — 0in L2 (Rd“) as

k — oo and P-a.s. Taking in expectation we have 1* — 0 as € — 0. U?(+,0) also satisfies the assertion
of [41, Lemma 4.1], so we omit it.

Appendix C
Proof of Lemma 9.3. The idea of the proof comes from [41, Proposition 4.5]; here, we mainly describe

our ideas.
If |¢] > 3R, then ¢ (&) = 0. Also ¢ () = 0if |4 > 3R and || > R. We obtain

f f Iz DE + 2, )(E, )
R4 |€]>3R

1
@ f ( f 121z ) |0 (Tn_zw)\ dz) Lo, w)|<p(@)dn
[7I<2R |zI>R

R
% f 0 (Tyw) <150, w>|so(@)dn, (C.1)
mI<2R R R

€ + z]
R

o (Tgw)' lo(¢ + 2, w)lcp( )dfdz

IA

IA

where n = & + z and

</>(an, t) = [Rd lz|J(z, 1)

Due to the integrability of &.(w) with the weighted kernel function in probability, ¢p(w) € L*(Q), we
have

7, (T,,_Za))‘ dz. (C.2)

2 lo(n, w)| P lo(n, )| (1Nl
A Lo fh;|<1e 1) (T,]w) Tdn + @; ankm 1) (T,,w) —x 7 dn

¢ |l7(, ) (I
<HOR)+ ——— 2(T,w)dny + R (1) ——|—=|d
b aR|R(2)] |11|§2R¢ ( " ) 7 R<nl<2R R ¢ R 1
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, lo(n, w2 (Inl)
R ———p| > |dn. C.3
alR’(t)|+a| @ rR<mi<or R P\R)T €3

Applying the Cauchy-Schwarz inequality, the boundedness of ¢ and the sublinear property of o
(Lemma 9.5 is proved) gives

0@ <Rz [ F(ne)an) (g [ TR an) s

n 7
<R R Jysk R

d—1

< $1(R) +

where ¢, is sufficiently small.
The first term on the right-hand side of Aj; satisfies

f ﬁR<|§|<3R J(z, D€ + z, W, W)o:0

[¢1<R

If NE Ifl

where we use the estimate of /, in [41, Proposition 4.5] and the sublinear property of J; and, c; is
sufficiently small. Applying the inequality ‘(p l (p(%l)| < 'x Bl for €] > R, we get

- vy
fR d fR | TGoute e oot ofel ST - o )

e R
<a? f f JG1)
R4 JR<|¢|<2R

& w)|oE w) %dfdz

C ) (17, w)I?
< ¢“(T,w)dn + a|R'(1)| ————dn
aRIR (D] Jy<or ! R<|y|<2R R
d—1 = 2
, (17, w)I° |7l
< + alR (1) ————dn. (C.4)
0] pemere R

A, < WR(t)d and A,. < ¢,R(t)? can be directly obtained in [41, Proposition 4.5]. This ends the
proof of Lemma 9.3.
Proof of Lemma 10.1. For any ¢ € L>((0, T) x R), we can find that

0 =5 [ [ [ 16 pu ol -z 5ok 50

(VWO Dp(x, 1) = VO (x — 2, Dp(x — &2, 1) )dxdz (C.5)

is a bounded linear functional on L*(R x R9). Then, by the Riesz theorem for a.e. w, there exists a
function B, € L*(R x R?) such that Y* = (B, ¢):

@ = LW 0) = F (5, 1,0) = —F (2 L 0)- YW, 1), (C.6)

’82,

Since supp1’ C B is a bounded subset of R¢ and fR“’ J1@)lzl |10--(w)] dz € L*(Q), by the Birkhoff theorem
v € L2((0,T) x RY),

Our goal is to prove that |[V§]|z2(o,r)xre) — 0 as € — 0. We first show that the family {v$} is bounded
in L*((0, T) x RY). Denote

1 T r.ox X
6 = — f J(z, (=, (= = 2z, w)(V5(x — &2, 1) — V5(x, 1)) dzdxdt,
2% Jo Jroa e e &
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T
672 = f f (v50x, 1)) dxar.
0 R4

We first give an important lemma.

Lemma C.1. [41, Lemma 5.1] For v in Eq (10.4) and J5(¢) in Eq (C.5), we have
J5005) < (G + Gy)-o(l)as € = 0.

Lemma C.2. For V5 in Eq (10.4) and a.e. w, we have that ||[V5||20,r)xrey = 0 as € — 0.

Proof. Multiply v5 on both sides in Eq (10.4); then, we have that ((9, — L*)v3,v5) = (=%, u5). Consider
the second term on the left-hand side; we have

— f f f J(z, iz),u(f, w)u()—C -z, w)(V5(x — g2, 1) = V5(x, 1))dzv5(x, t)dxdt
0 R2d & & E

1 ¢
= — f ff J(Z, _)ﬂ(f, a))'u(f -2, a))(v;(x — &7, l-) — V;(x, t))dedXdl.
2 Jo R2d 2 e o

For any s € (0, 7), and by integrating over O to s,

1

= f V3 (x, s)dx — f f T (x, OV5(x, dxdt = f (L°v5,v5)dt < 0,
2 R4 0 R4 0
®7 + 63 < l5]% + 67 < (61 + 6y) - o(1);

using the Gronwall inequality, we get that [[V5||;2o,r)xre) = 0 as € — 0.
We focus on {v5} defined in Eq (10.5). Our goal is to prove that [|[V§||z2(o,r)xrey — 0. We first prove
its compactness in L.

Lemma C.3. {5} is compact and v§ — 0 as € — 0 in L*((0, T) x R?).
Proof. See details in [41, Lemmas 5.3, 5.4].
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