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Abstract: Classifying and identifying surface defects is essential during the production and use of 

aluminum profiles. Recently, the dual-convolutional neural network(CNN) model fusion framework 

has shown promising performance for defects classification and recognition. Spurred by this trend, this 

paper proposes an improved dual-CNN model fusion framework to classify and identify defects in 

aluminum profiles. Compared with traditional dual-CNN model fusion frameworks, the proposed 

architecture involves an improved fusion layer, fusion strategy, and classifier block. Specifically, the 

suggested method extracts the feature map of the aluminum profile RGB image from the pre-trained 

VGG16 model’s pool5 layer and the feature map of the maximum pooling layer of the suggested A4 

network, which is added after the Alexnet model. then, weighted bilinear interpolation unsamples the 

feature maps extracted from the maximum pooling layer of the A4 part. The network layer and 

upsampling schemes ensure equal feature map dimensions ensuring feature map merging utilizing an 

improved wavelet transform. Finally, global average pooling is employed in the classifier block instead 

of dense layers to reduce the model’s parameters and avoid overfitting. The fused feature map is then 

input into the classifier block for classification. The experimental setup involves data augmentation 

and transfer learning to prevent overfitting due to the small-sized data sets exploited, while the K cross-

validation method is employed to evaluate the model’s performance during the training process. The 

experimental results demonstrate that the proposed dual-CNN model fusion framework attains a 

classification accuracy higher than current techniques, and specifically 4.3% higher than Alexnet, 2.5% 

for VGG16, 2.9% for Inception v3, 2.2% for VGG19, 3.6% for Resnet50, 3% for Resnet101, and 0.7% 

and 1.2% than the conventional dual-CNN fusion framework 1 and 2, respectively, proving the 

effectiveness of the proposed strategy.  
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1. Introduction  

The aluminum profile is a relatively common material in infrastructure construction and industrial 

manufacturing that is lightweight, has high strength, corrosion resistance, formability, and is 

recyclable [1]. It is extensively used in rail transit, construction facilities, automobile manufacturing, 

equipment manufacturing, medical equipment, and other industries [2]. In the production or use 

process of aluminum profiles, due to external factors, it may present the defects of inconsistency in 

various sizes and shapes, seriously affecting the safety and reliability of aluminum profiles. Therefore, 

detecting and ensuring the surface quality of aluminum profiles is significant to improve the product’s 

service life [3]. 

In the past, object defects were commonly detected manually. It was a simple, highly repetitive, 

cost-wasting and labor work, where accuracy and stability could not be guaranteed. With the 

advancement of optical instruments, numerous scholars have used machine vision to realize defect 

recognition and improve the detection stability and recognition rate [4]. For example, Gao et al. [5] 

exploit thermal imaging technology to propose a low-rank tensor sparse mixture Gaussian (MoG) 

decomposition algorithm for natural crack detection. Their method reduces noise interference and 

extracts crack information to realize metal defect detection. Luo et al. [6] suggest a hybrid spatial and 

temporal deep learning architecture for automatic thermography defects detection that extracts internal 

defect information of composite materials with complex shapes and patterns. Accordingly, Hu et al. [7] 

developed a hybrid multi-dimensional feature fusion structure involving spatial and temporal 

segmentation appropriate for automated thermography defect detection of composite materials.  

Ahmed et al. [8] use the optical pulse thermal imaging diagnosis system and propose a joint sparse 

low-rank matrix decomposition algorithm to separate weak defect information from intense noise in 

composite materials and improve defect resolution. Sun et al. [9] investigate weld defect detection and 

classification based on machine vision. They categorize the weld defects and suggest a modified 

background subtraction method based on Gaussian mixture models to extract the feature areas of the 

weld defects, which are then employed to design classification algorithms. Zhang et al. [10] design an 

image acquisition system to simultaneously collect weld images and propose a new CNN classification 

model with 11 layers to identify weld penetration defects based on weld imagery. Bao et al. [11] 

propose a Triplet-Graph Reasoning Network (TGRNet), which combines surface defect triples 

(including a triple encoder and triple loss) to segment the background and defect areas, and separates 

them into metal and non-metal classes (leather and tile). For this method, the data is centralized to 

verify the network’s effectiveness. Shervan et al. [12] focus on the surface defect detection problem, 

considering a new noise-resistant and multi-resolution version of LBP to extract surface features. 

Additionally, the authors propose a surface defect detection algorithm that is invariant to the texture 

descriptor. The effectiveness of this technique is verified in architectonic stone and Fabric Textile. Jong 

et al. [13] suggest a new convolutional variational autoencoder (CVAE) to generate sufficient defect 

data. Defect classification algorithm based on deep CNN for metal surface defect detection has also 

been proposed. Ihor et al. [14] design an automated method for detecting and classifying three types 

of surface defects in rolled metal, and use Resnet50 for feature extraction and defect classification. 
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Guan et al. [15] utilize VGG19 to extract steel surface defects and suggest different feature layers 

originating from the defect weight model. Then the authors employ SSIM and a decision tree to 

evaluate the image quality and adjust the network’s structure and classify steel surface defects. 

The latter method uses image processing and deep learning methods to extract the defect features 

of various objects effectively, and to a certain extent, provides insights for the method developed in 

this paper. Since this article mainly considers identifying and classifying defects on the aluminum 

profiles surface, the following works introduce the related literature. Defect recognition exploiting 

conventional machine vision mainly includes image capturing, feature extraction and definition, image 

preprocessing, and defect-recognition [16]. In this regard, the defect recognition accuracy is seriously 

affected by the accuracy of the feature extraction process and the method defining the features. Liu et 

al. [17] employ the gray-level co-occurrence matrix algorithm and the Gabor wavelet transform 

method to extract the surface texture features of aluminum profiles. They classify the features based 

on the radial basis function kernel SVM (Support Vector Machines) classification algorithm. 

Chondronasios et al. [18] propose a new technology based on the gradient-only co-occurrence matrix 

(GOCM) and the Sobel operator to extract and define the surface features of aluminum profiles.The 

authors use two-layer ANNs to classify the surface defects of aluminum profiles. Although traditional 

machine vision-based methods utilize image processing for surface defect feature extraction and 

defects classification, the extraction and defects definition requires manual processing and empirical 

judgment by engineers [19], which lacks robustness and is not conducive to operation. 

Recently, deep learning has been extensively used in various application, including feature 

extraction and classification of aluminum profiles surface defects, due to its ability to learn image 

features automatically. In the context of aluminum profiles surface defects, Li et al. [20] rely on the 

adaptive threshold method to binarize the surface image of the aluminum plate, extract image features, 

and implement surface defect classification through a three-layer BP neural network. Wei et al. [21] 

utilize Resnet101 as the primary network and propose a multi-scale defect detection network based on 

deep learning to identify and classify surface defects of aluminum profiles. Neuhauser et al. [22] 

propose a VGG16 based architecture suitable for actual industrialization exploiting transfer learning. 

and data augmentation to increase the data set, avoiding model overfitting. Zhang et al. [23] design an 

attention mechanism to detect surface defects of aluminum profiles. This method initially exploits the 

category representation network to extract the common category feature map (CCM). Then, the 

attention module generates the proposed feature map (PM), and a rare category feature map (RCM) is 

formed through CCM and PM. After that, the score of the defect category is obtained through CCM 

and RCM spatial pooling for defects identification. Chen et al. [24] propose an aluminum profiles 

surface defect detection method relying on a deep self-attention mechanism (DSAM) under hybrid 

noise conditions. This technique employs the residual learning strategy to obtain the defect feature 

map from the image, adds the corresponding weight matrix to the defect feature map to achieve fine 

feature extraction, and finally adds a softmax classification layer for defect recognition. Liu et al. [25] 

develop a semi-supervised anomaly detection method, entitled Dual Prototype Auto-Encoder (DPAE). 

During the training phase, a dual prototype loss and reconstruction loss are introduced to encourage 

the latent vector generated by the encoder to be closer to its own prototype. Finally, the distance 

between the image’s latent vectors is used to detect and identify the surface defects of the aluminum 

profile. 

The above works exploit deep learning to identify and classify the surface defects of aluminum 

profiles and achieve good experimental results. Additionally, compared with traditional machine vision, 
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deep learning-based feature extraction is more robust. However, there are still some issues that need 

to be resolved. For example, current deep learning methods utilize an input source, a neural network 

model, and the characteristic information of a single information source extracted through the neural 

network, which cannot fully reflect the characteristics of the object examined [26]. 

To solve these problems, the defect classification accuracy can be enhanced through a dual-

convolutional neural network(CNN) model fusion framework that extracts the input source features 

separately, which are then fused. A dual-CNN model fusion framework may have two forms, either 

employing two different input sources or the same input source. In the former case, the same neural network 

model extracts features of different input sources and then merges them for classification [26–31]. This 

case involves neural network models with specific structure differences, e.g., CNN convolution kernel 

size and number, and several operation differences in the model learning process. In the same input 

source case, the classification performance varies depending on the extracted features [32]. For this 

fusion scheme, two different convolutional neural networks separately extract features and then merge 

them, aiming during the design, the extracted features to complement each other [32,33]. 

Duan et al. [26]propose a dual-CNN model fusion framework based on gradient images to identify 

and classify the surface defects of aluminum profiles. The original and gradient images are used as 

two different input sources, while both neural network models use Alexnet and realize feature fusion 

through wavelet transform fusion. Then the fused features are input into the SVM classifier block for 

defect classification, Akilan et al. [33] use the VGG16 and Alexnet networks to extract features from 

two identical input sources, and employ PCA (Principal Component Analysis) and energy 

normalization to form a feature space. This work also utilizes algorithm rules (Sum, Average, Max, 

Min) to fuze the features, with several rules being evaluated to select the optimal fusion strategy. The 

fuzed features are then input into an SVM classifier block for classification. Experimental results 

employing this method demonstrate that the Sum strategy is effective in most data sets. The first fusion 

framework mentioned above combines the output features of the first dense layer of the two Alexnet 

models, while the second fusion framework combines the output features of the first dense layer of 

VGG16 and the second dense layer of Alexnet. Both model fusion frameworks have a common 

attribute: the fused features are first input to the first dense layer of the classifier block, and then 

classification is achieved through multiple network layers. (the fusion framework will be introduced 

in the next part of this article). It should be noted that given the lack of research on recognizing and 

classifying aluminum profile surface defects utilizing a dual-CNN fusion framework, this article 

mainly refers to methods applied in other fields aiming to suggest the necessary improvements to 

facilitate a solution appropriate for aluminum profiles. 

This article proposes an improved dual-CNN model fusion framework that uses the same input 

source and different convolutional neural networks (VGG16 and Alexnet). We add multiple network 

layers before the feature fusion process and after the Alexnet network (including convolution, pooling, 

and activation). The RGB image feature map is extracted from the last maximum pooling layer in the 

pre-trained VGG16 and the last maximum pooling layer in the network layer added after the Alexnet 

network. Then, we use weighted bilinear interpolation to upsample the the maximum pooling layer 

feature maps of the network layer added after Alexnet to ensure that the feature maps output by the 

two models have the same dimensions. Feature map fusion relies on the improved wavelet transform 

fusion method. Finally, our method develops a classifier block (see Section 2) utilizing a global average 

pooling layer instead of a dense layer. 

Compared with traditional dual-CNN model fusion frameworks [26,33], we extract the feature 
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maps of the largest pooling layer at the end of the proposed CNN model, fuse these feature maps, and 

use global average pooling for classification rather than dense layers. This strategy preserves more 

local feature information extracted from the image and reduces the model’s dimensionality, making 

the network easier to train, avoiding too many weight parameters when the feature map enters the 

dense layer, which leads to overfitting during the model training process [34–36]. Regarding the 

feature fusion strategy, the improved dual-CNN model fusion framework uses an improved wavelet 

transform that combines the Canny operator and the area energy method (see Section 2). 

The remainder of this article is organized as follows. Section 2 introduces the dual-CNN model 

fusion framework, network layer function, up-sampling, feature fusion methods, and model training 

methods proposed in this paper. Section 3 describes the experimental setup and the evaluation metrics, 

while Section 4 presents the experimental results and analysis. Finally, Section 5 concludes this work.  

To improve readability, some of the abbreviations presented throughout the text are defined as 

follows. Support Vector Machines (SVM) is a class of generalized linear classifiers that classifies 

binary data in a supervised learning manner. Its decision boundary is the maximum hyperplane margin 

solved for the learning sample. Principal Component Analysis (PCA) is a standard data analysis 

method, often used for dimensionality reduction of high-dimensional data that can be utilized to extract 

data’s main feature components. Local Response Normalization (LRN) is a local normalization 

method that primarily prevents the neural network model from overfitting during the training process. 

2. Methods 

This section mainly introduces the related methods utilized in the experiments of Section 3, 

including the dual-CNN model fusion framework, the definition of the relevant network layers, the 

feature map upsampling method, the feature fusion strategy, transfer learning, data augmentation, and 

model performance evaluation methods. 

2.1. Dual-convolution neural network model fusion frameworks 

A traditional convolutional neural network framework includes a neural network model and a 

single classifier to extract feature information from the input source. This framework is called a single 

convolutional neural network. In contrast, the multi-convolutional neural network model fusion 

framework involves multiple convolutional neural network models that extract several features from 

given training data and inputs the fused features into a single classifier for classification [28]. The dual-

CNN model fusion framework includes two network models. The input source features are extracted 

from the two models, are fused [29,30,32], and are then input into a single classifier for classification. 

Figures 1 and 2 illustrate the two different dual-CNN model fusion strategies [26,33]. 

The aluminum profile images are the input source of both fusion frameworks, which are employed 

to analyze the changes of the corresponding feature maps. The input source of Figure 1 involves the 

raw image (224X224X3) with the CNN network structure involving the pre-trained VGG16 and 

Alexnet models. The input source of Figure 2 considers two different images, namely the original 

(224×224×3) and its variant after image processing (224×224×3), i.e., gradient processing to form a 

gradient image and enhance the image’s edge information [26]. This CNN network structure exploits 

two Alexnet models that independently exploit each input image. Figure 1 highlights that the first dual-

convolutional network model fusion framework combines the output features of the first dense layer 
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of VGG16 and the second dense layer of Alexnet. The architecture presented in Figure 2 combines the 

output features of the first dense layer of each Alexnet model, and the fused feature map is input to the 

classifier block through the dense layer for classification. The CNN’s feature maps from the largest 

convolutional layer input to the dense layer in Figures 1 and 2 are 7×7×512 and 6×6×256, respectively. 

The output dimension is 4096×1, and the number of weight parameters is 102760448 and 37748736, 

respectively. It should be noted that the excessive number of weight parameters during training 

increases the possibility of model overfitting [34]. 

 

Figure 1. Fusion framework 1. 

 

 

Figure 2. Fusion framework 2. 
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Figure 3. Proposed fusion framework. 

The proposed dual-CNN model fusion framework is illustrated in Figure 3. The image input 

dimension is 224×224×3, and the feature map is extracted from the pre-trained VGG16 and the Alexnet 

models. The output feature map acquired from the V5 part of the VGG16 model is 512×7×7, while the 

network layer A4 added after the Alexnet model ensures 512 output feature map channels. Then we 

upsample the feature map generated by the largest pooling layer in the A4 part, from 3×3 to 7×7, and 

the Feature Fusion part performs feature fusion preserving the feature maps’ channel number and size. 

The fusion feature map is 512×7×7 and is directly input to the global average pooling layer. 

Considering the latter layer, global average pooling is performed only on the feature map without 

training the weight parameters to avoid overfitting due to the excessive number of parameters. The 

output size is 512×1×1, and finally, the classifier block classifies the output result. To the best of our 

knowledge, this dual-CNN model fusion framework employing global average pooling instead of 

dense layers to build classifier blocks has not been applied yet to classify and detect aluminum defects. 

The feature fusion, upsampling, and global average pooling schemes will be introduced in detail in 

sections 1.2 and 1.3 of the main text. 

The above dual-CNN model fusion framework exploits VGG16 and Alexnet as the primary neural 

network models. Both have demonstrated outstanding results in image classification and target 

detection tasks and their generalization performance to migrate to other image data domains [19,37,38]. 

Furthermore, other existing CNN models may impose some training complexity due to complex 

connections and deeper structures, while VGG16 and Alexnet are “straight-type” structures. As the 

number of network layers increases, the extracted features represent finer details, better-facilitating 

feature fusion. Additionally, Alexnet is the 2012 ImageNet competition champion containing five 

convolutional layers (including the activation and pooling layers), three fully connected layers, and the 

classifier output category is 1000. The VGG16 model is the champion of the 2014 ILSVRC 

competition classification project, with the model containing 16 convolutional layers (including the 

activation and pooling layers) and three fully connected layers. 



1004 

Mathematical Biosciences and Engineering  Volume 19, Issue 1, 997-1025. 

2.2. A brief overview of convolutional neural networks 

(1) Convolution layer and pooling layer 

The convolution layer extracts data features from the input image through convolution 

operations [39]. Convolution is a linear operation between the input image and the convolution kernel 

involving a dot product operation within the convolutional process between the convolution kernel and 

the input image’s receptive field. The convolution kernel size is increasing with a specific step size to 

match the various receptive field sizes. The convolution function is: 

 

  𝐼𝑗 = ∑𝑥𝑖 ∗ 𝑘𝑗 + 𝑏𝑗                               (1) 

 

where ∗  denotes the convolutional operation,  𝑘𝑗  and 𝑏𝑗  are the weight and bias vectors of the 

convolutional kernel j, respectively, and 𝑥𝑖 denotes the input of the convolutional layer. 

The pooling layer aims to downsample the feature map, compress the model features, and 

simplify the network complexity. The pooling process can be distinguished into Max pooling and Mean 

pooling. In the proposed CNN network structure, the model uses maximum pooling in the early stage 

to reduce redundant features and extract texture and other features, while in the later stages, average 

pooling retains the image background features [40]. 

(2) Global average pooling layer 

Global Average Pooling (GAP) is a method for spatial dimensionality reduction through pooling. 

Employing global average pooling rather than dense layers affords to reduce the model parameters, 

avoids over-fitting, and improves the entire network’s generalization ability. Additionally, the 

spatial\semantic information extracted by each convolution and pooling layer is preserved [35,41,42]. 

In this paper, the feature map produced by our method dimension after fusion is of size 512×7×7. After 

fusion, we reduce the model’s parameters utilizing global average pooling to calculate the average 

feature map of all pixels within each channel. The final output model is 512×1×1, with the 

corresponding schematic diagram of the global average pooling illustrated in Figure 4. GAP replaces 

the dense layer that generates many parameters after the feature fusion process. Since the global 

average pooling layer has no parameters, it can prevent the layer from overfitting, integrate global 

spatial information, and have better robustness to the spatial translation of the input image. 

 

 

Figure 4. The diagram of global average pooling. 

(3) Dense layer with dropout 

The dense layer resizes the features extracted by the convolutional and pooling operation and 
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guarantees that features can be mapped regardless of their sizes. When the training sample size is small 

and the model parameters are many, over-fitting is prone to occur, and the model's generalization 

ability is weakened. Dropout reduces the possibility of overfitting, achieving the regularization 

effect [43], i.e., during the forward propagation process, the activation value of the neuron stops 

according to the defined Dropout date. Dropout reduces the complex cooperative adaptation 

relationship between neurons and avoids overfitting. We adopt [44] and set the Dropout date parameter 

to 0.5. 

(4) Batch normalization layer 

Adding batch normalization to the training process of the CNN model can achieve a stable 

activation value distribution, ensure the input data distribution per layer is relatively stable, and 

accelerate the model’s learning process. Batch normalization reduces the model’s sensitivity to the 

network’s parameters, simplifies the tuning process, stabilizes the network learning, and has a 

particular regularization effect in the model training process [45]. Thus, we use batch normalization to 

maintain all layer inputs on the same range in the classifier block. 

(5) Activation layer and softmax 

The CNN model implements linear operations through convolutional layers in the forward 

propagation process. Multiple linear transformations in the network cause data expansion and 

insufficient model classification capabilities. The activation layer completes the nonlinear data 

transformation, performs data normalization, prevents overflow caused by excessive data, and 

increases the network’s capabilities. ReLU (Rectified Linear Unit) was introduced as a nonlinear 

activation function, increasing network nonlinearity, preventing gradients from disappearing, and 

reducing network training time [46]. 

The Softmax layer is placed at the end of the model, and its function is to map the generated 

sample label space to (0,1) as the result of the classification task. The Softmax function is given by: 

 

        𝑃(𝑦(𝑖) = 𝑛 ∣ 𝑥(𝑖);𝑊) =

[
 
 
 
𝑃(𝑦(𝑖) = 1 ∣ 𝑥(𝑖);𝑊)

𝑃(𝑦(𝑖) = 2 ∣ 𝑥(𝑖);𝑊)
…

𝑃(𝑦(𝑖) = 𝑛 ∣ 𝑥(𝑖);𝑊)]
 
 
 

=
1

∑ 𝑒𝑊𝑇𝑥(𝑖)𝑛
𝑗=1

[
 
 
 𝑒

𝑊1
𝑇𝑥(𝑖)

𝑒𝑊2
𝑇𝑥(𝑖)

…

𝑒𝑊𝑛
𝑇𝑥(𝑖)]

 
 
 

          (2) 

 

where 𝑒𝑊𝑛
𝑇𝑥(𝑖)

 is the softmax layer input, 𝑃(𝑦(𝑖) = 𝑛 ∣ 𝑥(𝑖);𝑊) represents the probabilities of the ith 

training example，and “n” denotes the model output. class cardinality with the sum of the class 

probabilities being one. Finally, the proposed dual-CNN fusion framework outputs the probability 

values of 4th four categories through a softmax layer. Thus we set n = 4. We employ cross-entropy as 

the loss function in softmax to determine how close the actual output is to the expected output, as in 

multi-classification tasks, the experimental effect of cross-entropy is closer to the ideal value. The 

cross-entropy loss function is: 

             𝐿log(𝑌, 𝑃) = −log Pr (𝑌 ∣ 𝑃) = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑘log 𝑝𝑖,𝑘

𝐾−1
𝑘=0

𝑁−1
𝑖=0                 (3) 

where 𝑦𝑖,𝑘 is the true label value, 𝑝𝑖,𝑘 represents the probability value corresponding to the k-th label 

under the ith sample, and N is the total number of samples. 
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(6) Classifier block 

Figure 5 presents the classifier block, including a global average pooling, dense, batch 

normalization, ReLU, dropout, and softmax layer. If too many parameters exist in the dense layer, 

utilizing global average pooling instead of a dense layer reduces the model weight parameters and 

avoid overfitting. Accordingly, batch normalization maintains all layer inputs in the same range, 

dropout prevents overfitting due to being a regularization technique, and Softmax defines the output 

category probability. 

 

Figure 5. Classifier block. 

2.3. Upsampling and Feature fusion 

(1) Upsampling methods 

When the VGG16 and Alexnet models perform feature map fusion, the feature map size is 

inconsistent. Thus, we upsample the feature map of the Alexnet model to expand its size. Commonly 

upsampling methods include deconvolution, depooling, and interpolation [34]. The interpolation 

method is simple to operate and easy to implement, and thus in this work, we employ interpolation for 

upsampling. Standard interpolation methods mainly include the Nearest Neighbor, Bilinear, and 

Bicubic Interpolation [47]. The Nearest Neighbor interpolation algorithm is processing efficient but 

imposes noticeable distortion, mosaic, and aliasing [48]. Therefore, this article mainly compares the 

effects of Bilinear, Bicubic, and Weighted Bilinear interpolation. 

Bilinear interpolation (BI): Figure 6 presents a schematic diagram of a bilinear interpolation 

process, with the pixel value at point 𝑝 being the one to determine. 𝑄12 and 𝑄22 are pixels with 

known pixel values in the same direction. The pixel value of 𝑅2  can be obtained by linear 

interpolation between 𝑄12  and 𝑄22 , and the pixel value of 𝑅1  by linearly interpolating 𝑄11  and 

𝑄21. Finally, the pixel value of point 𝑝 can be calculated by linearly interpolating 𝑅1 and 𝑅2. For 

this process, the involved formulas are Eqs 4–6. Specifically, the output of function 𝑓 is the p’s pixel 

value. Given the known value of 𝑄11(𝑥1, 𝑦1), 𝑄12(𝑥1, 𝑦2), 𝑄21(𝑥2, 𝑦1), 𝑄22(𝑥2, 𝑦2), where 𝑥 and 

𝑦 are pixel coordinates, by using bilinear interpolation, we first Interpolate 𝑄11 and 𝑄21 in the 𝑥 

direction to get: 

 

              𝑓(𝑅1) ≈
𝑥2−𝑥

𝑥2−𝑥1
𝑓(𝑄11) +

𝑥−𝑥1

𝑥2−𝑥1
𝑓(𝑄21)     where 𝑅1 = (𝑥, 𝑦1)         （4） 
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According to 𝑄12 and 𝑄22: 

 

              𝑓(𝑅2) ≈
𝑥2−𝑥

𝑥2−𝑥1
𝑓(𝑄12) +

𝑥−𝑥1

𝑥2−𝑥1
𝑓(𝑄22)    where 𝑅2 = (𝑥, 𝑦2)          （5） 

 

Then interpolate 𝑅1 and 𝑅2 in the 𝑦 direction to get: 

                   𝑓(𝑃) ≈
𝑦2−𝑦

𝑦2−𝑦1
𝑓(𝑅1) +

𝑦−𝑦1

𝑦2−𝑦1
𝑓(𝑅2)                         （6） 

 

Figure 6. Schematic diagram of bilinear interpolation. 

Weighted Bilinear interpolation (WBI): This method optimizes the interpolation effect by adding 

weight values in the 𝑥 and 𝑦 directions. The value of the unknown pixel point 𝑝 is calculated by 

interpolating the pixels in the 𝑥  and 𝑦  directions. Adding weight values can adjust the linear 

relationship of the fitted data, improve the linearity of the boundary image data changes to a certain 

extent, and ensure that the image boundary texture is evident [49]. 

        {
𝑤𝑥 =

𝑓(𝑄21)+𝑓(𝑄22)−𝑓(𝑄11)−𝑓(𝑄12)

2∗(𝑥2−𝑥1)

𝑤𝑦 =
𝑓(𝑄12)+𝑓(𝑄22)−𝑓(𝑄11)−𝑓(𝑄21)

2∗(𝑦2−𝑦1)

                        (7) 

where 𝑤𝑥  and 𝑤𝑦  are the weight values in the 𝑥  and 𝑦  directions, respectively. Eq 8 presented 

next is the calculation formula for the pixel value of the 𝑝 point after the weight is added: 

        𝑓𝑤(𝑃) =
𝑤𝑦

𝑤𝑥+𝑤𝑦
(
𝑓(𝑅1)+𝑓(𝑅2)

2
) +

𝑤𝑥

𝑤𝑥+𝑤𝑦
𝑓(𝑃)                  (8) 

Bicubic interpolation (BCI): The difference between bicubic and bilinear interpolation is the 

increase in fitting data. Assuming that the original image size is (m, m) and the interpolated target 

image size is (M, M), we first determine the image ratio relationship m/M = 1/K, and the unknown 

point P(X, Y) corresponds to the original image in the target image. For the coordinates p (X/K, Y/K) 

on the image, the bicubic interpolation needs to find the nearest 16 pixels around point p. Then the 

bicubic function is constructed to calculate the weight of the 16 nearest pixels, and the pixel 

contribution value is obtained by the product of the weight and the pixel value [48]. 
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𝑤(𝑥) = {
(𝑎 + 2)|𝑥|3 − (𝑎 + 3)|𝑥|2 + 1      for |𝑥| ≤ 1 

𝑎|𝑥|3 − 5𝑎|𝑥|2 + 8𝑎|𝑥| − 4𝑎        for 1 < |𝑥| < 2
                      0                                      otherwise

   (9) 

where w(x) is the bicubic function that obtains the coefficients corresponding to the 16 adjacent pixels 

to pixel p, and a = −0.5. The weight of 16 pixels can be calculated from Eq 9, and the pixel value of P 

can be calculated from: 

𝑃(𝑋, 𝑌) = ∑ ∑ 𝑎𝑖𝑗 ∗ 𝑊(𝑖) ∗ 𝑊(𝑗)3
𝑗=0

3
𝑖=0                        (10) 

where 𝑎𝑖𝑗 represents the pixel to be fitted, 𝑊(𝑖) the weight on the abscissa of 𝑎𝑖𝑗, and 𝑊(𝑗) the 

weight on the ordinate of 𝑎𝑖𝑗. 

(2) Feature fusion methods 

Currently, several feature fusion methods exist, with the most common ones being sum, maximum, 

and wavelet transform fusion [26], with each feature fusion method having a particular impact on the 

experiment’s accuracy. During the experiment, we compare the classification accuracy of various 

fusion methods, including sum, maximum, wavelet transform, and improved wavelet transform fusion. 

These methods are introduced next, and their interplay on the classification accuracy is presented in 

Section 4.  

Sum fusion (SF): This is a standard feature fusion method, which is often utilized in image pixel-

level feature fusion and feature-level fusion schemes [26,33]. The summation fusion involves adding 

the corresponding pixels in the same dimension of the two feature maps. The summation and fusion 

formulas are: 

                        {
𝐹 = [𝐹1, 𝐹2, 𝐹3 … , 𝐹𝑘]

𝐹𝑘 = 𝐹𝑘
𝑉(𝑖,𝑗)

+ 𝐹𝑘
𝐴(𝑖,𝑗)                                (11) 

where 𝐹 represents the total fusion feature map of size 512X7X7, k = 1,2,3…,512 represents the 

feature map channels, with a feature map size per channel of 7X7 (the dimension remains unchanged 

after the feature map fusion process completes). 𝑉(𝑖, 𝑗) represents the pixel (𝑖, 𝑗) value for the k-

channel in the VGG16 feature map, i = j = 1,2,3….,7, and  𝐴(𝑖, 𝑗) denotes the pixel (𝑖, 𝑗) value of 

the upsampled Alexnet network feature map for the kth-channel. 

Maximum fusion (MF): This method compares the corresponding pixels of the same dimension 

in two feature maps and selects the largest one as the fused pixel. The maximum fusion formula is: 

         {
𝐹 = [𝐹1, 𝐹2, 𝐹3 … , 𝐹𝑘]

𝐹𝑘 = 𝑀𝑎𝑥[𝐹𝑘
𝑉(𝑖,𝑗)

, 𝐹𝑘
𝐴(𝑖,𝑗)

]
                           (12) 

Improved Wavelet transform fusion (IWTF): This scheme performs wavelet transformation on 

two original images, transforms them into high-frequency and low-frequency image signal 

components, then fuses these components of different feature domains to obtain a new wavelet tower. 

Finally, it performs fusion transformation through an inverse wavelet.  

Wavelet transform fusion (WTF) manages a very appealing reconstruction ability ensuring no 

information loss and redundant information in the signal’s decomposition process [50]. Let the 

coefficients of images A and B be (𝑐𝐴, 𝑑𝐴𝑖
𝜀) and (𝑐𝐵, 𝑑𝐵𝑖

𝜀) after i-layer wavelet decomposition, and 
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the coefficients corresponding to the image after fusion be (𝑐𝐹, 𝑑𝐹𝑖
𝜀). 𝑐 represents the low-frequency 

coefficient of the image in the i-th layer and 𝑑 the high-frequency coefficient of the image in the 𝜀 

direction of the i-th layer. The low-frequency information includes the image’s outline, and the high-

frequency information includes the image’s details. The traditional wavelet transform fusion method 

uses weighted average fusion at low frequencies (Eq 13) and employs the most considerable absolute 

value of coefficients at high frequencies (Eq 14). Finally, (𝑥, 𝑦) indicates the coefficient location. In 

Eq 15, F represents the total fusion feature map of size 512X7X7, with k = 1,2,3,…,512 representing 

the feature map channels of size 7X7 per channel. After the feature map fusion process completes, its 

dimension is preserved. 𝐹𝑘
𝑉 and 𝐹𝑘

𝐴 denote the feature map under the k-th channel for VGG16 and 

Alexnet, respectively. The corresponding feature map channels generated by VGG16 and Alexnet 

undergo a wavelet transform fusion as follows: 

                   𝑐𝐹(𝑥, 𝑦) =
1

2
[𝑐𝐴(𝑥, 𝑦) + 𝑐𝐵(𝑥, 𝑦)]                          (13) 

                 𝑑𝐹𝑗
𝜀(𝑥, 𝑦) = {

𝑑𝐴𝑗
𝜀(𝑥, 𝑦), |𝑑𝐴𝑗

𝜀(𝑥, 𝑦)| ≥ |𝑑𝐵𝑗
𝜀(𝑥, 𝑦)|

𝑑𝐵𝑗
𝜀(𝑥, 𝑦), |𝑑𝐴𝑗

𝜀(𝑥, 𝑦)| < |𝑑𝐵𝑗
𝜀(𝑥, 𝑦)|

               (14) 

              {
𝐹 = [𝐹1, 𝐹2, 𝐹3 … , 𝐹𝑘]

𝐹𝑘 = Wavelet transform fusion[𝐹𝑘
𝑉 , 𝐹𝑘

𝐴]
                        (15) 

This paper employs the db4 wavelet to decompose the original image involving three wavelet 

layers and obtains the image’s high and low-frequency coefficients. The low-frequency coefficients 

are fused through a weighted average scheme, while for the high-frequency coefficients, the Canny 

operator is applied to perform edge detection, extract the edge area information, and reduce subsequent 

image fusion data. In the edge area, the area energy selects the high-frequency coefficients [51–53], 

and finally, the fused wavelet coefficients are subjected to wavelet inverse transformation to realize 

fusion. The edge region extracted by the Canny operator is divided into MxN regions, which in this 

work is M = N = 2. Then, we employ Eq 16 to find the average wavelet energy of each area block, and 

finally, Eq 17 to determine the high-frequency coefficient. The fusion flow chart utilizing Wavelet 

transform is illustrated in Figure 7. 

 

 

Figure 7. Wavelet transform fusion. 

 

                  {
𝐸𝐴 = ∑ ∑ 𝐺𝐴(𝑥, 𝑦)2/𝑀 ∗ 𝑁𝑁

𝑦=1
𝑀
𝑥=1

𝐸𝐵 = ∑ ∑ 𝐺𝐵(𝑥, 𝑦)2/𝑀 ∗ 𝑁𝑁
𝑦=1

𝑀
𝑥=1

                            (16) 
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  𝐺𝐹 =
𝐸𝐴

𝐸𝐴+𝐸𝐵
∗ 𝐺𝐵(𝑥, 𝑦) +

𝐸𝐵

𝐸𝐴+𝐸𝐵
∗ 𝐺𝐴(𝑥, 𝑦)                       (17) 

where 𝐸𝐴 , 𝐸𝐵  represent the average wavelet energy and 𝐺𝐴(𝑥, 𝑦) , 𝐺𝐵(𝑥, 𝑦)  the high-frequency 

coefficients of the images A and B in the current area block, respectively. Eq 17 expresses the weighted 

addition between the high-frequency coefficients of images A and B and the average energy，while 

𝐺𝐹  the high-frequency coefficient after fusion. 

2.4. K-fold cross-validation 

K-fold cross-validation is a way to build a model and verify its parameters when fewer data sets 

are utilized in a deep learning scheme. The sample data are combined into different training and 

validation sets, where the training set trains the model, and the validation evaluates the model's 

accuracy, preventing the model from overfitting [54]. K-fold cross-validation divides the sample data 

into K random subsets, where K-1 subsets are employed as the training set, and the remaining one is 

the validation set. Since the sample data is divided into training sets, there are K choices, and thus the 

training and the verification errors need to be calculated each time. Finally, the K calculations of the 

model’s training and verification errors are averaged to obtain the cross-validation errors [55] that are 

ultimately used to evaluate the model’s performance. Figure 8 presents the K-fold cross-validation 

graph. In our research, we set K = 5. 

 

 

Figure 8. The diagram of K-fold cross-validation. 

2.5. Transfer learning and data augmentation 

Transfer learning is used in deep learning to solve model overfitting and the poor robustness 

caused by insufficient or few data sets [56]. Transfer learning allocates parameters generated in the 

model training process under one data set to model another by realizing parameter sharing. This work 

considers the VGG16 and Alexnet as the basic pre-trained models for object detection on the ImageNet 

dataset. During this pre-training period, millions of parameters are learned to obtain standard visual 

features fed to our convolutional neural network. However, in the proposed dual-CNN model fusion 

framework, we freeze the feature layer parameters of the VGG16 and Alexnet models, extract the 

feature layer features, and train the parameters of the classifier block. 
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During the CNN training process, exploiting data sets with only a few samples per class imposes 

the model to overfit and reduces its test accuracy and generalization ability. In this work, the aluminum 

profile data set exploited originates from a factory that uses a digital camera for image collection, and 

thus the number of data sets is insufficient. Therefore, data enhancement is applied to the original data 

set to expand the data set and improve the model’s robustness [57,58]. Data augmentation methods 

include dimming, horizontal rotation, vertical rotation, and noise addition (Gaussian noise and salt and 

pepper noise). Adding noise simulates low image quality due to external factors during the actual 

image acquisition, transmission, and storage. we mainly use horizontal and vertical rotation and salt 

and pepper noise. The horizontal and vertical rotation involves 180-degrees rotation from left to right 

and bottom to top, respectively. Considering noise, the signal-to-noise ratio is set to 0.95, 0.9, 0.75. 

This article has 3568 images enhanced by horizontal rotation, while for the experiments, we create 

3573 vertically rotated images and 3571 images with salt and pepper noise. Examples of the three data 

enhancement methods are illustrated in Figure 9. 

 

         

(a) Original image                    (b) Vertical flip 

         

(c) Horizontal flip                (d) Salt and Pepper noise 

Figure 9. The data augmentation. 

3. Experimental setup 

This section mainly introduces the visual acquisition equipment, model training environment, 

experimental data, and the qualitative evaluation indicators involved in the experiment process. 

3.1. Machine vision setup 

Figure 10 illustrates the designed image capturing device, including an ABB120 robotic arm, light 

shield, LED strip light source, background board, camera, and conveyor belt. The hood (0.25m × 

0.25m × 0.65m) is designed to create a suitable lighting environment and avoid substantial light 

interference during image capturing. The LED strip light source with an adjustable brightness improves 

the image surface collection effect. Experimental tests have proved that choosing the orange color for 

the background plate can enhance the contrast between the image and the background. The image 

acquisition equipment uses a Hikvision industrial camera (model: MV-CE060-10UM) with a 

resolution of 3072 × 2048, which is installed 60mm under the hood. The image acquisition process is: 

the robotic arm utilizing an end effector grabs the aluminum profile workpiece (known position) and 
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places it horizontally under the camera. The trigger time is set to capture the first image, and then the 

robotic arm changes the posture and position of the aluminum profile into a known orientation to 

capture the second image. After that, the end joint rotates 180 degrees to capture the third image, and 

in total, three images per aluminum profile workpiece are captured. Finally, the aluminum profile 

workpieces are sorted, the robotic arm places them on the conveyor belt, and the PLC controls the 

conveyor belt to move them to their designated position. 

Figure 11 presents the collected surface image of the aluminum profile workpiece. Side 1 is the 

first image taken horizontally under the camera when the robot arm grabs the aluminum profile 

workpiece. Side 2 is the second image taken after the robot arm changes its posture, while Side 3 refers 

to the third image after the end joint rotates 180 degrees. 

 

Figure 10. The designed image acquisition setup for automatic online classification. 

 

 

Figure 11. The aluminum profile surface image. 
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3.2. Experimental development environment and dataset 

For the trials, we utilize the Tensorflow deep learning framework. The CNN models are trained 

employing an NVIDIA GeForce GTX 1060 6GB GPU, and the software environment is python 3.8.3. 

The CNN model employs the Adam optimizer with a learning rate and learning rate decay of 0.001 

and 1e-5, respectively, a batch size of 16 and 50 epochs for the network training. The remaining 

parameters are the default ones of Tensorflow. 

The experiment exploits the images collected from the aluminum profile workpiece utilizing the 

image acquisition device of Figure 10. The entire data set includes three single defect sample types 

and one non-defect sample type, which adopt the classification categories of. Specifically, in 

Figure 12(a), the surface is smooth and flat, i.e., the Intact class. In Figure 12(b), an external force 

affects the surface, and the damaged area is large, i.e., Bruise class. The small dirty spots on the surface 

in Figure 12(c) are Dirty spots (DS) class. In Figure 12(d), irregular scratches appear on the surface 

that are unevenly distributed, which is classified as a Scratch. Table 1 presents the number of samples 

in various categories. The dataset contains 14282 surface images, including the original collected 

images and the images after data augmentation. The data set is divided into a test set (1430 images) 

and a training set (12852 images) following a 1:9 ratio. The training set undergoes a 5-fold cross-

validation process during which the training samples are10280 and the verification samples are 2572. 

 

      (a) Intact       (b)Bruise      (c) Dirty spots(DS)   (d) Scratch 

Figure 12. The sample images of aluminum profile surface. 

Table 1. Classification and statistics of aluminum profile workpiece data set 

Category 
Number of original images collected Number of images enhanced by data 

train test train test 

Intact 828 93 2484 276 

Bruise 522 59 1566 174 

Dirty spots(DS) 980 108 2944 328 

Scratch 882 98 2646 294 

3.3. Quantitative evaluation metrics 

In the training and verification phase, the training effect is monitored by displaying the 

classification accuracy (CA) and cross-entropy loss (CEL) changes in real-time [59,60]. In the testing 

phase, the robustness and generalization of the model are verified through indicators such as confusion 

matrix, ACC, PPV, TPR, and F-score. All indicators are described in detail below. 
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Classification Accuracy (CA): The ratio of the correctly predicted samples to the total number of 

actual samples. The subsequent trials consider Training accuracy, Validation accuracy, and Test 

accuracy. 

Cross-Entropy Loss (CEL): Assesses the gap between the actual and prediction classes. The 

experiments involve Training loss and Validation loss. 

Confusion matrix: The predicted results of all categories and the real results are placed in the 

same table based on their category. This table highlights the number of correct and incorrect 

identifications per category. 

We use the positive predictive value (PPV) or precision, true positive rate (TPR) or recall, F-score, 

and accuracy (ACC) to evaluate the model’s performance [59]. These metrics are calculated utilizing 

Eqs 18–21, respectively. For class x, TPX represents the number of correctly predicted x, PPVX the 

number of correctly predicted x divided by the total number of predictions belonging to x, and TPRX 

is the number of predicted x divided by the total number of actual x. The F-score is utilized to combine 

PPV and TPR metrics into one metric using the harmonic mean, which is detailed in Eq 20. Finally, 

Eq 21 shows the ACC definition, where n represents the number of categories and 𝑙𝑖 the number of 

each category. 

                              PPVX =
TPX

 TotalPredicted X
                             (18) 

                              TPRX =
TPX

 TotalActual X
                               (19) 

                              F-score 𝑥 =
1

0.5 TPRX⁄ +0.5 PPVX⁄
                       (20) 

                              ACC =
∑ 𝑇𝑃𝑖 𝐼𝑖⁄𝑛

𝑖=1

𝑛
                                  (21) 

4. Experiments results and analysis 

This section describes and analyzes the experimental results. During the training process, the K-

fold cross-validation method determines the best model through analysis by evaluating all models' 

performance (Section 4.1). We combine various interpolation and feature fusion methods for model 

training and testing and then analyze them to determine the optimal combination (Section 4.2). We 

also compare the performance indicators of various fusion frameworks during the training and testing 

process (Section 4.3), and finally, we analyze the current research deficiencies and propose future 

research directions (Section 4.4.). 

4.1. K-fold cross-validation and performance evaluation 

The VGG16 model’s maximum pooling layer of the V5 part and Alexnet model’s A4 part were 

selected as the feature map fusion positions during the experiments. After convolution, using 

maximum pooling reduces redundant features and extracts texture features [61]. To upsample the 

feature map of the maximum pooling layer of the A4 part, we use weighted bilinear interpolation, 

while the wavelet transform fusion method is employed for feature map fusion. Table 2 shows the 

classification accuracy (CA) and cross-entropy loss (CEL) values of each fold of our proposed fusion 

scheme. According to Table 2, the average CA and CEL values during training are 0.977 and 0.109, 
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respectively, while the corresponding validation image data set’s results are 0.970 and 0.124, 

respectively. During training, the best efficiency is attained in the fourth fold of the 5-fold process. 

Figure 13 illustrates the change curve of CA and CEL during the 4-fold training. Specifically, when 

the epoch is greater than 20, the gap between the verification accuracy and the loss curve tends to 

stabilize, and there is no significant change in the accuracy and loss values as the loss slowly decreases 

throughout the training process. The model’s CA in the training and validation data sets are 0.983 and 

0.971, while CEL is 0.097 and 0.116, respectively. Throughout the experiments, the same cross-

validation method is used to validate the competitor models. Section 4.2 introduces in detail the 

experimental results by evaluating three interpolation methods and four feature fusion schemes. 

Table 2. Comparison of the proposed fusion frameworks in each fold.   

Fold 
Training Validation 

Accuracy Loss Accuracy Loss 

1 0.973 0.121 0.965 0.129 

2 0.980 0.109 0.968 0.128 

3 0.975 0.118 0.966 0.133 

4 0.983 0.097 0.971 0.116 

5 0.976 0.104 0.981 0.112 

Average 0.977±0.006 0.109±0.012 0.970±0.011 0.124±0.012 

 

         

Figure 13. the accuracy and loss curve of WBI and IWTF combination during the training 

process. 

4.2. Comparison of different interpolation methods under different feature fusion methods 

This section evaluates three interpolation and four feature fusion methods, which are cross-

combined, and each combination is applied to the proposed dual-CNN model fusion framework. The 

fused feature map is input into the classifier block for classification. Under the same experimental 

conditions, the performance of the models for each combination is compared in the training and test set. 

We use CA and CEL during the training process to analyze the model’s performance under 

different combinations, with the specific data shown in Table 3. The latter table shows the CA and CEL 

when the optimal model is obtained after five cross-validations of different combinations during the 

training process. Figure 14 shows the change trend curve of CA and CEL when the optimal model is 

obtained after cross-validating different combinations during the training process. Table 3 and 
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Figure 13 highlight that the combination of weighted bilinear interpolation and improved wavelet 

transform works best in the training set. The CA of the model in the training and validation data sets 

are 0.983 and 0.971, respectively, and the CEL is 0.097 and 0.116, respectively. 

Table 3. Performance comparison of different interpolation and different feature fusion 

method combinations during the training process. 

Combinations 
Accuracy Loss 

Training Validation Training Validation 

BI+SF 0.911 0.910 0.382 0.326 

BI+MF 0.917 0.927 0.278 0.266 

BI+WTF 0.943 0.938 0.147 0.161 

BI+IWTF 0.961 0.952 0.121 0.119 

WBI+ SF 0.939 0.935 0.174 0.181 

WBI+ MF 0.920 0.905 0.325 0.297 

WBI+ WTF 0.956 0.951 0.129 0.132 

WBI+ IWTF 0.983 0.971 0.097 0.116 

BCI+ SF 0.935 0.928 0.212 0.262 

BCI+ MF 0.916 0.909 0.316 0.299 

BCI+ WTF 0.953 0.948 0.136 0.144 

BCI+ IWTF 0.968 0.957 0.117 0.123 

 

         

Figure 14. Comparison of training accuracy of different interpolation and different feature 

fusion method combinations. 

Comparing the Test accuracy of various combinations in the test set, Figure 15 highlights that the 

combination of the weighted bilinear interpolation and improved wavelet transform works best in the 

test set, managing a Test accuracy of 0.951. Analyzing the experimental effects on the various 

combinations examined indicates that the improved wavelet transform combined with any 

interpolation method affords better performance than any other feature fusion method. Nevertheless, 

in most cases, the weighted bilinear interpolation has higher experimental accuracy. 
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Figure 15. Comparison of test accuracy of different interpolation and different feature 

fusion method combinations. 

4.3. Comparison of the proposed fusion frameworks with other fusion frameworks 

This section challenges the proposed dual-CNN model fusion framework against the other two 

fusion frameworks presented in Section 2. All feature fusion methods are applied under the same 

experimental conditions as mentioned in the previous trials. Figure 16 presents the test accuracy of the 

various fusion frameworks. Among them, the proposed dual-CNN model fusion framework and the 

other two frameworks presented in Section 2 have the highest accuracy when combined with the 

improved wavelet transform fusion strategy, achieving an accuracy of 0.951, 0.944, and 0.939, 

respectively. For the data set utilized in this paper, we also compare the test accuracy of the three fusion 

frameworks under the same fusion method. In most cases, the proposed dual-CNN model fusion 

framework manages a higher accuracy than the other two fusion frameworks. 

 

Figure 16. Comparison of test accuracy of different fusion frameworks. 

Each column of the confusion matrix represents the predicted category, and the total number of 

data per column is displayed as the predicted number of that category. Each row represents the true 

attribution category, with the total number of data per row representing the number of that category. 

The value in each column shows the actual amount of data predicted for that type. We evaluate the 

three fusion frameworks (the total number of images is 1430) employing the improved wavelet 
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transform fusion strategy on the test set. The latter set involves 369 images of the Intact category, 233 

of the Bruise category, 436 of the DS class, and 392 of the Scratch class. Figure 17 depicts the 

difference in the confusion matrix under the three fusion frameworks. From Figure 17, we find that 

some scratches are easily misclassified as Intact. The reason may be that the scratches on the surface 

of the aluminum profile are not noticeable. Comparing the three confusion matrices of Figure 17, it is 

evident that the test accuracy of our proposed dual-CNN model fusion framework is higher than the 

other two fusion frameworks. 

         

(a) Fusion frameworks1                      (b) Fusion frameworks2 

 

(c) Fusion frameworks(proposed) 

Figure 17. Confusion matrix under different fusion frameworks. 

Table 4 presents the accuracy rate (ACC), average PPV, average TPR, and average F-score of the 

three different fusion frameworks combined with the improved wavelet transform fusion strategy. The 

average PPV, average TPR, and average F-score represent the corresponding average metric over all 

categories. According to Table 4, the accuracy of our proposed architecture is higher than the other 

two modular fusion frameworks. The accuracy rate is 0.951, the average PPV is 0.949, the average 

TPR is 0.950, and the average F-score is 0.949. 
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Table 4. Average statistical parameters of various fusion frameworks. 

method Acc(%) AP(%) AT(%) Af(%) 

Fusion frameworks1 94.4 93.8 94.3 94.1 

Fusion frameworks2 93.9 93.5 93.3 93.6 

Fusion frameworks(proposed) 95.1 94.9 95.0 94.9 

(Acc:Accuracy  AP: Average PPV  AT: Average TPR  Af:Average F-score  ) 

As a recap, Figures 1, 2 and 3, present the three competitor fusion architectures. In the proposed 

scheme (illustrated in Figure 3), we select the feature map of the largest pooling layer of the Alexnet 

model A4 and VGG16 model V5 for feature fusion. Then, we use global average pooling instead of 

the dense layer to build a classifier block affording fewer training parameters and reduce the model’s 

space dimensionality to avoid over-fitting and improve classification accuracy. The performance 

difference between our method and the first fusion framework is mainly due to the different feature 

fusion positions and classifier blocks. Part of the features fused by the second fusion framework 

originates from the processed image, i.e., gradient processing. 

Figure 18 illustrates the accuracy metrics between the dual-CNN model fusion framework and 

the single convolutional neural network framework. The latter figure indicates that the experimental 

accuracy of the dual-neural network after feature fusion is higher than that of the single neural network. 

Among them, the test accuracy of Alexnet is 0.908, and of VGG16 is 0.926. After feature fusion, the 

performance of the two convolutional neural networks is better, managing a test accuracy rate of 0.951, 

which is 0.043 higher than solely using the Alexnet model and 0.025 higher than the VGG16 model. 

Comparing the three single-convolutional neural network frameworks and the other two traditional 

dual-CNN model fusion frameworks, the experimental accuracy of our dual-CNN model fusion 

framework has been improved. 

 

 

Figure 18. Comparison of test accuracy between dual-convolutional neural network model 

fusion framework and single convolutional neural network framework. 
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4.4. Insufficient research and future work 

The suggested dual-CNN model fusion framework affects the surface defect recognition and 

classification of aluminum profile workpieces. It is important to note that the achieved experimental 

accuracy meets the requirements. However, it is limited to the identification and classification of a 

single defect. When multiple defects with inconsistent sizes on the aluminum profile workpiece surface 

exist, the dual-CNN model fusion framework will classify it according to the learned defect feature 

ratio and take the largest ratio as the classification output. This may lead to incorrect classification 

results. Figure 19(a) shows the classification result when multiple defects exist. In this example, the 

scratches on the surface of the workpiece are evenly distributed, and the size is larger than the dirty 

spots, so the scratches are output as the final classification. 

Future work should also include other single-convolutional neural network frameworks for 

feature fusion to form a multi-convolutional neural network fusion framework. This strategy mainly 

realizes simultaneous recognition of multiple defects and defect marking positions to segment and 

highlight the defective parts. Figure 19(b) shows the location of multiple defects on the surface of the 

workpiece. The red squares represent dirty spots, and the green ones represent scratches. 

 

        

(a) Actual:(DS+Scratch) Predicted:Scratch  (b) Defect identification and location 

Figure 19. Multiple defect classification and location. 

5. Conclusions 

This work considers aluminum defect detection and classification. Specifically, we propose an 

improved dual-CNN model fusion framework to extract different features of the same input source 

exploiting the pre-trained VGG16 and Alexnet models. Weighted bilinear interpolation ensures that 

the feature map generated by the last maximum pooling layer of the Alexnet and VGG16 models have 

the same dimensions. The improved wavelet feature fusion strategy is exploited to fuse feature maps 

effectively, while global average pooling replaces the dense layer to construct the classification block, 

i.e., classify and recognize the aluminum profile’s surface defects.  

Additionally, we analyze the structure of the conventional dual-CNN model fusion framework 

and the hidden layers’ role. We also challenge several traditional upsampling methods combined with 

feature fusion strategies and select a set of optimal combinations (improved bilinear interpolation and 

improved wavelet transform fusion) as the configuration of the framework proposed in this paper. 

During the experiments, data augmentation and transfer learning methods are employed to prevent 

overfitting, and the K cross-validation method is used to evaluate the performance of the experimental 

model during the training process. Finally, we challenge the proposed framework against traditional 

dual-CNN model fusion frameworks and single-convolutional neural networks under the same 
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experimental conditions. Among them, the classification accuracy of our framework on the test set is 

0.951, while the two conventional dual-CNN model fusion frameworks are 0.944 and 0.939, VGG16 

manages 0.926, Alexnet 0.908, Inceptionv3 0.922, VGG19 0.929, Resnet50 0.915, and Resnet101 

0.921. The experimental results highlight the contribution of exploiting an improved wavelet fusion 

strategy to achieve feature fusion after the maximum pooling layer of the two models. Additionally, 

the experimental results indicate the effectiveness of employing global average pooling instead of a 

dense layer to build the classifier block. 
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