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Abstract. We present here a generalized Girard-Waring identity constructed

from recursive sequences. We also present the construction of Binet Girard-
Waring identity and classical Girard-Waring identity by using the generalized

Girard-Waring identity and divided differences. The application of the gener-

alized Girard-Waring identity to the transformation of recursive sequences of
numbers and polynomials is discussed.

1. Introduction. Albert Girard published a class of identities in Amsterdam in
1629. Edward Waring published similar material in Cambridge in 1762-1782, which
are referred as Girard-Waring identities A000330 [15]. These identities may be
derived from the earlier work of Sir Isaac Newton. Surveys and some applications
of these identities can be found in Comtet [2] (P. 198), Gould [3], Shapiro and one
of the authors [5], and the first two authors [7]. We now give a different approach to
derive Girard-Waring identities by using the Binet formula A097600 [15] of recursive
sequences and divided differences. Meanwhile, this approach offers some formulas
and identities that may have wider applications.

This paper starts from an application of recursive sequences in the construction
of a combinatorial identity referred to as generalized Girard-Waring identity from
the Binet formula and the generating function of a recursive sequence. By using
the generalized Girard-Waring identity, the Binet type Girard-Waring identity is
derived, which yields the classical Girard-Waring identity by making use of divided
differences. Many number and polynomial sequences can be defined, characterized,
evaluated, and/or classified by linear recurrence relations with certain orders. A
number sequence {an} is called sequence of order 2 if it satisfies the linear recurrence
relation of order 2:

an = pan−1 + qan−2, n ≥ 2, (1)
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for constants p, q ∈ R and q 6= 0 and initial conditions a0 and a1. Let α and β be
two roots of of quadratic equation x2 − px − q = 0. From He and Shiue [6], the
general term of the sequence {an} can be presented by the following Binet formula.

an =

{ (
a1−βa0
α−β

)
αn −

(
a1−αa0
α−β

)
βn, if α 6= β;

na1α
n−1 − (n− 1)a0α

n, if α = β.
(2)

In the next section, from the above Binet formula we will construct a generalized
Girard-Waring identity by using generating function of the recursive sequence shown
in (1). Then the Binet type Girard-Waring identity will be derived accordingly. In
Section 3, we present a way to construct classical Girard-Waring identity from the
Binet type Girard-Waring identity by using the divided difference. Section 4 will
give an application of the generalized Girard-Waring identity to the transformation
of recursive sequences of numbers and polynomials.

2. Construction of Binet type Girard-Waring identity by using recursive
sequences. We now find the generating function of the sequence defined by (1).

Proposition 1. Denote A(s) =
∑
n≥0 ans

n. Then

A(s) =
a0 + (a1 − pa0)s

1− ps− qs2
. (3)

Furthermore, the Taylor expansion A165998 [15] of A(s) is

A(s)

=a0 +
∑
n≥1

a1pn−1 +

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
pn−2j−1qj (jpa0 + (n− 2j)a1)

 sn.

Proof. From the definition of A(s), we have

A(s) =
∑
n≥0

ans
n = a0 + a1s+

∑
n≥2

ans
n

=a0 + a1s+
∑
n≥2

(pan−1 + qan−2)sn

=a0 + a1s+ ps
∑
n≥1

ans
n + qs2

∑
n≥0

ans
n

=a0 + a1s+ ps(A(s)− a0) + qs2A(s).

Hence, we obtain (3).
We now give the Taylor series expansion of the right-hand side of (3) as follows:

a0 + (a1 − pa0)s

1− ps− qs2

=(a0 + (a1 − pa0)s)
∑
n≥0

sn(p+ qs)n
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=(a0 + (a1 − pa0)s)
∑
n≥0

n∑
j=0

(
n

j

)
pn−jqjsn+j

=(a0 + (a1 − pa0)s)
∑
n≥0

n∑
j=0

(
n− j

j

)
pn−2jqjsn

=a0

∑
n≥0

n∑
j=0

(
n− j

j

)
pn−2jqjsn + (a1 − pa0)

∑
n≥1

n∑
j=0

(
n− j − 1

j

)
pn−2j−1qjsn

=a0 +
∑
n≥1

n∑
j=0

(
a0

(
n− j

j

)
pn−2jqj + (a1 − pa0)

(
n− j − 1

j

)
pn−2j−1qj

)
sn

=a0 +
∑
n≥1

n∑
j=0

(
a0

((
n− j

j

)
−

(
n− j − 1

j

))
pn−2jqj + a1

(
n− j − 1

j

)
pn−2j−1qj

)
sn

=a0 +
∑
n≥1

(
a1p

n−1 +

n∑
j=1

(
a0

(
n− j − 1

j − 1

)
pn−2jqj + a1

(
n− j − 1

j

)
pn−2j−1qj

))
sn

=a0 +
∑
n≥1

a1p
n−1 +

[n/2]∑
j=1

(
n− j − 1

j − 1

)
pn−2j−1qj

(
pa0 +

n− 2j

j
a1

) sn

=a0 +
∑
n≥1

a1p
n−1 +

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
pn−2j−1qj (jpa0 + (n− 2j)a1)

 sn,

which completes the proof of the proposition.

Corollary 1. Let (an) be the sequence defined by the recursive relation (1), and let
α and β be two distinct roots of the characteristic polynomial of (1). Then we have
the following generalized Girard-Waring identity:

an = a1p
n−1 +

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
pn−2j−1qj (jpa0 + (n− 2j)a1) . (4)

If a0 = 0 and a1 = 1, (4) implies the Binet type Girard-Waring identity

an =
αn − βn

α− β
=

[n/2]∑
j=0

(
n− j − 1

j

)
pn−2j−1qj

=

[n/2]∑
j=0

(−1)j
(
n− j − 1

j

)
(α+ β)n−2j−1(αβ)j ,

(5)

where p = α+ β and q = −αβ.

Proof. From (4), we have

an = a1p
n−1 +

[n/2]∑
j=1

(
n− j − 1

j − 1

)
pn−2j−1qj

(
pa0 +

n− 2j

j
a1

)
, (6)

or equivalently, (4). Hence, we obtain the following identity for all recursive se-
quences defined by (1)

a1p
n−1 +

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
pn−2j−1qj (jpa0 + (n− 2j)a1)
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=

(
a1 − βa0
α− β

)
αn −

(
a1 − αa0
α− β

)
βn,

where p = α+ β and αβ = −q, or equivalently,

α =
p+

√
p2 + 4q

2
and β =

p−
√
p2 + 4q

2
.

If a0 = 0 and a1 = 1, from (4) we have

an =a1p
n−1 +

[n/2]∑
j=1

n− 2j

j

(
n− j − 1

j − 1

)
pn−2j−1qj

=a1p
n−1 +

[n/2]∑
j=1

(
n− j − 1

j

)
pn−2j−1qj ,

which implies the first equation of (5) by noting (2). Substituting p = α + β and
q = −αβ into the first equation of (5), we obtain the second equation of (5) and
complete the proof.

Remark 1. He and Shapiro [5] used Riordan array approach to establish the Binet
type Girard-Waring identity (5).

3. Re-establishing of Girard-Waring identities by using the Binet type
Girard-Waring identity. We now prove the classical Girard-Waring identity

αn + βn =
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(α+ β)n−2k(αβ)k, (7)

by using the first equation of (5). First, we need the following lemmas.

Lemma 3.1. Let n ∈ N. Then

j∑
k=0

n

n− k

(
n− k
k

)(
n− j − 1 + k

j − k

)
=

(
2n− j − 1

j

)
. (8)

Proof. From the Chu-Vandermonde formula and noting, the left-hand side of (8)
can be written as

LHS =

j∑
k=0

n

n− k

(
n− k
k

)(j−k∑
i=0

(
n+ n− j − 1

j − k − i

)(
−n+ k

i

))

=

j∑
k=0

n

n− k

(
n− k
k

)( j∑
i=k

(
2n− j − 1

j − i

)(
−n+ k

i− k

))

=

j∑
i=0

(
i∑

k=0

n

n− k

(
n− k
k

)(
−n+ k

i− k

))(
2n− j − 1

j − i

)

=

j∑
i=0

(
2n− j − 1

j − i

)( i∑
k=0

(−1)i−kn

n− 2k + i

(
i

k

)(
n− 2k + i

i

))
,

where on the first line(
−n+ k

i

)
= (−1)i

(n− k)(n− k − 1) · · · (n− k − i+ 1)

i!
= (−1)i

(
n− k
i

)
.
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We split the inner sum of the rightmost hand of the above equation for the left-hand
side of (8),

i∑
k=0

(−1)i−k
(
i

k

)
n

n− 2k + i

(
n− 2k + i

i

)
,

into two cases. For i = 0, we have the above sum to be n
n−0+0 = n

n = 1. For i > 0,
we have

i∑
k=0

(−1)i−k
(
i

k

)
n

n− 2k + i

(n− 2k + i)!

(n− 2k)!i!

=

i∑
k=0

(−1)i−k
(
i

k

)
n

(n− 2k + i− 1)!

(n− 2k)!i!

=

i∑
k=0

(−1)i−k
(
i

k

)
n

(n− 2k + i− 1)(n− 2k + i− 2)...(n− 2k + 1)

i!

=0,

where the last sum is zero because it is the finite difference of a polynomial with
its degree one less than the order of the difference. Hence, the left-hand side of (8)
becomes

LHS =

j∑
i=0

(
2n− j − 1

j − i

)( i∑
k=0

(−1)i−kn

n− 2k + i

(
i

k

)(
n− 2k + i

i

))

=

(
2n− j − 1

j

)
.

Lemma 3.2. Let α and β be two roots of the characteristic polynomial of the
recursive relation(1). Then∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(α+ β)n−2k(αβ)k

·
∑

0≤k≤[n/2]

(−1)k
(
n− k − 1

k

)
(α+ β)n−2k−1(αβ)k

=
∑

0≤k≤n

(−1)k
(

2n− k − 1

k

)
(α+ β)2n−2k−1(αβ)k.

(9)

Proof. The left-hand side of (9) can be written as∑
0≤k≤[n/2]

∑
0≤i≤[n/2]

(−1)k+i
n

n− k

(
n− k
k

)(
n− i− 1

i

)
(α+ β)2n−2(k+i)−1(αβ)k+i

=
∑

0≤k≤[n/2]

∑
0≤j≤n

(−1)j
n

n− k

(
n− k
k

)(
n+ k − j − 1

j − k

)
(α+ β)2n−2j−1(αβ)j
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=
∑

0≤j≤n

(−1)j

 ∑
0≤k≤[n/2]

n

n− k

(
n− k
k

)(
n+ k − j − 1

j − k

)
(α+ β)2n−2j−1(αβ)j ,

where by using Lemma 3.1 the inner sum can be written as∑
0≤k≤j

n

n− k

(
n− k
k

)(
n+ k − j − 1

j − k

)
=

(
2n− j − 1

j

)
.

Thus we obtain (9).

To prove Girard-Waring identity (7), we only need to mention that (9) implies∑
0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(α+ β)n−2k(αβ)k

=
∑

0≤k≤n

(−1)k
(

2n− k − 1

k

)
(α+ β)2n−2k−1(αβ)k/

∑
0≤k≤[n/2]

(−1)k
(
n− k − 1

k

)
(α+ β)n−2k−1(αβ)k

=
α2n − β2n

α− β
/
αn − βn

α− β
= αn + βn.

There are some alternative forms of formula (7). As an example, we give the
following one. If x+ y + z = 0, then (7) gives

xn + yn =
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(−z)n−2k(xy)k

=(−1)nzn +
∑

1≤k≤[n/2]

(−1)n−k
n

n− k

(
n− k
k

)
zn−2k(xy)k,

which implies

xn + yn − (−1)nzn =
∑

1≤k≤[n/2]

(−1)n−k
n

n− k

(
n− k
k

)
zn−2k(xy)k.

Thus, when n is even, we have formula

xn + yn − zn =
∑

1≤k≤[n/2]

(−1)n−k
n

n− k

(
n− k
k

)
zn−2k(xy)k, (10)

while for odd n we have

xn + yn + zn =
∑

1≤k≤[n/2]

(−1)n−k
n

n− k

(
n− k
k

)
zn−2k(xy)k, (11)

where x+ y + z = 0. Consequently, if n = 3, then

x3 + y3 + z3 = 3xyz, (12)

which was shown in He and Shiue [7]. Saul and Andreescu [14] have shown that the
cube vanishes if x = −(y+ z). Note that Euler used this to solve the general cubic.
In [7], the following proposition as an application of (12) was presented.
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Proposition 2. Let x, y ∈ N. Then pxy(x+ y)|(xp + yp − (x+ y)p) when p ≥ 3 is
a prime.

4. Application to transferring recursive sequences. As a source of Binet
Girard-Waring identity, the generalized Girard-Waring identity (4) has many appli-
cations including a simple way in transferring recursive sequences of numbers and
polynomials. For example, we consider Chebyshev polynomials of the first kind
A028297 [15] defined by

Tn(x) = 2xTn−1(x)− Tn−2(x) (13)

for all n ≥ 2 and T0(x) = 1 and T1(x) = x. Then from Corollary 1, we have

Tn(x)

=x(2x)n−1 +

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
(2x)n−2j−1(−1)j (2xj + (n− 2j)x)

=2n−1xn + n

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
(−1)j2n−2j−1xn−2j .

Similarly, for Lucas numbers A000032 [15] defined by

Ln = Ln−1 + Ln−2

for all n ≥ 2 and L0 = 2 and L1 = 1, we have

Ln =1 +

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
(2j + (n− 2j))

=1 + n

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
.

From the expressions of Tn(x) and Ln, we may see that

Tn

(
− i

2

)
=2n−1

(
− i

2

)n
+ n

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
(−1)j2n−2j−1

(
− i

2

)n−2j

=(−1)n
in

2
+ n

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
(−1)j2−1(−1)n−2jin−2j

=(−1)n
in

2
+ n

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
(−1)n

in

2
=
i3n

2
Ln,

or equivalently,

Ln = 2inT

(
− i

2

)
,

where i =
√
−1.

In general, we have the following result for transferring a certain class of recursive
sequences to the Chebyshev polynomial sequence of the first kind at certain points.
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Theorem 4.1. Let {an}n≥0 be a sequence defined by (1) with pa0 = 2a1, a0 6= 0,
and let {Tn(x)}n≥0 be the Chebyshev polynomial sequence of the first kind defined
by (13). Then

an =
2a1p

n−1

(2x0)n
Tn(x0), (14)

where

x0 = ± ip

2
√
q
. (15)

Namely, an shown in (14) can be expressed as

an = (∓i)na0qn/2Tn
(
± ip

2
√
q

)
. (16)

Proof. From (14) we have

Tn(x) =
(2x)n

2

1 + n

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
(−1)j(2x)−2j

 .

If pa0 = 2a1, then from (4), we have

an =a1p
n−1 +

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
pn−2j−1qjna1

=a1p
n−1

1 + n

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)(
q

p2

)j .

Setting an = CnTn(x0) and using the latest forms of Tn(x) and an, we obtain

a1p
n−1

1 + n

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)(
q

p2

)j
=Cn

(2x0)n

2

1 + n

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
(−1)j(2x0)−2j

 ,

which implies

a1p
n−1 =

Cn
2

(2x0)n (17)

for the value x0 satisfying

−(2x0)−2 =
q

p2
.

Thus, we solve the last equation to get x0 shown in (15). Substituting x0 into (17)
and solving for C yields

Cn =
2a1p

n−1

(2x0)n
= 2a1p

n−1/

(
± ip
√
q

)n
.

By substituting x0 shown in (15) into (14) and noting 2a1 = pa0, we obtain (16).

Theorem 4.1 can be extended to recursive polynomial case.
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Corollary 2. Let {an(x)}n≥0 be a recursive polynomial sequence defined by

an(x) = p(x)an−1(x) + qan−2(x)

for n ≥ 2, where p(x) ∈ R[x] and q ∈ R, with initial conditions a0(x) and a1(x)
satisfying p(x)a0(x) = 2a1(x). Then

an(x) = (∓i)na0(x)qn/2Tn

(
± ip(x)

2
√
q

)
,

where Tn(x) is the nth Chebyshev polynomial of the first kind.

Proof. The proof is similar as the proof of Theorem 4.1 and is omitted.

Example 4.1. For instance, consider the Lucas polynomial sequence {Ln(x)}
defined by

Ln(x) = xLn−1(x) + Ln−2(x)

for all n ≥ 2 with the initial conditions L0(x) = 2 and L1(x) = x. Thus

Ln(x) = 2(∓i)nTn
(
± ix

2

)
for all n ≥ 0. In addition, the Lucas numbers Ln = Ln(1) can be transferred to

Ln = 2(∓i)nTn
(
± i

2

)
for all n ≥ 0.

Similarly, for the Pell-Lucas polynomials A122075 [15] Qn(x) defined by (see
Horadam and Mahon [9])

Qn(x) = 2xQn−1(x) +Qn−2(x)

for all n ≥ 2 with initial conditions Q0(x) = 2 and Q1(x) = 2x, we have

Qn(x) = 2(∓i)nTn(±ix)

for all n ≥ 0. The first one of the above formulas is shown in Magnus, Oberhettinger,
and Soni [12].

For the Dickson polynomials of the first kind Dn(x) A000041 [15] defined by (see
Lidl, Mullen, and Turnwald [11])

Dn(x) = xDn−1(x)− aDn−2(x)

for all n ≥ 2 with initial conditions D0(x) = 2 and D1(x) = x, where a ∈ R, we
have

Dn(x) = (±1)n2an/2Tn

(
± x

2
√
a

)
for all n ≥ 0.

For the Viate polynomials of the second kind defined by (see Horadan [8])

vn(x) = xvn−1(x)− vn−2(x)

for all n ≥ 2 with the initial conditions v0(x) = 2 and v1(x) = x, we have

vn(x) = 2(∓i)n(−1)n/2Tn

(
± ix

2i

)
= 2(±1)nTn

(
±x

2

)
for all n ≥ 0. The first one of the above formulas can be seen in Jacobsthal [10] and
Robbins [13].
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We now consider the recursive number or polynomial sequences defined by (1)
with initial conditions a0 = 0 and a1 6= 0, where p ∈ R[x] and q ∈ R. For instance,

Ûn+1 = 2xÛn − Ûn−1 (18)

for all n ≥ 1, where initial conditions are Û0 = 0 and Û1 = 1. It is obvious that
Ûn+1 = Un, the Chebyshev polynomials of the second kind A135929 [15]. By using
(4), we have

Ûn(x)

=Û1(2x)n−1 +

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
(2x)n−2j−1(−1)j

(
j(2x)Û0 + (n− 2j)Û1

)

=(2x)n−1 +

[n/2]∑
j=1

(
n− j − 1

j

)
(−1)j(2x)n−2j−1

=(2x)n−1
[n/2]∑
j=0

(
n− j − 1

j

)(
− 1

4x2

)j
.

(19)

From (1) and initial conditions a0 = 0 and a1 = 1, we obtain

an = a1p
n−1 +

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
pn−2j−1qj(n− 2j)a1

=a1p
n−1 +

[n/2]∑
j=1

(
n− j − 1

j

)
pn−2j−1qja1

=a1p
n−1

[n/2]∑
j=0

(
n− j − 1

j

)
p−2jqj .

(20)

Comparing with the rightmost sides of (19) and (20), we have the following result.

Theorem 4.2. Let {an}n≥0 be the sequence defined by (1) with a0 = 0 and a1 6= 0,
and let {Un(x)}n≥0 be the Chebyshev polynomial sequence of the second kind defined
by (18). Then

an = (∓i)n−1a1q(n−1)/2Un−1(x0), (21)

where

x0 = ± ip

2
√
q
. (22)

Namely,

an = (∓i)n−1a1q(n−1)/2Un−1
(
± ip

2
√
q

)
.

Proof. Let an and Ûn be the sequences shown in the rightmost of (20) and (19),

respectively. Suppose an = CnÛn(x0) for some x0. Then we may have

p−2jqj =

(
− 1

4x20

)j
for x0 = ±ip/(2√q) and

a1p
n−1 = Cn(2x0)n−1,
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which implies

Cn =
a1p

n−1

(2x0)n−1
=

a1p
n−1(

±2 ip
2
√
q

)n−1 =
a1q

(n−1)/2

(±i)n−1
.

Consequently, (21) follows.

Example 4.2. Among all the homogeneous linear recurring sequences satisfying
second order homogeneous linear recurrence relation (1) with a nonzero p and arbi-
trary initial conditions {a0, a1}, the Lucas sequence with respect to {p, q} is defined
in one of the authors paper [4], which is the sequence satisfying (1) with initial
conditions a0 = 0 and a1 = 1. The relationships among the recursive sequences
and the Chebyshev polynomial sequence of the second kind at certain points and
some nonlinear expressions are studied. Theorem 4.2 presents the relationships of
the Chebyshev polynomial sequence of the second kind at some points with a more
general class of recursive sequences defined by (1) with initial conditions a0 = 0 and
a1 6= 0. For instance, for the Fibonacci numbers Fn A000045 [15] with respect to
{p, q} = {1, 1} and initial conditions a0 = 0 and a1 = 1, we have

Fn = (∓i)n−1Un−1
(
± i

2

)
(see Aharonov, Beardon, and Driver [1]). For the Pell numbers Pn A000129 [15]
with respect to {p, q} = {2, 1} and initial conditions a0 = 0 and a1 = 1, we have

Pn = (∓i)n−1Un−1(±i).
For the Jacobsthal numbers (cf. [2]) Jn A001045 [15] with respect to {p, q} = {1, 2}
and initial conditions a0 = 0 and a1 = 1, we have

Jn = (∓
√

2i)n−1Un−1

(
± i

2
√

2

)
.

For the numbers An shown in the sequence of n coin flips that win on the last flip
A198834 [15] defined by the recurrence relation (1) with respect to {p, q} = {1, 1}
and initial conditions a0 = 0 and a1 = 2, we have {An} = {0, 2, 2, 4, 6, 10, 16, . . .}
and

An = 2(∓i)n−1Un−1
(
± i

2

)
.

For the numbers Bn shown in the sequence of the numerators of the fractions in a
‘zero-transform’ approximation A163271 [15] defined by the recurrence relation (1)
with respect to {p, q} = {2, 1} and initial conditions a0 = 0 and a1 = 2, we have
{Bn} = {0, 2, 4, 10, 24, 58, . . .} and

Bn = 2(∓i)n−1Un−1(±i).
Theorem 4.2 can be extended to recursive polynomial case as Chebyshev poly-

nomials of the second kind.

Corollary 3. Let {an(x)}n≥0 be the recursive polynomial sequence defined by

an(x) = p(x)an−1(x) + qan−2(x)

for n ≥ 2, where p(x) ∈ R[x] and q ∈ R, with initial conditions a0(x) = 0 and
a1(x) 6= 0. Then

an(x) = (∓i)n−1a1(x)q(n−1)/2Un−1

(
± ip(x)

2
√
q

)
.
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Proof. The result can be proved by using similar argument in the proof of Theorem
4.2.

Example 4.3. For instance, for Pell polynomials A122075 [15] defined by (see
Horadam and Mahon [9])

Pn(x) = 2xPn−1(x) + Pn−2(x)

for all n ≥ 2 with initial conditions P0(x) = 0 and P1(x) = 1, we have

Pn(x) = (∓i)n−1Un−1(±ix)

for all n ≥ 0, where U−1(x) = 0. The above formulas are shown in Magnus,
Oberhettinger, and Soni [12].

Similarly, for Viate polynomials of the first kind defined by (see Horadan [8])

Vn(x) = xVn−1(x)− Vn−2(x)

for all n ≥ 2 with initial conditions V0(x) = 0 and V1(x) = 1, we have

Vn(x) = (∓i)n−1(−1)(n−1)/2Un−1

(
± ix

2i

)
= (±1)n−1Un−1

(
±x

2

)
.

for all n ≥ 0. The first one of the above formulas is shown in Horadan [8]. From
the above formulas and the similar formulas of vn(x) shown above, one may obtain

Vn(ix) = in−1Fn(x) and vn(ix) = inLn(x),

which are shown in Robins [13].
Gegenbauer-Humbert polynomial sequences, denoted by {Pλ,y,C(x)}, is defined

by the recurrence relation

Pλ,y,Cn (x) = 2
λ+ n− 1

Cn
Pλ,y,Cn−1 (x)− y 2λ+ n− 2

Cn
Pλ,y,Cn−2 (x) (23)

for all n ≥ 2 with initial conditions Pλ,y,C0 (x) = C−λ and Pλ,y,C1 (x) = 2λxC−λ−1.
Particularly, for λ = 1, we denote Pλ,y,Cn (x) by P y,Cn (x) and (23) becomes

P y,Cn (x) =
2x

C
P y,Cn−1(x)− y

C
P y,Cn−2(x) (24)

for all n ≥ 2 and P y,C0 (x) = C−1 and P y,C1 (x) = 2xC−2. From (4), we have the
expression of P y,Cn (x) as

P y,C
n (x) =P y,C

1 (x)

(
2x

C

)n−1

+

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)(
2x

C

)n−2j−1 (
− y

C

)j (
j
2x

C
C−1 + (n− 2j)(2xC−2)

)

=(2xC−2)

(
2x

C

)n−1

+

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)(
2x

C

)n−2j−1 (
− y

C

)j
(n− j)(2xC−2)

=
1

C

(
2x

C

)n

+

[n/2]∑
j=1

1

C

(
n− j

j

)(
2x

C

)n−2j (
− y

C

)j
=

1

C

(
2x

C

)n [n/2]∑
j=0

(
n− j

j

)(
− yC

4x2

)j

.
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Thus,

P 1,1
n (x) = Un(x) = (2x)n

[n/2]∑
j=0

(
n− j
j

)(
− 1

4x2

)j
(25)

are the Chebyshev polynomials of the second kind with the first few elements as
1, 2x, 4x2 − 1, 8x3 − 4x, . . ., and

P−1,1n (x) = Pn(x) = (2x)n
[n/2]∑
j=0

(
n− j
j

)(
1

4x2

)j
(26)

are the Pell polynomials ([2]) with the first few elements as 1, 2x, 4x2+1, 8x3+4x, . . ..
Similar to Theorem 4.2, we may establish the following result.

Theorem 4.3. Let P y,Cn (x) and P y
′C′

n (x) be two Gegenbauer-Humbert polynomi-
als defined by (24) with respect two difference complex parameter pairs (y, C) and
(y′, C ′), respectively. Then

P y,Cn (x1) = αnP
y′C′

n (x2) (27)

if the complex variables x1 and x2 satisfy

x22 =
y′C ′

yC
x21, (28)

where

αn =

(
C ′

C

)n+1(
x1
x2

)n
.

Proof. Let P y,Cn (x1) = αnP
y′C′

n (x2). Then from the rightmost side of (25) for

P y,Cn (x) and P y
′C′

n (x), respectively, we have

1

C

(
2x1
C

)n [n/2]∑
j=0

(
n− j
j

)(
− yC

4x21

)j

=αn
1

C ′

(
2x2
C ′

)n [n/2]∑
j=0

(
n− j
j

)(
−y
′C ′

4x22

)j
for

− yC
4x21

= −y
′C ′

4x22
,

or equivalently, (28), and αn satisfying

1

C

(
2x1
C

)n
= αn

1

C ′

(
2x2
C ′

)n
.

Consequently, we obtain

αn =
C ′n+1

Cn+1

(
x1
x2

)n
which completes the proof of the theorem.

Example 4.4. The Chebyshev polynomials of the second kind P 1,1
n (x1) can be

transferred to the Pell polynomials P−1,1n (x2) by using

P 1,1
n (x1) =

(
x1
x2

)n
P−1,1n (x2),
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where x22 = −x21. More precisely, noticing (26) and using x22 = −x21 we may write
the righthand side of the above equation as(

x1
x2

)n
P−1,1n (x2) =

(
x1
x2

)n
(2x2)n

[n/2]∑
j=0

(
n− j
j

)(
1

4x22

)j

=(2x1)n
[n/2]∑
j=0

(
n− j
j

)(
− 1

4x21

)j
= P 1,1

n (x1),

where the last equation comes from (25).
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