
Grammar Logics in Nested Sequent Calculus:
Proof Theory and Decision Procedures

Alwen Tiu

Research School of Computer Science, The Australian National University

Egor Ianovski

Department of Computer Science, University of Auckland

Rajeev Goré

Research School of Computer Science, The Australian National University

Abstract

A grammar logic refers to an extension of the multi-modal logic K in which the modal
axioms are generated from a formal grammar. We consider a proof theory, in nested
sequent calculus, of grammar logics with converse, i.e., every modal operator [a] comes
with a converse [ā]. Extending previous works on nested sequent systems for tense
logics, we show all grammar logics (with or without converse) can be formalised in
nested sequent calculi, where the axioms are internalised in the calculi as structural
rules. Syntactic cut-elimination for these calculi is proved using a procedure similar
to that for display logics. If the grammar is context-free, then one can get rid of
all structural rules, in favor of deep inference and additional propagation rules. We
give a novel semi-decision procedure for context-free grammar logics, using nested
sequent calculus with deep inference, and show that, in the case where the given
context-free grammar is regular, this procedure terminates. Unlike all other existing
decision procedures for regular grammar logics in the literature, our procedure does
not assume that a finite state automaton encoding the axioms is given.

Keywords: Nested sequent calculus, display calculus, modal logics, deep inference.

1 Introduction

A grammar logic refers to an extension of the multi-modal logic K in which
the modal axioms are generated from a formal grammar. Thus given a set Σ
of indices, and a grammar production rule as shown below left, where each ai
and bj are in Σ, we extend K with the multi-modal axiom shown below right:

a1a2 · · · al → b1b2 · · · br [a1][a2] · · · [al]A ⊃ [b1][b2] · · · [br]A

The logic is a context-free grammar logic if l = 1 and furthermore, is a right
linear grammar logic if the production rules also define a right linear grammar.

Tiu, Ianovski and Goré 517

The logic is a regular grammar logic if the set of words generated from each
a ∈ Σ using the grammar production rules is a regular language. A right linear
grammar logic is also a regular grammar logic since a right linear grammar
can be converted to a finite automaton in polynomial time. Adding “converse”
gives us alphabet symbols like ā which correspond to the converse modality [ā]
and lead to multi-modal extensions of tense logic Kt where each modality [a]
and its converse [ā] obey the interaction axioms A ⊃ [a]〈ā〉A and A ⊃ [ā]〈a〉A.

Display calculi [2] can handle grammar logics with converse since they all
fall into the primitive fragment identified by Kracht [21]. Display calculi all
enjoy Belnap’s general cut-elimination theorem, but it is well-known that they
are not suitable for proof-search. Our work is motivated by the problem of au-
tomating proof search for display calculus. As in our previous work [11,12,13],
we have chosen to work not directly in display calculus, but in a slightly dif-
ferent calculus based on nested sequents [19,4], which we call shallow nested
sequent calculi. The syntactic constructs of nested sequents are closer to tra-
ditional sequent calculus, so as to allow us to use familiar notions in sequent
calculus proof search procedures, such as the notions of saturation and loop
checking, to automate proof search. A common feature of shallow nested se-
quent calculus and display calculus is the use of display postulates and other
complex structural rules. These structural rules are the main obstacle to ef-
fective proof search, and our (proof theoretic) methodology for designing proof
search calculi is guided by the problem of eliminating these structural rules en-
tirely. We show here how our methodology can be used to derive proof search
calculi for context-free grammar logics.

The general satisfiability problem for a grammar logic is to decide the sat-
isfiability of a given formula when given a set of production rules for the un-
derlying grammar. Nguyen and Sza las [23] give an excellent summary of what
is known about this problem, as outlined next. Grammar logics were intro-
duced by Fariñas del Cerro and Penttonen [8]. Baldoni et al [1] used prefixed
tableaux to show that this problem is decidable for right linear logics but is
undecidable for context free grammar logics. Demri [6] used an embedding into
propositional dynamic logic with converse to prove this problem is EXPTIME-
complete for right linear logics. Demri and de Nivelle [7] gave an embedding
of the satisfiability problem for regular grammar logics into the two-variable
guarded fragment of first-order logic and showed that satisfiability of regular
grammar logics with converse is also EXPTIME-complete. Seen as descrip-
tion logics with inverse roles and complex role inclusions, decision procedures
for regular grammar logics have also been studied extensively by Horrocks, et.
al., see, e.g., [18,17,20]. Goré and Nguyen [10] gave an EXPTIME tableau
decision procedure for the satisfiability of regular grammar logics using for-
mulae labelled with automata states. Finally, Nguyen and Sza las [22,23] gave
an extension of this method to handle converse by using the cut rule. In an
unpublished manuscript, Nguyen has shown how to use the techniques of Goré
and Widmann [15] to avoid the use of the cut rule. But as far as we know, there
is no comprehensive sequent-style proof theory for grammar logics with con-

518 Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures

verse which enjoys a syntactic cut-elimination theorem and which is amenable
to proof-search.

We consider a proof theory, in nested sequent calculus, of grammar logics
with converse, i.e., every modal operator [a] comes with a converse [ā]. Ex-
tending previous works on nested sequent systems for (bi-)modal logics [11,13],
we show, in Section 3, that all grammar logics (with or without converse) can
be formalised in (shallow) nested sequent calculi, where the axioms are inter-
nalised in the calculi as structural rules. Syntactic cut-elimination for these
calculi is proved using a procedure similar to that for display logics. We then
show, in Section 4, that if the grammar is context-free, then one can get rid of
all structural rules, in favor of deep inference [16,4] and propagation rules.

We then recast the problem of deciding grammar logics for the specific cases
where the grammars are regular, using nested sequent calculus with deep in-
ference. We first give, in Section 6.1, a decision procedure in the case where
the regular grammar is given in the form of a FSA. This procedure is simi-
lar to existing tableaux-based decision procedures [17,22,23], where the states
and transitions of the FSA are incorporated into proof rules for propagation of
diamond-formulae. This procedure serves as a stepping stone to defining the
more general decision procedure which does not depend on an explicit repre-
sentation of axioms as a FSA in Section 6.2. The procedure in Section 6.2 is
actually a semi-decision procedure that works on any finite set of context-free
grammar axioms. However, we show that, in the case where the given grammar
is regular, this procedure terminates. The procedure avoids the requirement to
provide a FSA for the given axioms. This is significantly different from existing
decision procedures for regular grammar logics [7,10,23,22], where it is assumed
that a FSA encoding the axioms of the logics is given.

In this work, we follow Demri and de Nivelle’s presentation of grammar ax-
ioms as a semi-Thue system [7]. The problem of deciding whether a context-free
semi-Thue system is regular or not appears to be still open; see [20] for a discus-
sion on this matter. Termination of our generic procedure for regular grammar
logics of course does not imply solvability of this problem as it is dependent on
the assumption that the given grammar is regular (see Theorem 6.11).

There are several proof systems to be presented next; we briefly describe
the naming scheme used to differentiate these various sytems. We use Km to
denote the Hilbert system for the basic multi-modal logic. Given a semi-Thue
system S, we denote with Km(S) the extension of Km with axioms generated
from S (see Section 2). There are two style of nested sequent calculus we
consider here: the shallow-inference calculi (Section 3) and the deep-inference
calculi (Section 4). Names of proof systems for the former are prefixed with
an ‘S’, while names of proof systems for the latter are prefixed with a ‘D’.
For example, the corresponding shallow nested sequent calculus for Km (resp.,
Km(S)) is called SKm (resp., SKm(S)). In Section 5, we also consider shallow
and deep nested sequent calculi parameterised by an automaton A; these will
be denoted by SKm(A) and DKm(A), respectively.

Tiu, Ianovski and Goré 519

2 Grammar logics

The language of a multi-modal logic is defined w.r.t. to an alphabet Σ, used
to index the modal operators. We use a, b and c, possibly with subscripts, for
elements of Σ and use u and v, for elements of Σ∗, the set of finite strings over Σ.
We use ε for the empty string. We define an operation .̄ (converse) on alphabets
to capture converse modalities following Demri [7]. The converse operation
satisfies ¯̄a = a. We assume that Σ can be partitioned into two distinct sets Σ+

and Σ− such that a ∈ Σ+ iff ā ∈ Σ−. The converse operation is extended to
strings in Σ∗ as follows: if u = a1a2 . . . an, then ū = ānān−1 . . . ā2ā1, where
n ≥ 0. Note that if u = ε then ū = ε.

We assume a given denumerable set of atomic formulae, ranged over by p,
q, and r. The language of formulae is given by the following, where a ∈ Σ:

A ::= p | ¬A | A ∨A | A ∧A | [a]A | 〈a〉A

Given a formula A, we write A⊥ for the negation normal form (nnf) of ¬A.
Implication A ⊃ B is defined as ¬A ∨B.
Definition 2.1 A Σ-frame is a pair 〈W,R〉 of a non-empty set W of worlds
and a set R of binary relations {Ra}a∈Σ over W satisfying, for every a ∈
Σ, Ra = {(x, y) | Rā(y, x)}. A valuation V is a mapping from propositional
variables to sets of worlds. A model M is a triple 〈W,R, V 〉 where 〈W,R〉 is a
frame and V is a valuation. The relation |= is defined inductively as follows:

• M, x |= p iff x ∈ V (p).

• M, x |= ¬A iff M, x 6|= A.

• M, x |= A ∧B iff M, x |= A and M, x |= B.

• M, x |= A ∨B iff M, x |= A or M, x |= B.

• For every a ∈ Σ, M, x |= [a]A iff for every y such that Ra(x, y), M, y |= A.

• For every a ∈ Σ, M, x |= 〈a〉A iff there exists y such that Ra(x, y),M, y |= A.

A formula A is satisfiable iff there exists a Σ-model M = 〈W,R, V 〉 and a world
x ∈W such that M, x |= A.

We now define a class of multi-modal logics, given Σ, that is induced by
production rules for strings from Σ∗. We follow the framework in [7], using
semi-Thue systems to define the logics. A production rule is a binary relation
over strings in Σ∗, interpreted as a rewrite rule on strings. We use the notation
u→ v to denote a production rule which rewrites u to v. A semi-Thue system
is a set S of production rules. It is closed if u→ v ∈ S implies ū→ v̄ ∈ S.

Given a Σ-frame 〈W,R〉, we define another family of accessibility relations
indexed by Σ∗ as follows: Rε = {(x, x) | x ∈ W} and for every u ∈ Σ∗ and for
every a ∈ Σ, Rua = {(x, y) | (x, z) ∈ Ru, (z, y) ∈ Ra, for some z ∈W}.
Definition 2.2 Let u → v be a production rule and let F = 〈W,R〉 be a Σ-
frame. F is said to satisfy u→ v if Rv ⊆ Ru. F satisfies a semi-Thue system
S if it satisfies every production rule in S.

520 Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures

Definition 2.3 Let S be a semi-Thue system. A formula A is said to be S-
satisfiable iff there is a model M = 〈W,R, V 〉 such that 〈W,R〉 satisfies S
and M, x |= A for some x ∈ W. A is said to be S-valid if for every Σ-model
M = 〈W,R, V 〉 that satisfies S, we have M, x |= A for every x ∈W.

Given a string u = a1a2 . . . an and a formula A, we write 〈u〉A for the
formula 〈a1〉〈a2〉 · · · 〈an〉A. The notation [u]A is defined analogously. If u = ε
then 〈u〉A = [u]A = A.

Definition 2.4 Let S be a closed semi-Thue system over an alphabet Σ. The
system Km(S) is an extension of the standard Hilbert system for multi-modal
Km (see, e.g., [3]) with the following axioms:

• for each a ∈ Σ, a residuation axiom: A ⊃ [a]〈ā〉A
• and for each u→ v ∈ S, an axiom [u]A ⊃ [v]A.

Because S is closed, each axiom [u]A ⊃ [v]A has an inverted version [ū]A ⊃
[v̄]A. The following theorem can be proved following a similar soundness and
completeness proof for Hilbert systems for modal logics (see, e.g., [3]).

Theorem 2.5 A formula F is S-valid iff F is provable in Km(S).

3 Nested sequent calculi with shallow inference

We now give a sequent calculus SKm for Km(S), by using the framework of
nested sequent calculus [19,4,11,13]. We follow the notation used in [19,13],
extended to the multi-modal case. From this section onwards, we shall be
concerned only with formulae in nnf, so we can restrict to one-sided sequents.

A nested sequent is a multiset of the form shown below at left where each
Ai is a formula and each ∆i is a nested sequent:

A1, . . . , Am, (a1){∆1}, . . . , (an){∆n} A1∨· · ·∨Am∨ [a1]B1∨· · ·∨ [an]Bn

We shall often drop the outermost braces when writing nested sequents, e.g.,
writing Γ,∆ instead of {Γ,∆}. The structural connective (a){.} is a proxy for
the modality [a], so this nested sequent can be interpreted as the formula shown
above right (modulo associativity and commutativity of ∨), where each Bi is
the interpretation of ∆i. We shall write (u){∆}, where u = a1 · · · an ∈ Σ∗, to
denote the structure:

(a1){(a2){· · · (an){∆}} · · ·}.

A context is a nested sequent with a ‘hole’ [] in place of a formula: this
notation should not be confused with the modality [a]. We use Γ[], ∆[], etc.
for contexts. Given a context Γ[] and a nested sequent ∆, we write Γ[∆] to
denote the nested sequent obtained by replacing the hole in Γ[] with ∆.

The core inference rules for multi-modal SKm (without axioms) are given
in Figure 1. The rule r is called a residuation rule (or display postulate) and
corresponds to the residuation axioms.

Tiu, Ianovski and Goré 521

Γ, p,¬p id
Γ, A ∆, A⊥

Γ,∆
cut

Γ,∆,∆

Γ,∆
ctr

Γ
Γ,∆

wk
Γ, (a){∆}
(ā){Γ},∆

r

Γ, A Γ, B

Γ, A ∧B ∧
Γ, A,B

Γ, A ∨B ∨
Γ, (a){A}

Γ, [a]A
[a]

Γ, (a){∆, A}
Γ, (a){∆}, 〈a〉A

〈a〉

Fig. 1. The inference rules of the shallow nested sequent calculus SKm

To capture Km(S), we need to convert each axiom generated from S to an
inference rule. Each production rule u→ v gives rise to the axiom [u]A ⊃ [v]A,
or equivalently, 〈v̄〉A ⊃ 〈ū〉A. The latter is an instance of Kracht’s primitive
axioms [21] (generalised to the multimodal case). Thus, we can convert the
axiom into a structural rule following Kracht’s rule scheme for primitive axioms:

(u){∆},Γ
(v){∆},Γ

Let ρ(S) be the set of structural rules induced by the semi-Thue system S.

Definition 3.1 Let S be a closed semi-Thue system S over an alphabet Σ.
SKm(S) is the proof system obtained by extending SKm with ρ(S).

We say that two proof systems are equivalent if and only if they prove the
same set of formulae.

Theorem 3.2 The system SKm(S) and Km(S) are equivalent.

Proof. (Outline). In one direction, from SKm(S) to Km(S), we show that, for
each inference rule of SKm(S), if the formula interpretation of the premise(s)
is valid then the formula interpretation of the conclusion is also valid. For
the converse, it is enough to show that all axioms of Km(S) are derivable in
SKm(S). It can be shown that both the residuation axioms and the axioms
generated from S can be derived using the structural rules r and ρ(S). 2

The cut-elimination proof for SKm(S) follows a similar generic procedure
for display calculi [2,21], which has been adapted to nested sequent in [13]. The
key to cut-elimination is to show that SKm(S) has the display property.

Lemma 3.3 Let Γ[∆] be a nested sequent. Then there exists a nested sequent
Γ′ such that Γ[∆] is derivable from the nested sequent Γ′,∆, and vice versa,
using only the residuation rule r. Intuitively, the nested ∆ in Γ[∆] is displayed
at the top level in Γ′,∆.

Theorem 3.4 Cut elimination holds for SKm(S).

Proof. This is a straightforward adaptation of the cut-elimination proof in
[13] for tense logic. 2

4 Deep inference calculi

Although the shallow system SKm(S) enjoys cut-elimination, proof search in
its cut-free fragment is difficult to automate, due to the presence of structural

522 Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures

Γ[p,¬p] idd
Γ[A ∧B,A] Γ[A ∧B,B]

Γ[A ∧B]
∧d

Γ[A ∨B,A,B]

Γ[A ∨B]
∨d

Γ[[a]A, (a){A}]
Γ[[a]A]

[a]d
Γ[(a){∆, A}, 〈a〉A]

Γ[(a){∆}, 〈a〉A]
〈a↑〉

Γ[(a){∆, 〈ā〉A}, A]

Γ[(a){∆, 〈ā〉A}]
〈a↓〉

Fig. 2. The inference rules of DKm

rules. To reduce the non-determinism caused by structural rules, we consider
next a proof system in which all structural rules (including those induced by
grammar axioms) can be absorbed into logical rules. As the display property
in Lemma 3.3 suggests, the residuation rule allows one to essentially apply
an inference rule to a particular subsequent nested inside a nested sequent,
by displaying that subsequent at the top level and undisplaying it back to its
original position in the nested sequent. It is therefore quite intuitive that one
way to get rid of the residuation rule is to allow deep inference rules, that apply
deeply within any arbitrary context in a nested sequent.

The deep inference system DKm, which corresponds to SKm, is given in
Figure 2. As can be readily seen, the residuation rule is absent and contraction
and weakening are absorbed into logical rules.

To fully absorb the residuation rule and other structural rules induced by
semi-Thue systems, we need to introduce additional introduction rules for the
diamond operator 〈a〉, which we call propagation rules. We shall show next
how these propagation rules are generated from a semi-Thue system.

Let S be a closed semi-Thue system over alphabet Σ. We write u⇒S v to
mean that the string v can be reached from u by applying the production rules
(as rewrite rules) in S successively to u. Define La(S) = {u | a ⇒S u}. Then
La(S) defines a language generated from S with the start symbol a.

A nested sequent can be seen as a tree whose nodes are multisets of formulae,
and whose edges are labeled with elements of Σ. We assume that each node in
a nested sequent can be identified uniquely, i.e., we can consider each node as
labeled with a unique position identifier. An internal node of a nested sequent
is a node which is not a leaf node. We write Γ[]i to denote a context in which
the hole is located in the node at position i in the tree representing Γ[]. This
generalises to multi-contexts, so Γ[]i[]j denotes a two-hole context, one hole
located at i and the other at j (they can be the same location). From now on,
we shall often identify a nested sequent with its tree representation, so when
we speak of a node in Γ, we mean a node in the tree of Γ. If i and j are nodes
in Γ, we write i �a j when j is a child node of i and the edge from i to j is
labeled with a. If i is a node in the tree of Γ, we write Γ|i to denote the multiset
of formula occuring in the node i. Let ∆ and Γ be nested sequents. Suppose i
is a node in Γ. Then we write Γ(i� ∆) for the nested sequent obtained from
Γ by adding ∆ to node i in Γ. Note that for such an addition to preserve the
uniqueness of the position identifiers of the resulting tree, we need to rename

Tiu, Ianovski and Goré 523

the identifiers in ∆ to avoid clashes. We shall assume implicitly that such a
renaming is carried out when we perform this addition.

Definition 4.1 (Propagation automaton.) A propagation automaton is a
finite state automaton P = (Σ, Q, I, F, δ) where Q is a finite set of states,
I = {s} is a singleton set of an initial state and F = {t} is a singleton set of a

final state with s, t ∈ Q, and for every i, j ∈ Q, if i
a−→ j ∈ δ then j

ā−→ i ∈ δ.

In other words, a propagation automaton is just a finite state automaton
(FSA) where each transition has a dual transition.

Definition 4.2 Let A = (Σ, Q, I, F, δ) be a FSA. Let i = i1, . . . , in and j =
j1, . . . , jn be two sequences of states in Q. Let [i1 := j1, . . . , in := jn] (we shall
abbreviate this as [i := j]) be a (postfix) mapping from Q to Q that maps im
to jm, where 1 ≤ m ≤ n, and is the identity map otherwise. This mapping is
extended to a (postfix) mapping between sets of states as follows: given Q′ ⊆ Q,
Q′[i := j] = {k[i := j] | k ∈ Q′}. The automaton A[i := j] is the tuple
(Σ, Q[i := j], I[i := j], F [i := j], δ′) where

δ′ = {k[i := j]
a−→ l[i := j] | k a−→ l ∈ δ}.

To each nested sequent Γ, and nodes i and j in Γ, we associate a propagation
automaton R(Γ, i, j) as follows:

(i) the states of R(Γ, i, j) are the nodes of (the tree of) Γ;

(ii) i is the initial state of R(Γ, i, j) and j is its final state;

(iii) each edge x �a y in Γ corresponds to two transitions in R(Γ, i, j): namely,

x
a−→ y and y

ā−→ x.

Note that although propagation automata are defined for nested sequents,
they can be similarly defined for (multi-)contexts as well, as contexts are just
sequents containing a special symbol [] denoting a hole. So in the following,
we shall often treat a context as though it is a nested sequent.

A semi-Thue system S over alphabet Σ is context-free if its production rules
are all of the form a→ u for some a ∈ Σ.

In the following, to simplify presentation, we shall use the same notation to
refer to an automaton A and the regular language it accepts. Given a context-
free closed semi-Thue system S, the propagation rules for S are all the rules of
the following form where i and j are two (not necessarily distinct) nodes of Γ:

Γ[〈a〉A]i[A]j

Γ[〈a〉A]i[∅]j
pS , provided R(Γ[]i[]j , i, j) ∩ La(S) 6= ∅.

Note that the intersection of a regular language and a context-free language
is a context-free language (see, e.g., Chapter 3 in [9] for a construction of
the intersection), and since the problem of checking emptiness for context-free
languages is decidable [9], the rule pS can be effectively mechanised.

524 Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures

Definition 4.3 Given a context-free closed semi-Thue system S over an al-
phabet Σ, the proof system DKm(S) is obtained by extending DKm with pS .

We now show that DKm(S) is equivalent to SKm(S). The proof relies on
a series of lemmas showing admissibility of all structural rules of SKm(S) in
DKm(S). The proof follows the same outline as in the case for tense logic [13].
The adaptation of the proof in [13] is quite straightforward, so we shall not
go into detailed proofs but instead just outline the required lemmas. Some of
their proofs are outlined in the appendix. In the following lemmas, we shall
assume that S is a closed context-free semi-Thue system over some Σ.

Given a derivation Π, we denote with |Π| the height of Π, which is simply
the length (i.e., the number of edges) of the longest branch in Π. A single
premise rule ρ is said to be admissible in DKm(S) if provability of its premise in
DKm(S) implies provability of its conclusion in DKm(S). It is height-preserving
admissible if whenever the premise has a derivation then the conclusion has a
derivation of the same height, in DKm(S).

Admissibility of the weakening rule is a consequence of the following lemma.

Lemma 4.4 Let Π be a derivation of Γ[∅] in DKm(S). Then, for all nested
sequents ∆, there exists a derivation Π′ of Γ[∆] in DKm(S) such that |Π| = |Π′|.

The admissibility proofs of the remaining structural rules all follow the same
pattern: the most important property to prove is that, if a propagation path
for a diamond formula exists between two nodes in the premise, then there
exists a propagation path for the same formula, between the same nodes, in
the conclusion of the rule.

Lemma 4.5 The rule r is height-preserving admissible in DKm(S).

Admissibility of contraction is proved indirectly by showing that it can be
replaced by a formula contraction rule and a distributivity rule:

Γ[A,A]

Γ[A]
actr

Γ[(a){∆1}, (a){∆2}]
Γ[(a){∆1,∆2}]

m

The rule m is also called a medial rule and is typically used to show admissibility
of contraction in deep inference [5].

Lemma 4.6 The rule ctr is admissible in DKm(S) plus actr and m.

Lemma 4.7 The rules actr and m are height-preserving admissible in
DKm(S).

Admissibility of contraction then follows immediately.

Lemma 4.8 The contraction rule ctr is admissible in DKm(S).

Lemma 4.9 The structural rules ρ(S) of SKm(S) are height-preserving ad-
missible in DKm(S).

Theorem 4.10 For every context-free closed semi-Thue system S, the proof
systems SKm(S) and DKm(S) are equivalent.

Tiu, Ianovski and Goré 525

5 Regular grammar logics

A context free semi-Thue system S over Σ is regular if for every a ∈ Σ, the
language La(S) is a regular language. In this section, we consider logics gen-
erated by regular closed semi-Thue systems. We assume in this case that the
union of the regular languages {La(S) | a ∈ Σ} is represented explicitly as an
FSA A with no silent transitions. Thus A = (Σ, Q, I, F, δ) where Q is a finite
set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states,
and δ is the transition relation. Given A as above, we write s

a−→A t to mean
s

a−→ t ∈ δ. We assume that each a ∈ Σ has a unique initial state inita ∈ I.
We shall now define an alternative deep inference system given this ex-

plicit representation of the grammar axioms as an FSA. Following similar
tableaux systems in the literature that utilise such an automaton represen-
tation [17,22,23], we use the states of the FSA to index formulae in a nested
sequent to record stages of propagation. For this, we first introduce a form of
labeled formula, written s : A, where s ∈ Q. The propagation rules correspond-
ing to A are:

Γ[〈a〉A, inita : A]

Γ[〈a〉A]
i

Γ[s : A, (a){s′ : A,∆}]
Γ[s : A, (a){∆}] t↑, if s

a−→A s′

Γ[s : A,A]

Γ[s : A]
f, if s ∈ F

Γ[(a){s : A,∆}, s′ : A]

Γ[(a){s : A,∆}] t↓, if s
ā−→A s′.

Definition 5.1 Let S be a regular closed semi-Thue system over Σ and let A
be an FSA representing the regular language generated by S and Σ. DKm(A)
is the proof system DKm extended with the rules {i, f, t↓, t↑} for A.

It is intuitively clear that DKm(A) and DKm(S) are equivalent, when A
defines the same language as L(S). Essentially, a propagation rule in DKm(S)
can be simulated by DKm(A) using one or more propagations of labeled for-
mulae. The other direction follows from the fact that when a diamond formula
〈a〉A is propagated, via the use of labeled formulae, to a labeled formula s : A
where s is a final state, then there must be a chain of transitions between la-
beled formulae for A whose string forms an element of A, hence also in La(S).
One can then propagate directly 〈a〉A in DKm(S).

Theorem 5.2 Let S be a regular closed semi-Thue system over Σ and let A be
a FSA representing the regular language generated by S and Σ. Then DKm(S)
and DKm(A) are equivalent.

6 Decision procedures

We now show how the proof systems DKm(A) and DKm(S) can be turned
into decision procedures for regular grammar logics. Our aim is to derive the
decision procedure for DKm(S) directly without the need to convert S explicitly
to an automaton; the decision procedure DKm(A) will serve as a stepping stone
towards this aim. The decision procedure for DKm(S) is a departure from
all existing decision procedures for regular grammar logics (with or without
converse) [17,7,10,22,23] that assume that an FSA representing S is given.

526 Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures

Prove1(A,Γ)

(i) If Γ = Γ′[p,¬p], return >.

(ii) If Γ is A-stable, return ⊥.
(iii) If Γ is not saturated:

(a) If A ∨ B ∈ Γ|i but A /∈ Γ|i or B /∈ Γ|i, then let Γ′ := Γ(i � {A,B})
and return Prove1(A,Γ′).

(b) Suppose A1 ∧ A2 ∈ Γ|i but neither A1 ∈ Γ|i nor A2 ∈ Γ|i. Let
Γ1 = Γ(i � {A1}) and Γ2 = Γ(i � {A2}). Then return ⊥ if
Prove1(A,Γj) = ⊥ for some j ∈ {1, 2}. Otherwise return >.

(iv) If Γ is not A-propagated: then there is a node i s.t. one of the following
applies:
(a) 〈a〉A ∈ Γ|i but inita : A 6∈ Γ|i. Then let Γ′ := Γ(i� {inita : A}).
(b) s : A ∈ Γ|i and s ∈ F , but A 6∈ Γ|i. Then let Γ′ := Γ(i� {A}).
(c) s : A ∈ Γ|i, there is j s.t. i �a j and s

a−→A t, but t : A 6∈ Γ|j. Then
let Γ′ := Γ(j � {t : A}).

(d) s : A ∈ Γ|i, there is j s.t. j �a i and s
ā−→A t, but t : A 6∈ Γ|j. Then

let Γ′ := Γ(j � {t : A}).
Return Prove1(A,Γ′).

(v) If there is an internal node i in Γ that is not realised: Then there is [a]A ∈
Γ|i such that A 6∈ Γ|j for every j s.t. i �a j. Let Γ′ := Γ(i � (a){A}).
Return Prove1(A,Γ′).

(vi) If there is a leaf node i that is not realised and is not a loop node: Then
there is [a]A ∈ Γ|i. Let Γ′ := Γ(i� (a){A}). Return Prove1(A,Γ′).

Fig. 3. An automata-based prove procedure.

6.1 An automata-based procedure

The decision procedure for DKm(A) is basically just backward proof search,
where one tries to saturate each sequent in the tree of sequents until either the
idd rule is applicable, or a certain stable state is reached. When the latter is
reached, we show that a counter model to the original nested sequent can be
constructed. Although we obtain this procedure via a different route, the end
result is very similar to the tableaux-based decision procedure in [17]. In partic-
ular, our notion of a stable state (see Definition 6.3) used to block proof search
is the same as the blocking condition in tableaux systems [17,7,10,23,22], which
takes advantange of the labeling of formulae with the states of the automaton.

Recall the notation Γ|i refers to the multiset of formulae at node i in Γ.

Definition 6.1 (Saturation and realisation) A node i in Γ is saturated if
the following hold:

(i) If A ∈ Γ|i then A⊥ 6∈ Γ|i.
(ii) If A ∨B ∈ Γ|i then A ∈ Γ|i and B ∈ Γ|i.

(iii) If A ∧B ∈ Γ|i then A ∈ Γ|i or B ∈ Γ|i.

Tiu, Ianovski and Goré 527

Γ|i is realised if [a]A ∈ Γ|i implies that there exists j such that i �a j and
A ∈ Γ|j.
Definition 6.2 (A-propagation) Let A = (Σ, Q, I, F, δ). A nested sequent
Γ is said to be A-propagated if for every node i in Γ, the following hold:

(i) If 〈a〉A ∈ Γ|i then inita : A ∈ Γ|i for any a ∈ Σ.

(ii) If s : A ∈ Γ|i and s ∈ F , then A ∈ Γ|i.
(iii) For all j, a, s and t, such that i �a j and s

a−→A t, if s : A ∈ Γ|i then
t : A ∈ Γ|j.

(iv) For all j, a, s and t, such that j �a i and s
ā−→A t, if s : A ∈ Γ|i then

t : A ∈ Γ|j.
Definition 6.3 (A-stability) A nested sequent Γ is A-stable if

(i) Every node is saturated.

(ii) Γ is A-propagated.

(iii) Every internal node is realised.

(iv) For every leaf node i, one of the following holds:
(a) There is an ancestor node j of i such that Γ|i = Γ|j. We call the node

i a loop node.
(b) Γ|i is realised (i.e., it cannot have a member of the form [a]A).

The prove procedure for DKm(A) is given in Figure 3. We show that the
procedure is sound and complete with respect to DKm(A). The proofs of the
following theorems can be found in the appendix.

Theorem 6.4 If Prove1(A, {F}) returns > then F is provable in DKm(A).
If Prove1(A, {F}) returns ⊥ then F is not provable in DKm(A).

Theorem 6.5 For every formula A, Prove1(A, {A}) terminates.

Corollary 6.6 The proof system DKm(A) is decidable.

6.2 A grammar-based procedure

The grammar-based procedure differs from the automaton-based procedure in
the notion of propagation and that of a stable nested sequent.

In the following, given a function θ from labels to labels, and a list i =
i1, . . . , in of labels, we write θ(i) to denote the list θ(i1), . . . , θ(in). We write
[i := θ(i)] to mean the mapping [i1 := θ(i1), . . . , in := θ(in)].

In the following definitions, S is assumed to be a context-free semi-Thue
system over some alphabet Σ.

Definition 6.7 (S-propagation) Let Γ be a nested sequent. Let P =
(Σ, Q, {i}, {j}, δ) be a propagation automata, where Q is a subset of the nodes
in Γ. We say that Γ is (S,P)-propagated if the following holds: 〈a〉A ∈ Γ|i
and P ∩ La(S) 6= ∅ imply A ∈ Γ|j. Γ is S-propagated if it is (S,R(Γ, i, j))-
propagated for every node i and j in Γ.

Definition 6.8 (S-stability) A nested sequent Γ is S-stable if

528 Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures

Prove2(S,Γ, k)

(i) If Γ = Γ′[p,¬p], return >.

(ii) If Γ is S-stable, return ⊥.
(iii) If Γ is not saturated:

• If A∨B ∈ Γ|i but A /∈ Γ|i or B /∈ Γ|i, then let Γ′ := Γ(i� {A,B}) and
return Prove2(S,Γ′, k).

• Suppose A1 ∧ A2 ∈ Γ|i but neither A1 ∈ Γ|i nor A2 ∈ Γ|i. Let Γ1 =
Γ(i � {A1}) and Γ2 = Γ(i � {A2}). If Prove2(S,Γj , k) = ⊥, for some
j ∈ {1, 2}, then return ⊥. Otherwise, if Prove2(S,Γj , k) = ? for some
j ∈ {1, 2}, then return ?. If Prove2(S,Γj , k) = >, for all j ∈ {1, 2}, then
return >.

(iv) If Γ is not S-propagated: then there must be nodes i and j such that
〈a〉A ∈ Γ|i and R(Γ, i, j)∩La(S) 6= ∅, but A 6∈ Γ|j. Let Γ′ := Γ(j � {A}).
Return Prove2(S,Γ′, k).

(v) If there is an internal node i in Γ that is not realised: Then there is [a]A ∈
Γ|i such that A 6∈ Γ|j for every j s.t. i �a j. Let Γ′ := Γ(i � (a){A}).
Return Prove2(S,Γ′, k).

(vi) Non-deterministically choose a leaf node i that is not realised and is at
height equal to or lower than k in Γ: Then there is [a]A ∈ Γ|i. Let
Γ′ := Γ(i� (a){A}). Return Prove2(S,Γ′, k).

(vii) Return ?.

Prove(S,Γ)

(i) k := 0.

(ii) If Prove2(S,Γ, k) = > or Prove2(S,Γ, k) = ⊥, return > or ⊥ respectively.

(iii) k := k + 1. Go to step (ii).

Fig. 4. A grammar-based prove procedure.

(i) Every node is saturated.

(ii) Γ is S-propagated.

(iii) Every internal node is realised.

(iv) Let x = x1, . . . , xn be the list of all unrealised leaf nodes. There is a
function λ assigning each unrealised leaf node xm to an ancestor λ(xm) of
xm such that Γ|xm = Γ|λ(xm) and for every node y and z, Γ is (S,P)-
propagated, where P = R(Γ, y, z)[x := λ(x)].

Now we define a non-deterministic prove procedure Prove2(S,Γ, k) as in
Figure 4, where k is an integer and S is a context-free closed semi-Thue sys-
tem. Given a nested sequent Γ, and a node i in Γ, the height of i in Γ is the
length of the branch from the root of Γ to node i. The procedure Prove2(S,Γ, k)
tries to construct a derivation of Γ, but is limited to exploring only those nested

Tiu, Ianovski and Goré 529

sequents derived from Γ that has height at most k. The procedure Prove given
below is essentially an iterative deepening procedure that calls Prove2 repeat-
edly with increasing values of k. If an input sequent is not valid, the procedure
will try to guess the smallest S-stable sequent that refutes the input sequent,
i.e., it essentially tries to construct a finite countermodel. The procedure Prove
gives a semi-decision procedure for context-free grammar logics. This uses the
following lemma about S-stable sequents, which shows how to extract a coun-
termodel from an S-stable sequent.

Lemma 6.9 Let S be a context-free closed semi-Thue system. If Γ is an S-
stable nested sequent, then there exists a model M such that for every node x in
Γ, there exists a world w in M such that for every A ∈ Γ|x, we have M, w 6|= A.

Theorem 6.10 Let S be a context-free closed semi-Thue system. For every
formula F , Prove(S, {F}) returns > if and only if F is provable in DKm(S).

We next show that Prove(S,Γ) terminates when S is regular. The key is
to bound the size of S-stable sequents, hence the non-deterministic iterative
deepening will eventually find an S-stable sequent, when Γ is not provable.

Theorem 6.11 Let S be a regular closed semi-Thue system over an alphabet
Σ. Then for every formula F , the procedure Prove(S, {F}) terminates.

The proof relies on the fact that there exists a minimal FSA A encoding S,
so one can simulate steps of Prove1(A, {F}) in Prove(S, {F}). It is not difficult
to show that if a run of Prove1(A, {F}) reaches an A-stable nested sequent Γ′,
then one can find a k such that a run of Prove2(S, {F}, k) reaches a saturated
and S-propagated nested sequent ∆, such that Γ′ and ∆ are identical except
for the labeled formulae in Γ′. The interesting part is in showing that ∆ is
S-stable. The details are in the appendix.

The following is then a corollary of Theorem 6.10 and Theorem 6.11.

Corollary 6.12 Let S be a regular closed semi-Thue system over an alphabet
Σ. Then the procedure Prove is a decision procedure for DKm(S).

7 Conclusion and future work

Nested sequent calculus is closely related to display calculi, allowing us to ben-
efit from well-studied proof theoretic techniques in display calculi, such as Bel-
nap’s generic cut-elimination procedure, to prove cut-elimination for SKm(S).
At the more practical end, we have established via proof theoretic means that
nested sequent calculi for regular grammar logics can be effectively mechanised.
This work and our previous work [11,13] suggests that nested sequent calculus
could potentially be a good intermediate framework to study both proof theory
and decision procedures, at least for modal and substructural logics.

Nested sequent calculus can be seen as a special case of labelled sequent
calculus, as the tree structure in a nested sequent can be encoded using labels
and accessibility relations among these labels in labelled calculi. The relation
between the two has recently been established in [24], where the author shows
that, if one gets rid of the frame rules in labelled calculi and structural rules in

530 Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures

nested sequent calculi, there is a direct mapping between derivations of formulae
between the two frameworks. However, it seems that the key to this connection,
i.e., admissibility of the frame rules, has already been established in Simpson’s
thesis [25], where he shows admissibility of a class of frame rules in favour
of propagation rules obtained by applying a closure operation on these frame
rules. The latter is similar to our notion of propagation rules. Thus it seems
that structural rules in (shallow) nested sequent calculus play a role similar
to the frame rules in labelled calculi. We plan to investigate this connection
further, e.g., under what conditions are the structural rules admissible in deep
inference calculi, and whether those conditions translate into any meaningful
characterisations in terms of (first-order) properties of frames.

The two decision procedures for regular grammar logics we have presented
are not optimal. As can be seen from the termination proofs, their complexity
is at least EXPSPACE. We plan to refine the procedures further to achieve op-
timal EXPTIME complexity, e.g, by extending our deep nested sequent calculi
with “global caching” techniques from tableaux systems [14].

Acknowledgment The authors would like to thank Paola Bruscoli and
anonymous referrees of previous drafts of this paper for their detailed and
useful comments. The first author is supported by the Australian Research
Council Discovery Grant DP110103173.

Appendix

A Proofs

Lemma 4.5. The rule r is height-preserving admissible in DKm(S).

Proof. Suppose Π is a derivation of Γ, (a){∆}. We show by induction on |Π|
that there exists a derivation Π′ of (ā){Γ},∆ such that |Π| = |Π′|. This is mostly
straightforward, except for the case where Π ends with a propagation rule. In
this case, it is enough to show that the propagation automata for Γ, (a){∆} is
in fact exactly the same as the propagation automata of (ā){Γ},∆. 2

Lemma 4.7. The rules actr and m are height-preserving admissible.

Proof. Admissibility of actr is trivial. To show admissibility of m, the non-
trivial case is when we need to permute m over pS . Suppose Π is a derivation
of Γ[(a){∆1}, (a){∆2}] ending with a propagation rule. Suppose i is the node
where ∆1 is located and j is the node where ∆2 is located. If P is a propagation
automata between nodes k and l in Γ[(a){∆1}, (a){∆2}], then P[j := i] is a
propagation automata between nodes k[j := i] and l[j := i] in Γ[(a){∆1,∆2}].
So all potential propagations of diamond formulae are preserved in the con-
clusion of m. So m can be permuted up over the propagation rule and by the
induction hypothesis it can be eventually eliminated. 2

Lemma 4.9. The structural rules ρ(S) of SKm(S) are height-preserving ad-
missible in DKm(S).

Proof. Suppose Π is a derivation of Γ[(a){∆}]. We show that there is a deriva-
tion Π′ of Γ[(u){∆}], where u = a1 · · · an such that a→ u ∈ S. This is mostly

Tiu, Ianovski and Goré 531

straightforward except when Π ends with a propagation rule. Suppose the hole
in Γ[] is located at node k and ∆ is located at node l, with k �a l. In this case
we need to show that if a diamond formula 〈b〉A can be propagated from a node
i to node j in Γ[(a){∆}] then there is also a propagation path between i and
j in Γ[(u){∆}] for the same formula. Suppose P1 is the propagation automata
R(Γ[(a){∆}], i, j). Then the propagation automata P2 = R(Γ[(u){∆}], i, j) is
obtained from P1 by adding n − 1 new states k1, . . . , kn−1 between k and l,

and the following transitions: k
a1−→ k1, k1

am+1−→ km+1, for 2 ≤ m < n and

kn−1
an−→ l, and their dual transitions.

Suppose i
v−→ j is a propagation path in Γ[(a){∆}]. If v does not go through

the edge k �a l (in either direction, up or down) then the same path also exists
in Γ[(u){∆}]. If it does pass through k �a l, then the path must contain one

or more transitions of the form k
a−→ l or l

ā−→ k. Then one can simulate

the path i
v−→ j with a path i

v′−→ j in P2, where v′ is obtained from v by

replacing each k
a−→ l with k

u−→ l and each l
ā−→ k with l

ū−→ k. It remains
to show that v′ ∈ P2 ∩ Lb(S). But this follows from the fact that a → u ∈ S
and ā→ ū ∈ S (because S is a closed), so v ⇒S v

′ ∈ Lb(S). 2

Theorem 4.10. For every context-free closed semi-Thue system S, the proof
systems SKm(S) and DKm(S) are equivalent.

Proof. One direction, from SKm(S) to DKm(S) follows from the admissibility
of structural rules of SKm(S) in DKm(S). To show the other direction, given a
derivation Π in DKm(S), we show, by induction on the number of occurrences
of pS , with a subinduction on the height of Π, that Π can be transformed
into a derivation in SKm(S). As rules other than pS can be derived directly in
SKm(S), the only interesting case to consider is when Π ends with pS :

Γ[〈a〉A]i[A]j

Γ[〈a〉A]i[∅]j
pS , where R(Γ[]i[]j , i, j) ∩ La(S) 6= ∅

and Γ[〈a〉A]i[A]j is derivable via a derivation Π′ in DKm(S). Choose some
u ∈ R(Γ[]i[]j , i, j) ∩ La(S). Then we can derive the implication 〈u〉A ⊃ 〈a〉A
in SKm(S). Using this implication, the display property and the cut rule, it
can be shown that the following rule is derivable in SKm(S).

Γ[〈a〉A, 〈u〉A]

Γ[〈a〉A]
d

Then it is not difficult to show that the rule pS can be simulated by the de-
rived rule d above, with chains of r and 〈a〉-rules in SKm(S), and utilising the
weakening lemma (Lemma 4.4). 2

Theorem 5.2. Let S be a regular closed semi-Thue system over Σ and let
A be a FSA representing the regular language generated by S and Σ. Then
DKm(S) and DKm(A) are equivalent.

532 Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures

Proof. (Outline). In one direction, i.e., showing that a derivation of a formula
B in DKm(S) can be translated into a derivation, we do induction on the
height of derivations in DKm(S). As all non-propagation rules between the
two systems are identical, it is enough to show that the propagation rules pS
of DKm(S) is admissible in DKm(A), which we show next.

Suppose we have a derivation Π of Γ[〈a〉A]i[A]j in DKm(A), and sup-
pose that R(Γ[]i[]j , i, j) ∩ La(S) 6= ∅. We show that Γ[〈a〉A]i[∅]j is derivable
in DKm(A). In other words, this says that pS is admissible in DKm(A).

Since R(Γ[]i[]j , i, j) ∩ La(S) 6= ∅, there must exist a sequence of transitions

in R(Γ[]i[]j , i, j): i
a1−→ i1

a2−→ · · · an−1−→ in−1
an−→ j, where a1 · · · an ∈ La(S)

and where each ik, for 1 ≤ k ≤ n− 1, is a node in Γ[]i[]j and

• either i �a1 i1 or i1 �ā1 i,
• either ik−1 �ak ik or ik �āk ik−1, for 2 ≤ k < n− 1

• and either in−1 �an j or j �ān in−1.

Since A accepts La(S), there must exist a sequence of transitions in A such

that: inita
a1−→ s1

a2−→ · · · an−1−→ sn−1
an−→ f, where f is a final state in A. The

propagation path a1 · · · an can then be simulated in DKm(A) as follows. First,
define a sequence of nested sequents as follows:

• Γ0 := Γ[〈a〉A]i[∅]j , Γ1 := Γ[〈a〉A, inita : A]i[∅]j .
• Γk+1 := Γk(ik � {sk : A}), for 1 ≤ k ≤ n− 1.

• Γn+1 := Γn(j � {f : A}) and Γn+2 := Γn+1(j � {A}).
Then Γ0 can be obtained from Γn+2 by a series of applications of propagation
rules of DKm(A). That is, Γ0 is obtained from Γ1 by applying the rule i; Γk
is obtained from Γk+1 by applying either the rule t↓ or t↑, for 1 ≤ k ≤ n− 1,
at node ik and Γn is obtained from Γn+1 by applying the rule t↓ or t↑ at node
j, and Γn+1 is obtained from Γn+2 by applying the rule f at node j. Note that
Γn+2 is a weakening of Γ[〈a〉A]i[A]j with labeled formulae spread in some nodes
between i and j. It remains to show that Γn+2 is derivable. This is obtained
simply by applying weakening to Π (this weakening lemma for DKm(A) can
be proved similarly as in the proof of Lemma 4.4).

For the other direction, assume we have a DKm(A)-derivation Ψ of B. We
show how to construct a derivation Ψ′ of B in DKm(S). The derivation Ψ′ is
constructed as follows: First, remove all labelled formulae from Ψ; then remove
the rules t↑, t↓ and i, and finally, replace the rule f with pS . The rules t↑, t↓
and i from Ψ simply disappear in Ψ′ because with labelled formulae removed,
the premise and the conclusion of any of the rules in Ψ map to the same sequent
in Ψ′. Instances of the other rules in Ψ map to the same rules in Ψ′. We need
to show that Ψ′ is indeed a derivation in DKm(S). The only non-trivial case
is to show that the mapping from the rule f to the rule pS is correct, i.e., the
resulting instances of pS in Ψ′ are indeed valid instances. The proof is rather
involved, but essentially it shows that if a labelled formula s : A is present in
a node in a nested sequent Γ constructed during proof search of B, then it

Tiu, Ianovski and Goré 533

must be a product of a sequence of propagation of labelled formulae starting
from some 〈a〉A in a node in Γ. The complete proof is omitted here, but it is
available in the extended version of this paper. 2

Theorem 6.4. If Prove1(A, {F}) = > then F is provable in DKm(A). If
Prove1(A, {F}) = ⊥ then F is not provable in DKm(A).

Proof. The proof of the first statement is straightforward, since the steps of
Prove1 are just backward applications of rules of DKm(A). To prove the second
statement, we show that if Prove1(A, {F}) = ⊥ then there exists a model
M = (W,R, V), where R = {Ra}a∈Σ, such that M 6|= F. By the completeness
of DKm(A), it will follow that F is not provable in DKm(A).

Since Prove1(A, {F}) = ⊥ the procedure must generate an A-stable ∆,
with F in the root node of ∆. Let W be the set of all the realised nodes of
∆. For every pair i, j ∈ W , construct an automaton P(i, j) by modifying the
propagation automaton R(∆, i, j) by identifying every unrealised node k′ with
its closest ancestor k such that ∆|k = ∆|k′. That is, replace every transition

of the form s
a−→ k′ with s

a−→ k and k′
a−→ s with k

a−→ s. Then define
Ra(x, y) iff P(x, y) ∩ L(Aa) 6= ∅, where Aa is A with only inita as the initial
state. Suppose S is a closed semi-Thue system that corresponds to A. Then it
can be shown that the frame 〈W,R〉 satisfies S.

To complete the model, let x ∈ V (p) iff ¬p ∈ ∆|x. We claim that for every
x ∈W and every A ∈ ∆|x, we have M, x 6|= A. We shall prove this by induction
on the size of A. Note that we ignore the labelled formulae in ∆; they are just
a bookeeping mechanism. As F is in the root node of ∆, this will also prove
M 6|= F. We show here the interesting case involving the diamond operators.

Suppose 〈a〉A ∈ ∆|x. Assume for a contradiction that M, x |= 〈a〉A. That
is, Ra(x, y) and M, y |= A. If Ra(x, y) then there is a accepting path pa(x, y)

in P(x, y) of the form: x0
a1−→ x1

a2−→ x2 · · ·xn−1
an−→ xn, where x0 = x and

xn = y such that u = a1 . . . an ∈ L(Aa). Then because u ∈ L(Aa), there
must be a sequence of states s0, s1, . . . , sn of A such that s0 = inita ∈ I and
sn ∈ F and the transitions between states: s0

a1−→ s1
a2−→ s2 · · · sn−1

an−→ sn.
We show by induction on the length of transtions that that si : A ∈ ∆|xi for
0 ≤ i ≤ n. In the base case, because 〈a〉A ∈ ∆|x, by A-propagation, we have
s0 : A ∈ ∆|x0. For the inductive cases, suppose si : A ∈ ∆|xi, for n > i ≥ 0.

There are two cases to consider. Suppose the transition xi
ai+1−→P(x,y) xi+1 is

present in R(∆, x, y). Then either xi �ai+1 xi+1 or xi+1 �āi+1 xi. In either
case, by A-propagation of ∆, we must have si+1 : A ∈ ∆|xi+1.

If xi
ai+1−→P(x,y) xi+1 is not a transition in R(∆, x, y), then this transition

must have resulted from a use of a loop node. There are two subcases: either
xi or xi+1 is the closest ancestor of a loop node x′ with ∆|xi = ∆|x′ or,
respectively, ∆|xi+1 = ∆|x′. Suppose xi is the closest ancestor of x′ with ∆|xi =

∆|x′. By the definition of P(x, y), this means we have x′
ai+1−→ xi+1 inR(∆, x, y).

Because ∆|xi = ∆|x′ and si : A ∈ ∆|xi, we have si : A ∈ ∆|x′. Then by A-
propagation, it must be the case that si+1 : A ∈ ∆|xi+1. Suppose xi+1 is the

534 Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures

closest ancestor of x′ with ∆|x′ = ∆|xi+1. Then xi
ai+1−→ x′ is a transition in

R(∆, x, y). By A-propagation, it must be the case that si+1 : A ∈ ∆|x′, and
therefore also si+1 : A ∈ ∆|xi+1.

So we have sn : A ∈ ∆|y. But, again by A-propagation, this means A ∈
∆|y (because sn is a final state). Then by the induction hypothesis, we have
M, y 6|= A, contradicting the assumption. 2

Theorem 6.5. For every formula A, Prove1(A, {A}) terminates.

Proof. (Outline) We say that a nested sequent Γ is a set-based nested sequent
if in every node of Γ, every (labelled) formula occurs at most once (a formula C
and its labelled versions are considered distinct). By inspection of the procedure
Prove1, it is clear that all the intermediate sequents created during proof search
for Prove1(A, {A}) are set-based sequents.

The only possible cause of non-termination is steps (v) and (vi), where the
input nested sequent is extended with new nodes. The blocking condition in
(vi) ensures that the height of any nested sequent generated during proof search
is bounded. Let m be the number of states in A and let n be the number of
subformulae of A. Then the total number of different sets of formulae and
labeled formulae (with labels from A) is bounded by 2(m+1)n. Therefore, any
set-based nested sequent generated during proof search will have height at
most 2(m+1)n, as the loop checking ensures they are never expanded beyond
this height. Given a nested sequent of a fixed height, the expansion in step
(v) only adds to the width of the nested sequent. This expansion is limited
by the number of ‘boxed’ subformulae of A. So the size of the nested sequents
generated during proof search is bounded, and therefore each branch of the
search has a finite length, thus the procedure must terminate. 2

Lemma 6.9. Let S be a context-free closed semi-Thue system. If Γ is an
S-stable nested sequent, then there exists a model M such that for every node
x in Γ there exists a world w in M such that for every A ∈ Γ|x, we have
M, w 6|= A.

Proof. Let x = x1, . . . , xn be the list of (pairwise distinct) unrealised leaf
nodes in Γ. Because Γ is S-stable, we have a function λ assigning each unrealised
leaf node xi to an ancestor node λ(xi) such that Γ|xi = Γ|λ(xi), and for
every node y and z in Γ, we have that Γ is (S,P(y, z))-propagated, where
P(y, z) = R(Γ, y, z)[x := λ(x)]. Then define M = 〈W, {Ra | a ∈ Σ}, V 〉 where

• W is the set of nodes of Γ minus the nodes x,

• for every x, y ∈W , Ra(x, y) iff P(x, y) ∩ La(S) 6= ∅, and

• V (p) = {x ∈W | ¬p ∈ Γ|x}.
We now show that for every node v in Γ, there exists a w ∈ W such that if
A ∈ Γ|v then M, w 6|= A, where the world w is determined by v as follows: if
v is in x, then w = λ(v); otherwise, w = v. We prove this by induction on the
size of A. The only interesting cases are those where A = 〈a〉C or A = [a]C for
some a and C.

Tiu, Ianovski and Goré 535

• Suppose A = 〈a〉C. Suppose, for a contradiction, that M, w |= 〈a〉C. That
means there exists a w′ such that Ra(w,w′) and M, w′ |= C. By the definition
of Ra, we have that P(w,w′) ∩ La(S) 6= ∅. Because Γ is S-stable, by Defini-
tion 6.8(iv), it is (S,P(w,w′))-propagated. This means that C ∈ Γ|w′. Then
by the induction hypothesis, M, w′ 6|= C, which contradicts our assumption.

• Suppose A = [a]C. To show M, w 6|= [a]C, it is enough to show there exists
w′ such that Ra(w,w′) and M, w′ 6|= C.

Note that w must be an internal node in Γ, so by the S-stability of Γ, node
w in Γ must be realised. Therefore there exists a node z such that w �a z
in Γ and C ∈ Γ|z. If z 6∈ x, then let w′ = z; otherwise, let w′ = λ(z). In
either case, Γ|z = Γ|w′, so in particular, C ∈ Γ|w′. Also, in either case, the

propagation automata P(w,w′) contains a transition w
a−→P(w,w′) w

′ (in
the case where z ∈ x, this is because λ(z) is identified with z). Obviously,
a ∈ La(S), so La(S) ∩ P(w,w′) 6= ∅, so by the definition of Ra, we have
Ra(w,w′). Since C ∈ Γ|w′, by the induction hypothesis, M, w′ 6|= C. So we
have Ra(w,w′), and M, w′ 6|= C, therefore M, w 6|= [a]C.

2

Theorem 6.10. Let S be a context-free closed semi-Thue system. For every
formula F , Prove(S, {F}) returns > if and only if F is provable in DKm(S).

Proof. (Outline) One direction, i.e., Prove(S, {F}) = > implies that F is
provable in DKm(S), follows from the fact that steps of Prove are simply
backward applications of rules of DKm(S). To prove the other direction, we
note that if F has a derivation in DKm(S), it has a derivation of a minimal
length, say Π. In particular, in such an derivation, there are no two identical
nested sequents in any branch of the derivation. Because in DKm(S) each
backward application of a rule retains the principal formula of the rule, every
application of a rule in Π will eventually be covered by one of the steps of Prove.
Since there are only finitely many rule applications in Π, eventually these will
all be covered by Prove and therefore it will terminate. For example, if Π ends
with a diamond (propagation) rule applied to a non-saturated sequent, the
Prove procedure will choose to first saturate the sequent before applying the
propagation rule. Since all rules are invertible, we do not lose any provability
of the original sequent, but the Prove procedure may end up doing more steps.
We need to show, additionally, that every sequent arising from the execution of
Prove(S, {F}) is not S-stable. Suppose otherwise, i.e., the procedure produces
an S-stable sequent ∆. Now it must be the case that F is in the root node
of ∆. By Lemma 6.9, this means there exists a countermodel that falsifies F ,
contrary to the validity of F . 2

Theorem 6.11. Let S be a regular closed semi-Thue system. Then for every
formula F , the procedure Prove(S, {F}) terminates.

Proof. Since S is regular, there exists a minimal deterministic FSA A corre-
sponding to S such that Prove1(A, {F}) terminates.

Suppose Prove1(A, {F}) = >. Then F must be derivable in DKm(A)

536 Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures

by Theorem 6.4. Since DKm(A) and DKm(S) are equivalent (Theorem 5.2),
there must also be a derivation of F in DKm(S). Then by Theorem 6.10,
Prove(S, {F}) must terminate and return >.

Suppose Prove1(A,Γ) = ⊥. Then there exists an A-stable Γ′ that can be
constructed from Γ in the execution of Prove1(A,Γ). It can be shown that a
∆ that is identical to Γ′ without any labelled formulae can be constructed in
the execution of Prove2(S,Γ, d) for some d. We claim that ∆ is S-stable. Sat-
uration, propagation and the realisation of internal nodes follow immediately
from the construction, it remains to find a function λ as in Definition 6.8. We
claim that such a function is given by λ(x) = y where y is the closest ancestor
of x in Γ′ such that Γ′|x = Γ′|y. That is, we identify each unrealised leaf with
the same node it would have been identified with in Prove1(A,Γ).

Let i = i1, . . . , il be the list of all unrealised leaf nodes in ∆ and let P(x, y) =
R(∆, x, y)[i := λ(i)]. (Note that as the tree structures of Γ′ and ∆ are identical,
we also have P(x, y) = R(Γ′, x, y)[i := λ(i)].) For a contradiction, suppose
there exists j and k such that ∆ is not (S,P(j, k))-propagated, i.e., there exist
〈a〉A ∈ ∆|j, such that A /∈ ∆|k but P(j, k)∩La(S) 6= ∅. In other words, there is
a word b1 . . . bn ∈ P(j, k)∩La(S), and a sequence of states x0, . . . , xn in P(j, k)

such that x0 = j, xn = k, xm−1
bm−→P(j,k) xm, where 1 ≤ m < n. We will show

that there exists a function St assigning states of A to nodes of Γ′ satisfying:

St(x0) ∈ I, St(xm−1)
bm−→A St(xm), St(xn) ∈ F , and St(xm) : A ∈ Γ′|xm.

This will establish that St(xn) : A ∈ Γ′|xn where St(xn) ∈ F . Then by A-
propagation, it will follow that A ∈ Γ′|k, and therefore A ∈ ∆|k, contradicting
our assumption that A 6∈ ∆|k.

Let s0, . . . , sn be the run ofAa associated with input b1 . . . bn. Let St(xm) =
sm. As L(Aa) = La(S), we know that s0, . . . , sn is an accepting run. This gives

us St(x0) ∈ I, St(xm−1)
bm−→A St(xm) and St(xn) ∈ F . It remains to show

that St(xm) : A ∈ Γ′|xm. We will do so by induction on m.
Base case: As 〈a〉A ∈ Γ′|x0, by A-propagation we obtain s0 : A ∈ Γ′|x0.

Inductive case: Suppose xm
bm+1−→P(j,k) xm+1. By the inductive hypothesis,

sm : A ∈ Γ′|xm. There are two cases to consider:

• The transition xm
bm+1−→P(j,k) xm+1 also exists in R(Γ′, j, k). In this case, by

A-propagation, we have sm+1 : A ∈ Γ′|xm+1.

• The transition xm
bm+1−→P(j,k) xm+1 is obtained from R(Γ′, j, k) through the

identification of unrealised leaf nodes with their closest ancestors. There are
two subcases:
· xm = λ(y) for some unrealised leaf node y such that Γ′|xm = Γ′|y, and

y
bm+1−→R(Γ′,j,k) xm+1. Since Γ′|xm = Γ′|y, we have that sm : A ∈ Γ′|y and

it follows by A-propagation that sm+1 : A ∈ Γ′|xm+1.
· xm+1 = λ(y) for some unrealised leaf node y such that that Γ′|xm+1 = Γ′|y,

and xm
bm+1−→R(Γ′,j,k) y. By A-propagation, sm+1 : A ∈ Γ′|y = Γ′|xm+1.

Thus when Prove(S,Γ) calls Prove2(S,Γ, d), it will construct an S-stable

Tiu, Ianovski and Goré 537

sequent and terminate. 2

References

[1] Baldoni, M., L. Giordano and A. Martelli, A tableau for multimodal logics and some
(un)decidability results, in: TABLEAUX, LNCS 1397 (1998), pp. 44–59.

[2] Belnap, N., Display logic, Journal of Philosophical Logic 11 (1982), pp. 375–417.
[3] Blackburn, P., J. van Benthem and F. Wolter, “Handbook of Modal Logic,” Studies in

Logic and Practical Reasoning, Elsevier, 2007.
[4] Brünnler, K., Deep sequent systems for modal logic, Archive for Mathematical Logic 48

(2009), pp. 551–577.
[5] Brünnler, K. and A. Tiu, A local system for classical logic, in: LPAR, LNCS 2250 (2001),

pp. 347–361.
[6] Demri, S., The complexity of regularity in grammar logics and related modal logics, J.

Log. Comput. 11 (2001), pp. 933–960.
[7] Demri, S. and H. de Nivelle, Deciding regular grammar logics with converse through

first-order logic, Journal of Logic, Language and Information 14 (2005), pp. 289–329.
[8] Fariñas del Cerro, L. and M. Penttonen, Grammar logics, Logique et Analyse 121-122

(1998), pp. 123–134.
[9] Ginsburg, S., “The Mathematical Theory of Context-Free Languages,” McGraw-Hill,

Inc., New York, NY, USA, 1966.
[10] Goré, R. and L. A. Nguyen, A tableau calculus with automaton-labelled formulae for

regular grammar logics, in: TABLEAUX, LNCS 3702 (2005), pp. 138–152.
[11] Goré, R., L. Postniece and A. Tiu, Taming displayed tense logics using nested sequents

with deep inference, in: TABLEAUX, LNCS 5607 (2009), pp. 189–204.
[12] Goré, R., L. Postniece and A. Tiu, Cut-elimination and proof search for bi-intuitionistic

tense logic, in: Advances in Modal Logic (2010), pp. 156–177.
[13] Goré, R., L. Postniece and A. Tiu, On the correspondence between display postulates and

deep inference in nested sequent calculi for tense logics, Logical Methods in Computer
Science 7 (2011).

[14] Goré, R. and F. Widmann, Sound global state caching for ALC with inverse roles, in:
TABLEAUX, Lecture Notes in Computer Science 5607, 2009, pp. 205–219.

[15] Goré, R. and F. Widmann, Optimal and cut-free tableaux for propositional dynamic logic
with converse, in: IJCAR, LNCS 6173 (2010), pp. 225–239.

[16] Guglielmi, A., A system of interaction and structure, ACM Trans. Comput. Log. 8
(2007).

[17] Horrocks, I., O. Kutz and U. Sattler, The even more irresistible SROIQ, in: KR (2006),
pp. 57–67.

[18] Horrocks, I. and U. Sattler, Decidability of SHIQ with complex role inclusion axioms,
Artif. Intell. 160 (2004), pp. 79–104.

[19] Kashima, R., Cut-free sequent calculi for some tense logics, Studia Logica 53 (1994),
pp. 119–135.

[20] Kazakov, Y., RIQ and SROIQ are harder than SHOIQ, in: KR (2008), pp. 274–284.
[21] Kracht, M., Power and weakness of the modal display calculus, in: Proof theory of modal

logic (Hamburg, 1993), Applied Logic Series 2, Kluwer Acad. Publ., 1996 pp. 93–121.
[22] Nguyen, L. A. and A. Sza las, A tableau calculus for regular grammar logics with converse,

in: CADE, LNCS 5663, 2009, pp. 421–436.
[23] Nguyen, L. A. and A. Sza las, Exptime tableau decision procedures for regular grammar

logics with converse, Studia Logica 98 (2011), pp. 387–428.
[24] Ramanayake, D. R. S., “Cut-elimination for provability logics and some results in display

logic,” Ph.D. thesis, The Australian National University (2011).
[25] Simpson, A. K., “The Proof Theory and Semantics of Intuitionistic Modal Logics,” Ph.D.

thesis, University of Edinburgh (1994).

	Introduction
	Grammar logics
	Nested sequent calculi with shallow inference
	Deep inference calculi
	Regular grammar logics
	Decision procedures
	An automata-based procedure
	A grammar-based procedure

	Conclusion and future work
	Proofs
	References

