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Abstract

An ontologically transparent semantics for justifications that interprets justifications
as sets of formulas they justify has been recently presented by Artemov. However,
this semantics of modular models has only been studied for the case of the basic
justification logic J, corresponding to the modal logic K. It has been left open how
to extend and relate modular models to the already existing symbolic and epistemic
semantics for justification logics with additional axioms, in particular, for logics of
knowledge with factive justifications.
We introduce modular models for extensions of J with any combination of the ax-
ioms (jd), (jt), (j4), (j5), and (jb), which are the explicit counterparts of standard
modal axioms. After establishing soundness and completeness results, we examine the
relationship of modular models to more traditional symbolic and epistemic models.
This comparison yields several new semantics, including symbolic models for logics
of belief with negative introspection (j5) and models for logics with the axiom (jb).
Besides pure justification logics, we also consider logics with both justifications and a
belief/knowledge modal operator of the same strength. In particular, we use modular
models to study the conditions under which the addition of such an operator to a
justification logic yields a conservative extension.

1 Introduction

Justification logics are epistemic logics that feature explicit justifications to
evidence the agent’s knowledge and/or belief. Instead of formulas 2A, for A is
known, the language of justification logic includes formulas of the form t:A that
stand for A is known for the reason t, where t is a so-called justification term.
Justification logics also include operations on these terms to reflect the agent’s
reasoning power. For instance, if A → B is known for a reason s and A is
known for a reason t, then B is known for the reason s · t, where the binary
operation · models the agent’s ability to apply modus ponens.

The first justification logic, the Logic of Proofs LP, was originally developed
by Artemov [1,2] to provide a classical provability semantics for intuitionistic
logic. To this end, he introduced an arithmetic semantics for LP in which
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justification terms are interpreted as proofs in Peano arithmetic and the opera-
tions on terms correspond to computable operations on proofs in PA. Artemov
established arithmetical completeness of LP with respect to this provability se-
mantics and developed an algorithm embedding the modal logic S4 into LP,
which, together with the well-known embeddings of intuitionistic logic into S4,
solved the long-standing problem of finding a classical provability semantics for
intuitionistic logic and S4.

The first non-arithmetic semantics for justification logics was introduced
by Mkrtychev [25] in order to obtain decidability results for LP. In these mod-
els, which are now called M-models, an evaluation function ∗ assigns to each
justification term t a set of formulas ∗(t). The underlying principle is that


 t:F ⇐⇒ F is evidenced by t according to ∗ . (1)

However, if justifications are assumed to be factive, i.e., they can only support
true facts, the clarity of (1) in M-models is muddled by truth thrown into the
mix. Historically, it was a pragmatic choice of efficiency over philosophical
transparency.

Later, Fitting [14], working independently from Mkrtychev, presented an
epistemic, i.e., Kripke-style, semantics for justification logics with essentially
the same machinery for handling justification terms as in M-models. In this
semantics, commonly referred to as F-models, the truth of formulas also invades
the causal space of justifications: a formula t:F holds at a world w if and only if

(i) F is evidenced by t at w and

(ii) F is true at all worlds that the agent considers possible at w.

It is, therefore, standard to speak of terms as being admissible evidence that
is not, however, decisive. F-models can be easily extended to the multi-agent
case. Hence, they provide a powerful tool for epistemic applications of
justification logics. For instance, F-models have been used for new analyses of
traditional epistemic puzzles [4,5] and for investigating the evidential dynamics
of public announcements [10,12] and common knowledge [3,9,11].

Despite their many applications, F-models present the same compromise as
factive M-models. For the sake of efficiency, justification and truth are inter-
twined in that t is only evidence for F if F is true (in the same M-model or
at all accessible worlds in the F-model). The philosophical objections to such
a paradigm also have practical roots. In court, evidence is used to determine
the truth of the matter. However, if the acceptability of the evidence were to
depend on this truth, it would create a vicious circle. A clear ontological sep-
aration between justification and truth is achieved in modular models recently
introduced by Artemov [6] (although they are less practicable than M-models
or F-models, in some cases).

Similar to F-models, modular models consist of a Kripke structure together
with an evaluation function ∗w for each world w. However, unlike in F-models,
no formula is required to be true for t to be evidence for F at a world w.
Additionally, modular models satisfy the condition of justification yields be-
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lief (JYB), which provides a connection between justifications and the tra-
ditional possible world semantics for knowledge and belief. This connection
principle states that having evidence for F yields a belief that F .

Artemov has studied modular models only for the case of the basic justifi-
cation logic J. Extending them to justification logics with additional axioms, in
particular to logics of knowledge with factive justifications, has been left open.
We introduce modular models for extensions of J with any combination of the
axioms (jd), (jt), (j4), (j5), and (jb), which are the explicit counterparts of stan-
dard modal axioms. The connection principle justification yields belief makes
it possible to give uniform proofs for soundness and completeness for all these
logics, which cannot be done in the case of F-models, where this connection
principle need not hold. In particular, to obtain the soundness of a justification
logic with respect to F-models, the models have to fulfill additional properties
that depend on the axioms included in the logic. For modular models, however,
these properties, e.g., monotonicity (for (jt)) or the strong evidence property
(for (j5)), naturally follow from the fact that justification yields belief. We
illustrate this point by developing F-models for justification logics with the
axiom (jb) via modular models for these logics. The definition of the latter is
trivially read from the axioms, whereas F-models additionally require the strong
evidence property, which is not directly related to the axiom system of the logic.

This semantics for justification logics with the axiom (jb) is newly devel-
oped in this paper. This axiom was introduced by Brünnler et al. [8] as a
justification counterpart of the usual axiom (b) from modal logic. The explo-
ration of the relationship between modular models and M-models also leads
to new M-models for justification logics of belief that include the axiom (j5)
(some models of this kind are studied in [27]). This relationship, however, is
more difficult to study mainly because we are not aware of a conceptually clear
way of defining what constitutes an M-model.

Besides pure justification logics, we also consider logics with both justifi-
cations and a modal operator for knowledge/belief of the same strength. In
particular, we show that the addition of such an operator to a justification
logic yields a conservative extension for logics the justifications in which either
have to be factive or may not be consistent. For logics with consistent but
not necessarily factive justifications, conservativity requires a sufficient store of
evidence, i.e., it is necessary to possess evidence for all axioms of the logic. We
show that this additional requirement is essential by providing a counterexam-
ple to conservativity for the case when no evidence is present for any axiom.

2 Syntax

Justification terms are built from constants ci and variables xi according to
the following grammar:

t ::= ci | xi | (t · t) | (t + t) | !t | ?t | ?t .

We denote the set of terms by Tm. A term is called ground if it does not
contain variables. The operations of · and + are assumed to be left-associative
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in order to omit unnecessary parentheses. Formulas are built from atomic
propositions pi according to the following grammar:

F ::= pi | ¬F | (F → F ) | t:F .

Prop and Lj denote the set of atomic propositions and the set of formulas
respectively. We define (A ∧ B) := ¬(A → ¬B) and ⊥ := p ∧ ¬p for a fixed
atomic proposition p.

We consider a family of justification logics that differ in their axioms and in
the availability of justifications for these axioms. By an axiom we understand
a set of formulas in the language Lj , called axiom instances. We consider sets
of axioms that have form L(X) = J∪X, where J = {A1,A2,A3} is the smallest
set of axioms with

A1 finite complete axiomatization of classical propositional logic,

A2 t:(A→ B)→ (s:A→ (t · s):B),

A3 t:A→ (t + s):A and s:A→ (t + s):A,

and additional axioms X ⊆ {(jd), (jt), (j4), (j5), (jb)} with

(jd) t:⊥ → ⊥,

(jt) t:A→ A,

(j4) t:A→ !t:t:A,

(j5) ¬t:A→ ?t:¬t:A,

(jb) ¬A→ ?t:¬t:A.

We often write L instead of L(X) if the set of axioms X is not important. For a
formula F and an axiom A, we write F ∈ A to mean that F is an instance of A.

The axiom (jb) was recently introduced in [8] (it was independently pro-
posed by Ghari in an unpublished manuscript [18]). Note that the formulation
of (jb) in [8] is slightly different, namely: A→ ?t:¬t:¬A.

A constant specification CS for a set of axioms L is any subset

CS ⊆ {c:F | c is a constant and there is an axiom A ∈ L such that F ∈ A}.

Constant specifications determine axiom instances for which the logic provides
justifications. A constant specification CS for a set of axioms L is called ax-
iomatically appropriate (for L) if for each axiom A ∈ L and for each axiom
instance F ∈ A, there is a constant c such that c:F ∈ CS.

A justification logic LCS is determined by its set of axioms L and its constant
specification CS (for L). Whenever LCS is used, it is assumed that CS is a
constant specification for L. The deductive system LCS is the Hilbert system
given by the axioms L and by the rules modus ponens

A A→ B
B

(MP)
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and axiom necessitation

! · · ·!c: · · · :!!c:!c:c:F (AN!), where c:F ∈ CS .

When (j4) ∈ L, a simplified axiom necessitation rule can be used:

c:F
(AN), where c:F ∈ CS .

For instance, the deductive system JD4CS consists of the axioms A1–A3, (jd),
and (j4) and of the rules (MP) and (AN). There are 25 = 32 combinations of
the five axioms (jd), (jt), (j4), (j5), and (jb), but they yield only 24 series of
logics LCS, because each instance of (jd) is also an instance of (jt).

For any justification logic LCS, we write LCS ` A to mean that the formula A
is derivable in LCS and ∆ `LCS

A to mean that the formula A is derivable in LCS
from the set of formulas ∆. When the logic LCS is clear from the context, the
subscript LCS is omitted. We write ∆, A for ∆ ∪ {A}.

The deduction theorem is standard for justification logics. Therefore, we
omit its proof here.

Theorem 2.1 (Deduction Theorem, [4]) For any justification logic LCS,
any ∆ ⊆ Lj, and arbitrary A,B ∈ Lj, ∆, A `LCS

B ⇐⇒ ∆ `LCS
A→ B.

An important property of justification logics is their ability to internalize
their own notion of proof, as stated in the following lemma, which can be easily
proved by induction on the derivation.

Lemma 2.2 (Internalization for Variables, [4]) Let LCS be a justifica-
tion logic with the axiomatically appropriate CS. For arbitrary formu-
las A,B1, . . . , Bn ∈ Lj, if B1, . . . , Bn `LCS

A, then there is a term
t(x1, . . . , xn) ∈ Tm such that x1:B1, . . . , xn:Bn `LCS

t(x1, . . . , xn):A for fresh
variables x1, . . . , xn.

Corollary 2.3 (Constructive Necessitation, [4]) Let LCS be a justifica-
tion logic with the axiomatically appropriate CS. For any formula A ∈ Lj,
if LCS ` A, then LCS ` t:A for some ground term t ∈ Tm.

Combining the previous results, we also obtain internalization for the case
when the assumptions are justified by arbitrary terms.

Corollary 2.4 (Internalization for Arbitrary Terms) Let LCS be a justi-
fication logic with the axiomatically appropriate CS. For arbitrary formulas
A,B1, . . . , Bn ∈ Lj and arbitrary terms s1, . . . , sn ∈ Tm, if B1, . . . , Bn `LCS

A,
then there is a term t ∈ Tm such that s1:B1, . . . , sn:Bn `LCS

t:A.

Proof. See Appendix A. 2

Remark 2.5 There is another method for proving Corollary 2.4: use Inter-
nalization Lemma 2.2 to obtain x1:B1, . . . , xn:Bn ` s′(x1, . . . , xn):A and then
replace x1, . . . , xn with s1, . . . , sn respectively. However, one has to be careful
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using this approach since substituting terms for variables need not preserve
derivability. Consider x:p → p ∈ (jt) and let CS be an axiomatically appro-
priate constant specification for a logic with axioms L 3 (jt). Then, there is a
constant c such that LCS ` c:(x:p→ p). Substituting a term t for x in x:p→ p
yields t:p→ p ∈ (jt). Again, there is a constant d such that LCS ` d:(t:p→ p).
However, without additional constraints on CS, there is no guarantee that c = d.

3 Basic Modular Models

Definition 3.1 Let X,Y ⊆ Lj and t ∈ Tm. We define

(i) X · Y := {F ∈ Lj | G→ F ∈ X and G ∈ Y for some formula G ∈ Lj};
(ii) t:X := {t:F | F ∈ X}.
Definition 3.2 (Basic evaluation) A basic evaluation for a logic LCS, or a
basic LCS-evaluation, is a function ∗ that maps atomic propositions to truth
values 0, 1 and maps justification terms to sets of formulas, ∗ : Prop → {0, 1}
and ∗ : Tm→ P(Lj), such that for arbitrary s, t ∈ Tm and any F ∈ Lj,

(i) s∗ · t∗ ⊆ (s · t)∗;
(ii) s∗ ∪ t∗ ⊆ (s + t)∗;

(iii) F ∈ t∗ for any conclusion t:F of (AN) or (AN!), whichever is a rule of LCS;

(iv) s:(s∗) ⊆ (!s)∗ for logics with (j4) ∈ L; and

(v) F /∈ t∗ implies ¬t:F ∈ (?t)∗ for logics with (j5) ∈ L.

Here p∗ for p ∈ Prop and t∗ for t ∈ Tm denote ∗(p) and ∗(t) respectively.

Definition 3.3 (Truth under a basic evaluation) We define what it
means for a formula to hold under a basic evaluation ∗ inductively as follows:

∗ 
 p if and only if p∗ = 1 for p ∈ Prop;

∗ 
 F → G if and only if ∗ 1 F or ∗ 
 G;

∗ 
 ¬F if and only if ∗ 1 F ;

∗ 
 t:F if and only if F ∈ t∗.

The definition does not depend on the logic for which ∗ is a basic evaluation.
Thus, it is possible to talk about a basic evaluation without specifying its logic.

Definition 3.4 (Consistent, factive, and Brouwerian evaluation) A
basic LCS-evaluation ∗ is called

• consistent if ⊥ /∈ t∗ for any t ∈ Tm;

• factive if F ∈ t∗ implies ∗ 
 F for all t ∈ Tm and F ∈ Lj;

• Brouwerian if ∗ 1 F implies ¬t:F ∈ (?t)∗ for all t ∈ Tm and F ∈ Lj.

It is immediate from the last two definitions that a factive basic evaluation
is always consistent.

Definition 3.5 (Basic modular model) A basic modular model for a
logic LCS, or a basic modular LCS-model, is a basic LCS-evaluation ∗ such that
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∗ is

(i) consistent if (jd) ∈ L;

(ii) factive if (jt) ∈ L;

(iii) Brouwerian if (jb) ∈ L.

Theorem 3.6 (Soundness) Let LCS be a justification logic and F ∈ Lj.

LCS ` F =⇒ ∗ 
 F for all basic modular LCS-models ∗.

Proof. See Appendix B. 2

Completeness is established by a maximal consistent set construction.

Definition 3.7 (LCS-consistent set) Let LCS be a justification logic. A set
Φ ⊆ Lj is called LCS-consistent if there is F ∈ Lj such that Φ 0LCS

F . Φ is
called maximal LCS-consistent if it is LCS-consistent and has no LCS-consistent
proper extensions.

As usual, a maximal LCS-consistent set contains all instances of axioms
from L and is closed under the inference rules of LCS.

Theorem 3.8 (Completeness) Let LCS be a justification logic and F ∈ Lj.

∗ 
 F for all basic modular LCS-models ∗ =⇒ LCS ` F .

Proof. See Appendix C. 2

Remark 3.9 Basic modular models, introduced in [6], are closely related to
M-models, introduced by Mkrtychev in [25] for the Logic of Proofs LPCS, the
logic with axioms J ∪ {(jt), (j4)}, denoted LPAS in [25]. Strictly speaking,
Mkrtychev created two semantics, which he called models and pre-models and
which he showed to be equivalent. M-models, which have been adapted to
several other logics from the justification family in [20,21,26,27,28] and used
to prove decidability of justification logics ([25]), to determine their complex-
ity ([19,21,22]), and to study self-referentiality of modal logics ([23]), are the
pre-models of [25]. However, the other semantics from [25], that of the models,
is, in fact, exactly the semantics of basic modular models for LP∅, i.e., of fac-
tive basic evaluations for LP∅. The models of [25] are defined as interpretations
with an additional condition, which is identical to our condition of factivity,
while interpretations themselves are isomorphic modulo notation and terminol-
ogy to basic evaluations for LP∅. The machinery for handling the rule (AN)
in [25] and in this paper is also essentially the same.

The difference between pre-models and models lies in the conditions under
which t:F holds. For models, it is the same as for basic evaluations, i.e., F ∈ t∗

is sufficient, whereas for pre-models, additionally ∗ 
 F is required. Clearly,
this additional requirement replaces the requirement of factivity. Therefore, it
should only be used when (jt) ∈ L. Indeed, the M-models introduced in [21]
for the logics with axioms J, J ∪ {(jd)}, J ∪ {(j4)}, or J ∪ {(jd), (j4)} are
isomorphic to the basic modular models for these logics. By the same token,
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some of the basic modular models presented in this paper can and should be
considered M-models.

Definition 3.10 (M-models for logics with (j5) but without (jt))
An M-model for a logic LCS with the axioms J ∪ {(j5)}, J ∪ {(jd), (j5)},
J ∪ {(j4), (j5)}, or J ∪ {(jd), (j4), (j5)} is a basic modular model for LCS.

4 Epistemic Models and Modularity

Justification logics also have an epistemic semantics, developed by Fitting
in [14]. An F-model for a justification logic is a quadruple M = (W,R, E ,V),
where (W,R,V) is a Kripke model and where the admissible evidence function
E : W ×Tm→ P(Lj) plays the role of a basic evaluation ∗ for each world. The
crucial feature of F-models is that

M, w 
 t:F ⇐⇒ F ∈ E(w, t) and
(
R(w, v)⇒M, v 
 F

)
.

These epistemic models provide a way of comparing justification logics and
their corresponding modal logics within the same semantics, as well as provide
semantics for combinations of the two, which are sometimes called logics of
justifications and belief/knowledge. However, F-models violate an important
property of basic modular models: namely, the ontological separation of jus-
tification from truth. This separation is also violated in M-models for logics
with the axiom (jt) (see Remark 3.9). Indeed, in such an M-model and in any
F-model, to check whether a term t justifies a formula F , it must be observed
whether F holds, in the M-model or in all accessible worlds of the F-model.

This prompted Artemov in [6] to introduce modular models for JCS with a
clear distinction between the truth and the justification of formulas. We now
extend modular models to all the justification logics we are considering. Like
F-models, these modular models can also be used for logics of justifications
and belief/knowledge.

Definition 4.1 (Quasimodel) A quasimodel for LCS, or an LCS-quasimodel,
is a triple M = (W,R, ∗), where W 6= ∅, R ⊆ W ×W , and the evaluation ∗
maps each world w ∈W to a basic LCS-evaluation ∗w. We will write p∗w instead
of ∗w(p) and t∗w instead of ∗w(t).

Definition 4.2 (Truth in quasimodels) We define what it means for a for-
mula to hold at a world w ∈ W of a quasimodel M = (W,R, ∗) inductively as
follows:

M, w 
 p if and only if p∗w = 1 for p ∈ Prop;

M, w 
 F → G if and only if M, w 1 F or M, w 
 G;

M, w 
 ¬F if and only if M, w 1 F ;

M, w 
 t:F if and only if F ∈ t∗w.

As in the case of basic evaluations, this definition does not depend on the logic
for which M is a quasimodel. We write M 
 F if M, w 
 F for all w ∈W .
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For a given quasimodel M = (W,R, ∗) and a world w ∈W , we define

2w := {F ∈ Lj | M, v 
 F whenever R(w, v)} . (2)

By analogy with basic modular models, we define the following notions:

Definition 4.3 (Consistent, factive, and Brouwerian quasimodel) An
LCS-quasimodel M = (W,R, ∗) is called

• consistent if ⊥ /∈ t∗w for any w ∈W and any t ∈ Tm;

• factive if F ∈ t∗w implies M, w 
 F for all w ∈W , t ∈ Tm, and F ∈ Lj;

• Brouwerian if M, w 1 F implies ¬t:F ∈ (?t)∗w for all w ∈ W , t ∈ Tm, and
F ∈ Lj.

Definition 4.4 (Modular model) A modular modelM = (W,R, ∗) for LCS,
or a modular LCS-model, is an LCS-quasimodel that meets the following condi-
tions:

(i) t∗w ⊆ 2w for all t ∈ Tm and w ∈W ; (JYB)

(ii) R is serial if (jd) ∈ L;

(iii) R is reflexive if (jt) ∈ L;

(iv) R is transitive if (j4) ∈ L;

(v) R is Euclidean if (j5) ∈ L;

(vi) R is symmetric if (jb) ∈ L;

(vii) M is Brouwerian if (jb) ∈ L.

Conditions (i)–(vi) may seem superfluous since R plays no role in deter-
mining the truth of formulas. But Conditions (ii)–(vi) are well known for the
corresponding modal axioms in modal logic and, hence, are needed, so to say,
for backward compatibility: they ensure that the same semantics can be used
for justification logics, logics of justifications and belief/knowledge, and modal
logics. Condition (i) plays, in this respect, the role of a catalyzer allowing for a
transition between these three formalisms. This condition essentially says that
justification yields belief, abbreviated JYB. Indeed, whenever F ∈ t∗w, we have
M, w 
 t:F so that F has a justification at w. The requirement that F be-
long to 2w says that F must be believed at w in the sense of Kripke models,
i.e., hold at all worlds considered possible at w.

Note that, unlike for the case of basic modular models, we do not re-
quire that modular models for logics with (jd) be consistent or those for logics
with (jt) be factive. Instead, these properties are derived from JYB and the
corresponding restrictions on R.

Lemma 4.5 (Reflexive modular models are factive) Let (jt) ∈ L and let
M = (W,R, ∗) be a modular LCS-model. Then M is factive.

Proof. Suppose F ∈ t∗w. Then F ∈ 2w by JYB. Since R(w,w) by reflexivity
of R, we obtain M, w 
 F from (2). 2
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Lemma 4.6 (Serial modular models are consistent) Let (jd) ∈ L and
let M = (W,R, ∗) be a modular LCS-model. Then M is consistent.

Proof. Assume towards a contradiction that ⊥ ∈ t∗w. Then ⊥ ∈ 2w by JYB.
By seriality of R, there is v ∈W such that R(w, v) and, by (2), we would have
M, v 
 ⊥, which is impossible. 2

There is an additional property that follows from JYB but is peculiar to
the possible-worlds scenario.

Lemma 4.7 (Monotonicity) Let (j4) ∈ L and M = (W,R, ∗) be a modular
LCS-model. Then for any t ∈ Tm and for arbitrary a, b ∈ W , R(a, b) implies
t∗a ⊆ t∗b .

Proof. Assume R(a, b) and F ∈ t∗a. Then t:F ∈ (!t)∗a because ∗a is a basic
evaluation for LCS. So t:F ∈ 2a by JYB and M, b 
 t:F by (2), which means
that F ∈ t∗b . 2

The soundness and completeness of justification logics with respect to mod-
ular models are almost obvious:

Theorem 4.8 (Soundness and Completeness, Modular Models I) Let
LCS be a justification logic such that either (jt) ∈ L or (jd) /∈ L and let F ∈ Lj.

LCS ` F ⇐⇒ M 
 F for all modular LCS-models M . (3)

Proof. See Appendix D. 2

Remark 4.9 Unfortunately, single-world modular models are insufficient for
proving the completeness of logics that are consistent but not factive. Indeed,
any serial single-world model is automatically reflexive. Thus, JYB for such
a model would yield factivity by Lemma 4.5, making it impossible to distin-
guish between consistency and factivity. In this case, the simplest completeness
proof is via the canonical model construction akin to that from the proof of
Theorem 3.8.

Theorem 4.10 (Soundness and Completeness, Modular Models II)
Let LCS be a logic with (jt) /∈ L and (jd) ∈ L. Then LCS is sound with respect to
modular LCS-models (=⇒-direction of (3)). If CS is axiomatically appropriate
for L, then LCS is also complete (⇐=-direction of (3)).

Proof. See Appendix E. 2

Remark 4.11 In fact, the completeness proof in Theorem 4.10 can be easily
applied to all the logics covered by Theorems 4.8 and 4.10. The only addition
would be the necessity to show R is reflexive if (jt) ∈ L.

The relationship between F-models, mentioned at the beginning of this
section, and modular models is rather straightforward. While an independent
definition of F-models for all logics LCS, except for those with (jb) ∈ L, can be
found in [4], we can describe them via modular models:
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Definition 4.12 (F-models) The definition of an F-model MF = (W,R, ∗)
for a logic LCS is identical to that of a modular LCS-model (see Def. 4.4) with a
new condition: if (j4) ∈ L, then for all w, v ∈W and all t ∈ Tm,

R(w, v) =⇒ t∗w ⊆ t∗v ; (4)

and with a restricted JYB analog: if (j5) ∈ L or (jb) ∈ L, then for all t ∈ Tm,
F ∈ Lj, and w ∈W ,

F ∈ t∗w =⇒ F ∈ 2F
w , (5)

where
2F

w := {G ∈ Lj | MF, v 
F G whenever R(w, v)} . (6)

Condition (4) for F-models is traditionally called monotonicity, whereas the
most common equivalent form of (5) is called the strong evidence property.

The absence of the JYB requirement in the case when neither (j5) ∈ L nor
(jb) ∈ L means that in an F-model, F ∈ t∗w says that t is admissible as evidence
for F at the world w, but it need not be decisive as it is in modular models.
Accordingly, the notion of truth 
F in F-models differs from 
 in quasimodels
with respect to formulas of the form t:F .

Definition 4.13 (Truth in F-models) The definition of MF, w 
F A is
identical to that of MF, w 
 A for the LCS-quasimodel MF (see Def. 4.2) ex-
cept that the last clause is replaced by MF, w 
F t:F if and only if F ∈ t∗w and
F ∈ 2F

w. Note that 
F can be applied to any quasimodel irrespective of its logic.

Lemma 4.14 (From Modular to F-Models) Every modular LCS-model
M = (W,R, ∗) is also an F-model for LCS such that for all w ∈W and F ∈ Lj,

M, w 
F F ⇐⇒ M, w 
 F . (7)

Proof. See Appendix F. 2

Remark 4.15 It is clear from the proof of Lemma 4.14 that (5) holds for any
F-model based on a modular LCS-model, even if neither (j5) ∈ L nor (jb) ∈ L.

The converse direction is more interesting. An F-model need not be a
modular model itself, but it always induces an equivalent modular model.

Lemma 4.16 (From F- to Modular Models) Let MF = (W,R, ∗F) be an
F-model for a logic LCS. Then M := (W,R, ∗) with

t∗w := {F ∈ Lj | F ∈ t∗Fw and F ∈ 2F
w} = {F ∈ Lj | MF, w 
F t:F} (8)

is a modular LCS-model such that for all w ∈W and all F ∈ Lj,

M, w 
 F ⇐⇒ MF, w 
F F . (9)

Proof. See Appendix G. 2
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Remark 4.17 Soundness and completeness with respect to F-models for LCS
follow from Lemmas 4.14 and 4.16 and soundness and completeness with respect
to modular LCS-models, with the same requirement of axiomatic appropriate-
ness for CS when (jd) ∈ L. Thus, we have created F-models for the justification
logics with (jb) ∈ L.

5 Justifications and Belief

It should not be surprising that modular models can also be used for the joint
language of justifications and belief. And while the condition JYB does not look
out of place in justification logics, its real origins are, of course, modal, which
is clearly seen in the following soundness proof. Many notions and conventions
introduced in Sect. 2 are now generalized to the extended language L2 defined
by the grammar:

F ::= pi | ¬F | (F → F ) | t:F | 2F .

For each set of axioms L considered earlier, we define the set of axioms L2

to consist of

• all the axioms of L in the extended language L2;

• axiom 2(A→ B)→ (2A→ 2B);

• axiom 2⊥ → ⊥ if (jd) ∈ L;

• axiom 2F → F if (jt) ∈ L;

• axiom 2F → 22F if (j4) ∈ L;

• axiom ¬2F → 2¬2F if (j5) ∈ L;

• axiom ¬F → 2¬2F if (jb) ∈ L; and

• axiom t:F → 2F .

The axiom t:F → 2F is called the connection axiom. It formally states
that justification yields belief. Constant specifications for L2 are defined in
the obvious way. Given a constant specification CS for L2, the deductive
system L2CS is the Hilbert system given by the axioms L2 and by the rules (MP)
and either (AN) or (AN!), as in LCS, as well as by the usual necessitation rule
from modal logic:

F
2F

(2) .

A basic evaluation for a logic L2CS and many other notions are defined in the
same way as for its corresponding justification logic LCS except that each in-
stance of the language Lj should be replaced with L2 and those of the logic LCS
with L2CS. In particular, the definition of a modular model for L2CS repeats that
for LCS with one extra clause for the truth of formulas 2F :

M, w 
 2F ⇐⇒ F ∈ 2w , (10)

which is a standard definition recast in our notation.
We will not repeat definitions and proofs, unless there is a significant change

due to the addition of modalities.
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Theorem 5.1 (Soundness of Modular Models for L2CS) Let L2CS be a
logic of justifications and belief and let F ∈ L2.

L2CS ` F =⇒ M 
 F for all modular L2CS-models M .

Proof. Most of the proof repeats that of Theorem 3.6 or the standard argu-
ment for the modal axioms. The connection axiom t:F → 2F is valid because
of JYB and (10). 2

Theorem 5.2 (Completeness of Modular Models for L2CS) Let L2CS be a
logic of justifications and belief and let F ∈ L2.

M 
 F for all modular L2CS-models M =⇒ L2CS ` F .

Proof. See Appendix H. 2

6 Conservative Extensions of Modal Logics

Justification language and the closely related modal language provide a
plethora of conservativity statements to be considered. Within justification
logic itself, different sets of operations on justifications can be compared
prompting the question whether larger sets are conservative over smaller
ones, which is thoroughly studied in [15,24]. One can also ask whether logics
of justifications and belief are conservative over the respective justification
logics and/or the respective modal logics. While there are a few results of
the latter type sprinkled through the literature so widely that listing all the
papers here is impractical, the results of the former type are relatively rare.
Artemov and Nogina in [7] introduced the logic S4LP, which is L2CS with
L = J ∪ {(jt), (j4)} in our notation. They also conjectured this logic to be
conservative over LCS (modulo a careful treatment of CS). In the introduction
to [16], Fitting mentioned this conjecture as a fact without any proof. Most
probably, Fitting’s argument was semantic based on his semantics of F-models,
which works both for these L2CS and LCS (see [13,14]). Finally, Ghari recently
published a syntactic proof of the same fact in [17]. In this section, we use
a semantic argument based on modular models to extend this conservativity
result to other pairs of corresponding logics.

Theorem 6.1 (Conservativity)

(i) Let LCS be a justification logic with (jd) /∈ L and let F ∈ Lj. Then
LCS ` F ⇐⇒ L2CS ` F .

(ii) Let LCS be a justification logic with (jd) ∈ L, let CS be an axiomatically
appropriate constant specification for L, and let F ∈ Lj. Then we have
LCS ` F ⇐⇒ L2CS ` F .

Proof. The statements in both cases follow from the fact that by Theorems 4.8,
4.10, 5.1, and 5.2, both logics are sound and complete with respect to the same
class of modular models. 2

The restriction on CS in the second part of this theorem originates from
Theorem 4.10, whereas Theorem 5.2 does not feature any such restriction. The
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following example shows that this restriction is, in fact, essential for conserva-
tivity rather than being an artifact of the particular proof method.

Example 6.2 Consider L∅ with L = J ∪ {(jd)}. We show that L2∅ is not
conservative over L∅. Indeed, ¬y:x:⊥ can be derived in L2∅ by taking the
instance x:⊥ → ⊥ of the axiom (jd) ∈ L2, applying normal modal reasoning to
get 2x:⊥ → 2⊥, syllogizing with the modal seriality axiom 2⊥ → ⊥ ∈ L2 to
obtain 2x:⊥ → ⊥, and syllogizing once again with the instance y:x:⊥ → 2x:⊥
of the connection principle ∈ L2. The final result is L2∅ ` y:x:⊥ → ⊥, or,
equivalently, L2∅ ` ¬y:x:⊥.

However, y:x:⊥ is shown to be satisfiable in an M-model for L∅ in [22,
Ex. 3.3.23]. Hence, L∅ 0 ¬y:x:⊥ due to the soundness of L∅ with respect to
its M-models or, equivalently, according to Remark 3.9, with respect to basic
modular L∅-models. Thus, L2∅ is not conservative over L∅.

7 Fully Explanatory Models

Since in justification logics the modality of 2F is read existentially, i.e., as the
existence of a justification for F , it is reasonable to ask whether the semantics
we have presented supports this reading.

Definition 7.1 (Fully explanatory modular models) A modular LCS-
model M = (W,R, ∗) is fully explanatory if for any w ∈ W and any F ∈ Lj,
F ∈ 2w implies F ∈ t∗w for some t ∈ Tm.

This notion can be seen as the converse of JYB and, taking the latter
into account, can be reformulated as 2w =

⋃
t∈Tm t∗w. A similar notion was

originally proposed by Fitting in [14] for F-models.

Theorem 7.2 Let LCS be a justification logic with the axiomatically appro-
priate CS. Then LCS is sound and complete with respect to fully explanatory
modular LCS-models.

Proof. Given Theorems 4.8 and 4.10 and Remark 4.11, it is sufficient to show
that the canonical model Mc = (W,R, ∗) for LCS constructed in the proof of
Theorem 4.10 is fully explanatory. See Appendix I for details. 2

8 Conclusion

Modular models provide an epistemic semantics for justification logics with
a clear ontological separation of justification and truth. We have introduced
modular models for the extensions of the basic justification logic J with any
combination of the axioms (jd), (jt), (j4), (j5), and (jb).

One of the main properties of modular models is that justification yields be-
lief, which has enabled us to study the relationship of modular models to more
traditional epistemic semantics of F-models for justification logics and Kripke
models for modal logics. We have also compared single-world variants of mod-
ular models to the existing symbolic semantics for justification logics. These
comparisons have yielded several new semantics, including symbolic models for
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logics of belief with negative introspection (j5) and epistemic models for logics
with the axiom (jb).

We have also extended the semantics of modular models to justification
logics with an additional modal knowledge/belief operator and have exploited
the common semantical framework to demonstrate that such extensions are
typically conservative. All these conservativity results, with the exception of
the conservativity of S4LPCS over LPCS, are new.
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Appendix

A Proof of Corollary 2.4

Corollary 2.4 Let LCS be a justification logic with the axiomatically appro-
priate CS. For arbitrary formulas A,B1, . . . , Bn ∈ Lj and arbitrary terms
s1, . . . , sn ∈ Tm, if B1, . . . , Bn `LCS

A, then there is a term t ∈ Tm such that
s1:B1, . . . , sn:Bn `LCS

t:A.

Proof. Assume B1, . . . , Bn `LCS
A. By Deduction Theorem 2.1,

LCS ` B1 → (B2 → · · · → (Bn → A) · · · ) .

By Constructive Necessitation 2.3, there is a ground term s′ such that

LCS ` s′:
(
B1 → (B2 → · · · → (Bn → A) · · · )

)
.
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By repeated applications of A2 and modus ponens, for t := s′ · s1 · · · sn,

s1:B1, . . . , sn:Bn `LCS
t:A .

2

B Proof of Theorem 3.6

Theorem 3.6 Let LCS be a justification logic and F ∈ Lj . If LCS ` F , then
∗ 
 F for all basic modular LCS-models ∗.
Proof. As usual, the proof is by induction on the length of the derivation
of F . Let ∗ be a basic modular LCS-model. It is obvious that all instances
of propositional axioms hold under ∗ and the rule (MP) is respected by the
semantics. Soundness of the axioms (A2), (A3), (j4), and (j5), as well as that
of the rules (AN) and (AN!), immediately follows from the definition of a basic
evaluation.

It is also easy to see that all instances of (jd) hold under all consistent basic
evaluations, all instances of (jt) hold under all factive basic evaluations, and all
instances of (jb) hold under all Brouwerian basic evaluations. The argument
for (jt) is as follows: if ∗ 
 t:F , then F ∈ t∗, so ∗ 
 F by factivity of ∗. 2

C Proof of Theorem 3.8

Theorem 3.8 Let LCS be a justification logic and F ∈ Lj . If ∗ 
 F for all
basic modular LCS-models ∗, then LCS ` F .

Proof. Assume that LCS 0 F . Then {¬F} is LCS-consistent and, hence, is
contained in some maximal LCS-consistent set Φ. For this Φ, any p ∈ Prop,
and any t ∈ Tm, we define

p∗ :=

{
1 p ∈ Φ

0 p /∈ Φ
and t∗ := {F ∈ Lj | t:F ∈ Φ} . (C.1)

It is easy to show that ∗ is a basic LCS-evaluation. By way of example, we will
show Conditions (i) and (v); the rest is similar.

Condition (i) of Def. 3.2. Suppose A ∈ s∗ · t∗. Then there is B ∈ Lj such
that B → A ∈ s∗ and B ∈ t∗. By (C.1), s:(B → A) ∈ Φ and t:B ∈ Φ. By the
maximal LCS-consistency of Φ, also (s · t):A ∈ Φ. Thus, A ∈ (s · t)∗ by (C.1).

Condition (v) of Def. 3.2. Suppose (j5) ∈ L and F /∈ t∗. By (C.1), we
have t:F /∈ Φ. By the maximal LCS-consistency of Φ, then ¬t:F ∈ Φ. Further,
?t:¬t:F ∈ Φ because (j5) ∈ L. So ¬t:F ∈ (?t)∗ by (C.1).

We now show the so-called Truth Lemma: for all D ∈ Lj ,

D ∈ Φ ⇐⇒ ∗ 
 D . (C.2)

We establish (C.2) by induction on the structure of D:

(i) D = p ∈ Prop. Then p ∈ Φ ⇔ p∗ = 1 ⇔ ∗ 
 p.

(ii) The cases when D = ¬A and D = A→ B are standard.
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(iii) D = t:A. Then t:A ∈ Φ ⇔ A ∈ t∗ ⇔ ∗ 
 t:A.

To show that ∗ is a basic modular LCS-model, we need to check Condi-
tions (i)–(iii) of Def. 3.5:

(i) Assume towards a contradiction that ⊥ ∈ t∗. Then t:⊥ ∈ Φ by (C.1).
Since (jd) ∈ L, we would have ⊥ ∈ Φ, which contradicts the consistency
of Φ.

(ii) Suppose F ∈ t∗. Then t:F ∈ Φ by (C.1). Since (jt) ∈ L, we have F ∈ Φ.
Now ∗ 
 F follows by (C.2).

(iii) Suppose ∗ 1 F . Then F /∈ Φ by (C.2). By the maximal LCS-consistency
of Φ, we have ¬F ∈ Φ. Since (jb) ∈ L, also ?t:¬t:F ∈ Φ, and ¬t:F ∈ (?t)∗

follows by (C.1).

Since ¬F ∈ Φ by the construction of Φ, we find ∗ 
 ¬F by (C.2). Thus,
∗ 1 F for the constructed basic modular LCS-model ∗. Completeness of LCS
follows by contraposition. 2

D Proof of Theorem 4.8

Theorem 4.8 Let LCS be a justification logic such that either (jt) ∈ L or
(jd) /∈ L and let F ∈ Lj . Then LCS ` F if and only if M 
 F for all modular
LCS-models M.

Proof. It is sufficient to prove that any formula refutable by a basic modular
model can be refuted at a world in a modular model and vice versa.
Soundness. Since R plays no role in the definition of truth in modular models,
for any modular modelM = (W,R, ∗) and for any world w ∈W , the basic LCS-
evaluation ∗w satisfies exactly the same formulas as the world w ofM does, i.e.,

M, w 
 F ⇐⇒ ∗w 
 F . (D.1)

In particular, ∗w is factive if M is and Brouwerian if M is. Thus, it follows
from Lemma 4.5 and from Condition (vii) for modular models that ∗w is a basic
modular LCS-model, which refutes all formulas refuted at the world w of M.
Completeness. For the opposite direction, let ∗ be a basic modular LCS-model.
We define an LCS-quasimodel M := ({1}, R, ?) with ?(1, t) := ∗(t). Since
∗ = ?1, by (D.1) we have ∗ 
 F iff M, 1 
 F . Thus, M is Brouwerian if ∗ is.
To show that M is a modular LCS-model, which refutes all formulas refuted
by ∗, it remains to make sure all the restrictions on R and the condition JYB
are met. The choice of R depends on the logic.

If (jt) ∈ L, set R := {(1, 1)}. It is reflexive, symmetric, Euclidean, and
transitive, so all restrictions on R are met. Further, if F ∈ t?1, then F ∈ t∗ by
the definition of ?. Since ∗ is factive, ∗ 
 F . Thus, M, 1 
 F by (D.1) and,
consequently, F ∈ 21. Thus, M meets JYB and is a modular LCS-model.

If, on the contrary, (jt) /∈ L and (jd) /∈ L, set R := ∅. It is symmetric,
Euclidean, and transitive, and JYB in this case is met trivially, since 21 = Lj .2
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E Proof of Theorem 4.10

Theorem 4.10 Let LCS be a logic with (jt) /∈ L and (jd) ∈ L. Then LCS is
sound with respect to modular LCS-models. If CS is axiomatically appropriate
for L, then LCS is also complete.

Proof. Soundness. Since ∗w from the soundness proof in Theorem 4.8 is
consistent if M is and M is consistent by Lemma 4.6, the same soundness
argument applies.
Completeness. We reuse the construction of a basic modular model ∗Φ based
on an LCS-consistent set Φ from the proof of Theorem 3.8. From all such ∗Φ we
create the canonical modular LCS-model and use (D.1) to transfer the properties
of ∗Φ proved for Theorem 3.8. Thus, we define Mc := (W,R, ∗), where W :=
{Φ ⊆ Lj | Φ is a maximal LCS-consistent set} and ∗Φ for each Φ ∈W is defined
by (C.1). Finally, we set R(Φ,Ψ) iff Φ] ⊆ Ψ, where Φ] := {F ∈ Lj | t:F ∈ Φ}.
If (jb) ∈ L, then Mc is Brouwerian by (D.1) because each ∗Φ is. To show that
Mc is a modular LCS-model, it remains to establish the appropriate properties
of R and the condition JYB.

We start with the latter. Let F ∈ t∗Φ. Then t:F ∈ Φ by the definition of ∗Φ
and F ∈ Ψ whenever R(Φ,Ψ) by the definition of R. By (C.2), ∗Ψ 
 F , and
Mc,Ψ 
 F by (D.1). Since Ψ is chosen arbitrarily, F ∈ 2Φ.

In order to prove seriality of R, we have to use the axiomatical appropriate-
ness of CS. It is sufficient to show that Φ] is consistent for any Φ ∈ W . Then
Φ] can be extended to a maximal consistent Ψ ⊇ Φ], which is accessible from Φ
by the definition of R. Assume towards a contradiction that Φ] were not con-
sistent. Then there would be s1:F1, . . . sn:Fn ∈ Φ such that F1, . . . , Fn `LCS

⊥.
Since CS is axiomatically appropriate, by Corollary 2.4, there would be
a term t such that s1:F1, . . . sn:Fn `LCS

t:⊥. Hence, by (jd) and (MP),
s1:F1, . . . sn:Fn `LCS

⊥, which contradicts the consistency of Φ.
The argument for the other properties of R follows the same pattern. We

only show the symmetry case. Let (jb) ∈ L and R(Φ,Ψ). To show that R(Ψ,Φ),
assume towards a contradiction that t:F ∈ Ψ but F /∈ Φ. Then ¬F ∈ Φ by the
maximal LCS-consistency of Φ and ?t:¬t:F ∈ Φ for the same reason. Hence,
¬t:F ∈ Ψ by the definition of R, which contradicts the consistency of Ψ. 2

F Proof of Lemma 4.14

Lemma 4.14 Every modular LCS-model M = (W,R, ∗) is also an F-model
for LCS such that for all w ∈W and F ∈ Lj , we haveM, w 
F F if and only if
M, w 
 F .

Proof. We prove (7) for all w ∈ W by induction on the structure of F ∈ Lj .
The only non-trivial case is when F = t:G, and the only non-trivial direction
of this case is from right to left. If M, w 
 t:G, then G ∈ t∗w. Hence, G ∈ 2w

by JYB. By induction hypothesis, G ∈ 2F
w. Thus, M, w 
F t:G.

It remains to show (4) for logics with (j4) ∈ L and (5) for those with (j5) ∈ L
or (jb) ∈ L. Since the former is exactly the statement of Lemma 4.7, we prove
the latter. If F ∈ t∗w, then F ∈ 2w by JYB. By (7), 2w = 2F

w so that F ∈ 2F
w.2
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G Proof of Lemma 4.16

Lemma 4.16 Let MF = (W,R, ∗F) be an F-model for a logic LCS. Then
M := (W,R, ∗) with

t∗w := {F ∈ Lj | F ∈ t∗Fw and F ∈ 2F
w} = {F ∈ Lj | MF, w 
F t:F}

is a modular LCS-model such that for all w ∈ W and all F ∈ Lj , we have
M, w 
 F if and only if MF, w 
F F .

Proof. Although it is not yet proved that M is a quasimodel, we can still
apply 
 to it. Thus, we start by proving (9) for all w ∈ W by induction on
the structure of F . Again, the only non-trivial case is when F = t:G, and the
statement for it follows immediately from (8).

We now use (9) to show that M is a modular LCS-model. The conditions
on R for F-models and modular models are identical, so we need to verify that
∗w is a basic LCS-evaluation for each w ∈W , thatM is Brouwerian if (jb) ∈ L,
and that JYB holds. We check JYB first. Suppose F ∈ t∗w. Then F ∈ 2F

w

by (8). Hence, F ∈ 2w by (9).
Suppose (jb) ∈ L and M, w 1 F . Then M, w 1F F by (9) so that ¬t:F ∈

(?t)∗Fw for any t ∈ Tm sinceMF is Brouwerian. Since (jb) ∈ L, we can use JYB
for MF, which yields ¬t:F ∈ 2F

w. Thus, ¬t:F ∈ (?t)∗w by (8).
It remains to check that ∗w is a basic LCS-evaluation.

(i) Suppose F ∈ s∗w · t∗w. Then there must exist a formula G ∈ Lj such that
G → F ∈ s∗w and G ∈ t∗w. By (8), G → F ∈ s∗Fw and G ∈ t∗Fw . Thus,
(a) F ∈ s∗Fw · t∗Fw ⊆ (s · t)∗Fw since ∗F(w) is a basic LCS-evaluation. Also
by (8), G→ F ∈ 2F

w and G ∈ 2F
w. In other words, MF, v 
F G→ F and

MF, v 
F G whenever R(w, v). Clearly, MF, v 
F F whenever R(w, v) so
that (b) F ∈ 2F

w. From (a) and (b), F ∈ (s · t)∗w follows by (8).

(ii) The proof that s∗w ∪ t∗w ⊆ (s + t)∗w is similar.

(iii) Suppose t:F is a conclusion of the (AN) or the (AN!) rule, whichever is
present in LCS. Then F ∈ t∗Fw because ∗F(w) is a basic LCS-evaluation. It is
now sufficient to show that F ∈ 2F

w, which follows from the soundness of
F-models. In [4], the soundness is established for most of the logics except
for those with (jb) ∈ L, for which F-models have not been defined. Thus,
we need to show the soundness of (jb) in F-models for such LCS. Suppose
(jb) ∈ L and M′F, w′ 1F G for an arbitrary F-model M′F = (W ′, R′, ∗F′)
for LCS. Then ¬s:G ∈ (?s)∗F

′

w′ for any s ∈ Tm because M′F is Brouwerian.
Also, ¬s:G ∈ 2F

w′ by JYB. Thus, M′F, w′ 
F ?s:¬s:G.

(iv) Suppose (j4) ∈ L and s:F ∈ s:(s∗w), i.e., F ∈ s∗w. By (8), this implies
MF, w 
F s:F . By soundness of (j4) in monotone F-models that sat-
isfy (iv), we get MF, w 
F !s:s:F . Now s:F ∈ (!s)∗w follows from (8).

(v) Suppose (j5) ∈ L and F /∈ t∗w. By (8), this implies MF, w 1F t:F .
By soundness of (j5) in F-models that satisfy JYB and (v), we get that
MF, w 
F ?t:¬t:F . Now ¬t:F ∈ (?t)∗w follows from (8).

2
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H Proof of Theorem 5.2

Theorem 5.2 Let L2CS be a logic of justifications and belief. For all formulas
F ∈ L2, if M 
 F for all modular L2CS-models M, then L2CS ` F .

Proof. We define the canonical model M2
c = (W,R, ∗) as follows:

W := {Φ ⊆ L2 | Φ is a maximal L2CS-consistent set}

and ∗Φ for each Φ ∈ W is defined by (C.1) except that t∗Φ consists of L2-
formulas instead of Lj-formulas. Finally, we set R(Φ,Ψ) iff Φ2 ⊆ Ψ, where
Φ2 := {F ∈ L2 | 2F ∈ Φ}.

As usual, the Truth Lemma is established by induction on D: for all for-
mulas D ∈ L2 and all maximal L2CS-consistent sets Φ,

D ∈ Φ ⇐⇒ M2
c ,Φ 
 D . (H.1)

The cases for propositions and Boolean connectives are straightforward. The
case for D = t:F does not involve R and is essentially the same as in the
proof of Theorem 3.8. The case for D = 2F is proved by the standard modal
argument because R is defined as in the modal canonical model rather than
as in Theorem 3.8.

It remains to show that M2
c is a modular L2CS-model. The proof that ∗Φ is

a basic L2CS-evaluation is almost literally the same as in Theorem 3.8. The
conditions on R are established by the standard modal argument. If (jb) ∈ L,
the proof that M2

c is Brouwerian follows the relevant part of the proof of
Theorem 3.8, only referring to the Truth Lemma (H.1) instead of (C.2).

Thus, the proof of JYB is the only thing that needs to be redone due
to the change in the definition of R, compared to Theorem 4.10. Suppose
F ∈ t∗Φ. Then t:F ∈ Φ by (C.1). Using the axiom instance t:F → 2F and
the maximal L2CS-consistency of Φ, we conclude that 2F ∈ Φ. Hence, F ∈ Ψ
whenever R(Φ,Ψ) by the definition of R. Thus, M,Ψ 
 F whenever R(Φ,Ψ)
by (H.1), i.e., F ∈ 2Φ. 2

I Proof of Theorem 7.2

Theorem 7.2 Let LCS be a justification logic with the axiomatically appro-
priate CS. Then LCS is sound and complete with respect to fully explanatory
modular LCS-models.

Proof. Given Theorems 4.8 and 4.10 and Remark 4.11, it is sufficient to show
that the canonical model Mc = (W,R, ∗) forLCS constructed in the proof of
Theorem 4.10 is fully explanatory.

Assume towards a contradiction that F ∈ 2Φ for some F ∈ Lj and Φ ∈W
but F /∈ t∗Φ for any t ∈ Tm. Then Φ] ∪ {¬F} would be LCS-consistent.

Indeed, if Φ] ∪ {¬F} were LCS-inconsistent, then G1, . . . , Gn,¬F `LCS
⊥

for some G1, . . . , Gn ∈ Φ]. Equivalently, there would be terms s1, . . . , sn such
that si:Gi ∈ Φ for i = 1, . . . , n and G1, . . . , Gn `LCS

F . By Corollary 2.4,
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given the axiomatic appropriateness of CS, there would be a term t such that
s1:G1, . . . , sn:Gn `LCS

t:F . By Deduction Theorem 2.1,

LCS ` s1:G1 → (s2:G2 → · · · → (sn:Gn → t:F ) · · · )

so that t:F ∈ Φ by the maximal LCS-consistency of Φ and F ∈ t∗Φ by (C.1),
contradicting our assumption.

Hence, the set Φ] ∪ {¬F} would be LCS-consistent and could be extended
to a maximal LCS-consistent set Ψ. Clearly, R(Φ,Ψ) by the definition of R
and Mc,Ψ 
 ¬F by (C.2) and (D.1). Thus, Mc,Ψ 1 F , which contradicts
our assumption that F ∈ 2Φ. 2


