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Abstract

We consider modal logics of products of neighborhood frames and prove that for
any pair L and L′ of logics from set {S4,D4,D,T} modal logic of products of L-
neighborhood frames and L′-neighborhood frames is the fusion of L and L′.
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1 Introduction

Neighborhood frames as a generalization of Kripke semantics for modal logic
were invented independently by Dana Scott [9] and Richard Montague [7].
Neighborhood semantics is more general than Kripke semantics and in case of
normal reflexive and transitive logics coincide with topological semantics. In
this paper we consider product of neighborhood frames, which was introduced
by Sano in [8]. It is a generalization of product of topological spaces 2 presented
in [1].

The product of neighborhood frames is defined in the vein of the product
of Kripke frames (see [11] and [12]). But, there are some differences. In any
product of Kripke frames axioms of commutativity and Church-Rosser property
are valid. Nonetheless, as it was shown in [1], the logic of the products of all
topological spaces is the fusion of logics S4⊗ S4.

In his recent work [13] Uridia considers derivational semantics for products
of topological spaces. He proves that the logic of all topological spaces is the
fusion of logics D4 ⊗ D4. And in fact D4 ⊗ D4 is complete w.r.t. the product
of the rational numbers Q. Derivational and topological semantics can be
considered as a special case of neighborhood semantics. So the result of [13]
and corresponding result for S4 from [1] can be obtained as corollaries from the
main result of this paper.

1 This work was supported by RFBR grants 11-01-00958-a and 11-01-93107-a
2 “Product of topological spaces” is a well-known notion in Topology but it is different from
what we use here (for details see [1])
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Neighborhood frames are usually considered in the context of non-normal
logics since they are usually complete w.r.t. non-normal logics and Kripke
frames are not. In this paper, however, we will consider only monotone neigh-
borhood frames, that correspond to normal modal logics. In some sense the
results of this paper (and of [1], [13]) shows that neighborhood semantics in
some sense is more natural for products of normal modal logics, since there are
no need to add extra axioms (at least in some cases).

2 Language and logics

In this paper we study propositional modal logic with modal operators. A
formula is defined recursively as follows:

φ ::= p | ⊥ | φ→ φ | 2iφ,

where p ∈ PROP is a propositional letter and 2i is a modal operator. Other
connectives are introduced as abbreviations: classical connectives are expressed
through⊥ and→, dual modal operators 3i are expressed as follows 3i = ¬2i¬.

Definition 2.1 A normal logic (or a logic, for short) is a set of modal for-

mulas closed under Substitution
(
A(pi)
A(B)

)
, Modus Ponens

(
A,A→B

B

)
and two

Generalization rules
(

A
2iA

)
; containing all classic tautologies and the follow-

ing axioms

2i(p→ q)→ (2ip→ 2iq).

Kn denotes the minimal normal modal logic with n modalities and K = K1.

Let L be a logic and let Γ be a set of formulas, then L + Γ denotes the
minimal logic containing L and Γ. If Γ = {A}, then we write L+A rather than
L + {A}

Definition 2.2 Let L1 and L2 be two modal logics with one modality 2 then
fusion of these logics is

L1 ⊗ L2 = K2 + L1(2→21) + L2(2→22);

where Li(2→2i) is the set of all formulas from Li where all 2 replaced by 2i.

In this paper we consider the following four well-known logics:

D = K + 2p→ ♦p;
T = K + 2p→ p;

D4 = D + 2p→ 22p;
S4 = T + 2p→ 22p.
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3 Kripke frames

The notion of Kripke frames and Kripke models is well known (see [2]), so
we only define special kind of frames that we are using in this paper. We
can call them fractal frames because their basic property is that any cone is
isomorphic to the whole frame. In particular, we consider four types of infinite
trees with fixed branching: irreflexive and transitive, reflexive and transitive,
irreflexive and non-transitive (any point sees only next level) and reflexive and
non-transitive.

Definition 3.1 Let A be a nonempty set.

A∗ = {a1 . . . ak | ai ∈ A}

be the set of all finite sequences of elements from A, including the empty se-
quence Λ. Elements from A∗ we will denote by letters with an arrow (e.g.
−→a ∈ A∗) The length of sequence −→a = a1 . . . ak is k (Notation: l(−→a ) = k) the
length of the empty sequence equals 0 (l(Λ) = 0). Concatenation is denoted by

“·”: (a1 . . . ak) · (b1 . . . bl) = −→a ·
−→
b = a1 . . . akb1 . . . bl.

Definition 3.2 Let A be a nonempty set. We define an infinite frame Fin[A] =

(A∗, R), such that for −→a ,
−→
b ∈ A∗

−→a R
−→
b ⇐⇒ ∃x ∈ A

(−→
b = −→a · x

)
.

We also defined

Frn[A] = (A∗, Rr), where Rr = R ∪ Id — reflexive closure;

Fit[A] = (A∗, R∗), where R∗ =
∞⋃
i=1

Ri — transitive closure;

Frt[A] = (A∗, Rr∗).

So “t” stands for transitive, “n” — for non-transitive “r” for reflexive and
“i” for irreflexive.

The following easy-to-prove proposition shows that frames Fξη[A] (where
ξ ∈ {i, r} and η ∈ {t, n})) are indeed fractal.

Proposition 3.3 Let F = Fξη[A] = (A∗, R) then

−→a R(−→a · −→c ) ⇐⇒ ΛR−→c .
Definition 3.4 Let F1 = Fξ1η1 [A] = (A∗, R1) be and F2 = Fξ2η2 [B] =
(B∗, R2), where ξ1, ξ2 ∈ {i, r} and η1, η2,∈ {t, n}), A∩B = ∅, A = {a1, a2, . . .}
and B = {b1, b2, . . .} then we define frame F1 ⊗ F2 = (W,R′1, R

′
2), as follows

W = (A tB)∗

−→x R′1−→y ⇐⇒ −→y = −→x · −→z for some −→z ∈ A∗ such that ΛR1
−→z

−→x R′2−→y ⇐⇒ −→y = −→x · −→z for some −→z ∈ B∗ such that ΛR2
−→z
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Proposition 3.5 ([6], [4]) Let F1 and F2 be as in Definition 3.4 then

Log(F1 ⊗ F2) = Log(F1)⊗ Log(F2). (1)

Let as define four frames: Fin = Fin[ω], Frn = Frn[ω], Fit = Fit[ω] and
Frt = Frt[ω]

Proposition 3.6 For just defined frames

(i) Log(Fin) = D;

(ii) Log(Frn) = T;

(iii) Log(Fit) = D4;

(iv) Log(Frt) = S4.

4 Neighborhood frames

In this section we consider neighborhood frames. All definitions and lemmas
of this section are well-known and can be found in [10] and [3].

Definition 4.1 A (monotone) neighborhood frame (or an n-frame) is a pair

X = (X, τ), where X is a nonempty set and τ : X → 22
X

such that τ(x) is
a filter on X for any x. We call function τ the neighborhood function of X
and sets from τ(x) we call neighborhoods of x. The neighborhood model (n-
model) is a pair (X, V ), where X = (X, τ) is a n-frame and V : PV → 2X is
a valuation. In a similar way we define neighborhood 2-frame (n-2-frame) as
(X, τ1, τ2) such that τi(x) is a filter on X for any x, and a n-2-model.

Definition 4.2 The valuation of a formula ϕ at a point of a n-model M =
(X, V ) is defined by induction as usual for boolean connectives and for modali-
ties as follows

M,x |= 2iψ ⇐⇒ ∃V ∈ τi(x)∀y ∈ V (M,y |= ψ).

Formula is valid in a n-model M if it is valid at all points of M (notation
M |= ϕ). Formula is valid in a n-frame X if it is valid in all models based on
X (notation X |= ϕ). We write X |= L if for any ϕ ∈ L, X |= ϕ. Logic of a
class of n-frames C as Log(C) = {ϕ |X |= ϕ for some X ∈ C}. For logic L we
also define nV (L) = {X |X is an n-frame and X |= L}.
Definition 4.3 Let F = (W,R) be a Kripke frame. We define n-frame
N (F ) = (W, τ) as follows. For any w ∈W

τ(w) = {U |R(w) ⊆ U ⊆W} .
Lemma 4.4 Let F = (W,R) be a Kripke frame. Then

Log(N (F )) = Log(F ).

The proof is straightforward.

Definition 4.5 Let X = (X, τ1, . . .) and Y = (Y, σ1, . . .) be n-frames. Then
function f : X → Y is a bounded morphism if



390 Modal Logic of Some Products of Neighborhood Frames

(i) f is surjective;

(ii) for any x ∈ X and U ∈ τi(x) f(U) ∈ σi(f(x));

(iii) for any x ∈ X and V ∈ σi(f(x)) there exists U ∈ τi(x), such that f(U) ⊆
V .

In notation f : X � Y.

Lemma 4.6 Let X = (X, τ1, . . .), Y = (Y, σ1, . . .) be n-frames, f : X � Y V ′

is a valuation on Y. We define V (p) = f−1(V ′(p)). Then

X, V, x |= ϕ ⇐⇒ Y, V ′, f(x) |= ϕ.

The proof is by standard induction on length of formula.

Corollary 4.7 If f : X � Y then Log(Y) ⊆ Log(X).

Definition 4.8 Let X1 = (X1, τ1) and X2 = (X2, τ2) be two n-frames. Then
the product of these n-frames is an n-2-frame defined as follows

X1 × X2 = (X1 ×X2, τ
′
1, τ
′
2),

τ ′1(x1, x2) = {U ⊆ X1 ×X2 | ∃V (V ∈ τ1(x1) & V × {x2} ⊆ U)} ,
τ ′2(x1, x2) = {U ⊆ X1 ×X2 | ∃V (V ∈ τ2(x2) & {x1} × V ⊆ U)} .

Definition 4.9 For two unimodal logics L1 and L2 we define n-product of them
as follows

L1 ×n L2 = Log({X1 × X2 |X1 ∈ nV (L1) & X2 ∈ nV (L2)})

Note that X1 ×X2 if we forget about one of its neighborhood functions say
τ ′2 then X1 × X2 will be a disjoint union of L1 n-frames. Hence

Proposition 4.10 ([8]) For two unimodal logics L1 and L2

L1 ⊗ L2 ⊆ L1 ×n L2.

5 Main construction

The construction in this section was inspired by [1], but it is not a straightfor-
ward generalization. In case of S4×n S4 it is, in essence, very similar to the
construction in [1]. However, here we operate only with words (finite or infi-
nite), and not with numbers and fractions. It makes proofs shorter and allows
us to generalize the results to non-transitive cases.

Let F = (A∗, R) = Fξη[A] and 0 /∈ A. We define set of “pseudo-infinite”
sequences

X = {a1a2 . . . | ai ∈ A ∪ {0} & ∃N∀k ≥ N(ak = 0)} .

Define fF : X → A∗ which “fogets” all zeros. For α ∈ X such that α =
a1a2 . . . we define

st(α) = min {N | ∀k ≥ N(ak = 0)} ;

α|k = a1 . . . ak;

Uk(α) = {β ∈ X |α|m = β|m & fF (α)RfF (β), where m = max(k, st(α))} .
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Lemma 5.1 Uk(α) ⊆ Um(α) whenever k ≥ m.

Proof. Let β ∈ Uk(α). Since α|k = β|k and k ≥ m then α|m = β|m. Hence,
β ∈ Um(α). 2

Definition 5.2 Due to Lemma 5.1 sets Un(α) forms a filter base. So we can
define

τ(α)− the filter with base {Un(α) |n ∈ ω} ;

Nω(F ) = (X, τ) — is the n-frame based on F .

Lemma 5.3 Let F = (A∗, R) = Fξ,η[A] then

fF : Nω(F ) � N (F ).

Proof. From now on in this proof we will omit the subindex in fF . Let
Nω(F ) = (X, τ). Since for any −→x ∈ A∗ sequence −→x ·0ω ∈ X and f(−→x ·0ω) = −→x
then f is surjective.

Assume, that x ∈ X and U ∈ τ(x). We need to prove that R(f(x)) ⊆ f(U).
There is m such that Um(x) ⊆ U and since f(Um(x)) = R(f(x)) then

R(f(x)) = f(Um(x)) ⊆ f(U).

Assume that x ∈ X and V is a neighborhood of x, i.e. R(f(x)) ⊆ V . We
need to prove that there exists U ∈ τ(x), such that f(U) ⊆ V . As U we take
Um(x) for some m ≥ st(x), then

f(Um(x)) = R(f(x)) ⊆ V.

2

Corollary 5.4 For frame F = Fξη[A] Log(Nω(F )) ⊆ Log(F ).

Proof. It follows from Lemmas 4.4, 4.5 and 5.3

Log(Nω(F )) ⊆ Log(N (F )) = Log(F ).

2

Proposition 5.5 Let Fin = Fin[ω], Frn = Frn[ω], Fit = Fit[ω] and Frt =
Frt[ω] then

(i) Log(Nω(Fin)) = D;

(ii) Log(Nω(Frn)) = T;

(iii) Log(Nω(Fit)) = D4;

(iv) Log(Nω(Frt)) = S4.

Proof. In all these cases the inclusion from left to right is covered by Corollary
5.4 and Proposition 3.6.

Let us check the inclusion in converse direction.
(i). It is easy to check that n-frame X = (X, τ) |= D iff for each x ∈ X

∅ /∈ τ(x). For Nω(Fin) and Nω(Fit) it obviously true.
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(ii). It is easy to check that n-frame X = (X, τ) |= T iff x ∈ U ∈ τ(x) for
each x and U . For Nω(Frn) and Nω(Frt) it is obviously true.

(iii) and (iv). It is well-known (see e.g. [5]) that X = (X, τ) |= 2p → 22p
iff for each U ∈ τ(x) {y |U ∈ τ(y)} ∈ τ(x). Indeed, it follows from the fact
that for any y ∈ Um(x) and any k Uk(y) ⊆ Um(x). 2

Let F1 = (A∗, R1) = Fξ1η1 [A] and F2 = (B∗, R2) = Fξ2η2 [B] we assume
that A ∩ B = ∅, A = {a1, a2, . . .} and B = {b1, b2, . . .}. Consider the product
of n-frames X1 = (X1, τ1) = Nω(F1) and X2 = (X2, τ2) = Nω(F2)

X = (X1 ×X2, τ
′
1, τ
′
2) = Nω(F1)×n Nω(F2).

We define function g : X1×X2 → (A∪B)∗ as follows. For (α, β) ∈ X1×X2,
such that α = x1x2 . . . and β = y1y2 . . ., xi ∈ A ∪ {0}, yj ∈ B ∪ {0}, we define
g(α, β) to be the finite sequence which we get after eliminating all zeros from
the infinite sequence x1y1x2y2 . . ..

Lemma 5.6 Function g defined above is a bounded morphism: g : X � N (F1⊗
F2).

Proof. Let −→z = z1z2 . . . zn ∈ (A ∪B)∗. Define for i ≤ n

xi =

{
zi, if zi ∈ A;
0, if zi /∈ A;

yi =

{
zi, if zi ∈ B;
0, if zi /∈ B.

Let α = x1x2 . . . xn0ω and β = y1y2 . . . yn0ω then g(α, β) = −→z . Hence g is
surjective.

The next two conditions we check only for τ1 and for τ2 it is similar. Assume,
that (α, β) ∈ X1 ×X2 and U ∈ τ1(α, β). We need to prove that R′1(g(α, β)) ⊆
g(U). There is m > max {st(α), st(β)} such that U ′m(α)× {β} ⊆ U and since
g(U ′m(α)× {β}) = R′1(g(α, β)) then

R′1(g(α, β)) = g(U ′m(α)× {β}) ⊆ g(U);

where U ′m(α) is the corresponding neighborhood from X1.
Assume that (α, β) ∈ X1×X2 and R′1(g(α, β)) ⊆ V . We need to prove that

there exists U ∈ τ ′1(α, β), such that g(U) ⊆ V . As U we take U ′m(α)× {β} for
some m > max {st(α), st(β)}, then

g(U ′m(α)× {β}) = R′1(g(α, β)) ⊆ V.

2

Corollary 5.7 Let F1 = (A∗, R1) = Fξ1η1 [A] and F2 = (B∗, R2) = Fξ2η2 [B]
then Log(Nω(F1)×n Nω(F2)) ⊆ Log(F1)⊗ Log(F2).

It immediately follows from Lemmas 5.6, 4.6 and Proposition 4.10.

Corollary 5.8 Let F1, F2 ∈ {Fin, Frn, Fit, Frt} then Log(Nω(F1) ×n
Nω(F2)) = Log(F1)⊗ Log(F2).
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Proof. The left-to-right inclusion follows from Corollary 5.7.
To prove right-to-left inclusion we notice that due to Proposition 5.5

Log(Nω(Fi)) = Log(Fi) (i = 1, 2) and due to Proposition 4.10

Log(Nω(F1))⊗ Log(Nω(F2)) ⊆ Log(Nω(F1))×n Log(Nω(F2)).

2

6 Completeness results

Theorem 6.1 Let L1, L2 ∈ {S4,D4,D,T} then

L1 ×n L2 = L1 ⊗ L2.

Proof. Logics L1 = Log(F1) and L2 = Log(F2) for some F1, F2 ∈
{Fin, Frn, Fit, Frt}. By Corollary 5.8

L1 ×n L2 = Log(Nω(F1)×n Nω(F2)) = Log(F1)⊗ Log(F2) = L1 ⊗ L2.

2

The following fact was proved in [1].

Corollary 6.2 Let X = (Q, τ) where Q is the set of rational num-
bers and τ is based on the standard topology on Q, i.e. τ(x) =
{U | ∃V (x ∈ V is open and V ⊆ U)}. Then

Log(X×n X) = S4⊗ S4.

Proof. Let Nω(Frt) = (X, τ). We can assume that X = {−→x · 0ω | −→x ∈ Z}.
Note that X is a countable set and neighborhood function τ is based on topol-
ogy generated by the lexicographical order <l on X. According to the classical
result of Cantor, since the lexicographical order on X is dense, (X,<l) isomor-
phic to (Q, <) (see ) and corresponding topological spaces are homeomorphic.
Hence,

Log(X×n X) = Log(Nω(Frt)×Nω(Frt)) = S4⊗ S4.

2

The following fact was announced 3 in [13].

Corollary 6.3 Let X = (Q, τ) where Q is the set of rational num-
bers and τ is based on the standard topology on Q, i.e. τ(x) =
{U | ∃V (x ∈ V is open and V \ {x} ⊆ U)}. Then

Log(X×n X) = D4⊗ D4.

Proof. Let X = (Q, τ), where τ is based on derivation operator in Q. Since
(X,<l) isomorphic to (Q, <) then

Log(X×n X) = Log(Nω(Fit)×Nω(Fit)) = D4⊗ D4.

2

3 The talk at the conference was very detailed, but to my knowledge, the full proof has not
been published yet.
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7 Conclusion

There are several ways to continue research. One of them is to try and
extend the technique to other logics (e.g. K). The other way is to add
the third modality which corresponds to the following neighborhood function
τ ′(x, y) = {U | ∃V1 ∈ τ1(x) &∃V2 ∈ τ2(y) (V1 × V2 ⊆ U)}. Similar construction
was considered in [1] for the topological semantic.
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